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Abstract
P3HT films were modified by incorporation of different amounts of nickel oxide (NiO). The nickel oxide powder was synthe-
sized by chronoamperometry. The composites were further dissolved and deposited by the spin-coating method on indium-tin
oxide (ITO) substrates. Effects of NiO content on the morphology structure and optical properties of P3HT films were investi-
gated by means of XRD, SEM, AFM, and UV–Vis spectroscopy. Electrochemical and photoelectrochemical performances were
evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic charge–discharge, and
photocurrent measurements. Results show that NiO dispersed uniformly in P3HT thin films and modified the surface roughness
and absorption of the deposited thin films. A remarkable improvement of photocurrent density and electrochemical capacitance is
observed for an NiO content ranging between 1 and 10 wt%. The specific capacitance obtained for P3HT alone is about
20.8 F g−1, this value increases to 81.4 F g−1for the P3HT-NiO 10 wt% composite film at 0.1-A/g current density.
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Introduction

In recent years, the increasing demand for renewable energy
resources received a major attention. In order to tackle the

problem, researchers also focused on organic photovoltaic
(OPV) devices which seem to be one possible solution for
niche applications like connected objects. Organic photovol-
taic (OPV) devices are easy to manufacture, low cost, light-
weight, and ecofriendly when compared to more classical en-
ergy supplies. Additionally, OPV devices proved to be ame-
nable to large area roll-to-roll manufacturing [1–3],
supplementing energy storage systems such as electrochemi-
cal batteries and capacitors (ECs) [4–8].

Hybrid (organic–inorganic) composite materials are
increasingly important owing to their versatile proper-
ties, which arise from the synergism between the prop-
erties of their constituents. These composite materials
can be obtained by several methods, a simple one being
the incorporation of inorganic semiconductors into or-
ganic polymers, in which inorganic semiconductor parti-
cles can have larger absorption coefficients and conduc-
tivity than organic semiconductor materials [9, 10].
Organic–inorganic composite materials have attracted
significant interest due to the remarkable change in
photoelectrochemical properties when compared to the
pure organic polymers [11–14].

* Yasser Ghalmi
ghalmiyasser@gmail.com

* Farid Habelhames
habelhamesfarid@yahoo.fr

* Abdelfetteh Sayah
sadjed19@yahoo.fr

1 Laboratoire d’Electrochimie et Matériaux (LEM), Département de
Génie des Procédés, Faculté de Technologie, Université Ferhat
Abbas, 19000 Sétif 1, Algeria

2 Laboratoire des Technologies Innovantes (LTI), Université de Jules
Verne, IUT de l’Oise Allée de la Faïencerie, 60100 Creil, France

3 Laboratoire de Physique des Interfaces et des Couches Minces, Ecole
Polytechnique, CNRS UMR 7647, 91128 Palaiseau, France

4 Department of Physics, Engineering Physics and Astronomy,
Department of Chemistry, Queen’s University, Kingston ON
K7L-3N6, Canada

Ionics (2019) 25:2903–2912
https://doi.org/10.1007/s11581-018-2781-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s11581-018-2781-2&domain=pdf
mailto:ghalmiyasser@gmail.com
mailto:habelhamesfarid@yahoo.fr
mailto:sadjed19@yahoo.fr


The most studied component of organic photovoltaic
(OPV) devices is poly(3-hexylthiophene) (P3HT), which is
still a subject of research in terms of electrochemical proper-
ties modification by addition or incorporation of other
chemicals or particles [15–17]. So, several researchers have
studied P3HT as an electron donor (p-type semiconductor) in
OPVs for improve energy conversion efficiency [18–20] and
recently, in supercapacitors due to its promising capacitive
properties. An advantageous aspect of P3HT is the easiness
to dissolve in a wide range of organic solvents, a fact that
enables its deposition over large areas under different deposi-
tion techniques such as spray, spin, and dip coating [21, 22].

It was also reported that by modifying a P3HT polymer layer
by using inorganic semiconductors materials like TiO2, ZnO,
Fe3O4, CdS, CdSe, and WS2, the morphology, optical, and
electrial properties of polymer layer could be improved [23–29].

Nickel oxide (NiO) is a p-type semiconductor with band gap
energy in the 3.5–4.0 eV range [30]. A remarkable aspect of
nickel oxide (NiO) that attracted researchers’ attention [31] is
its polyvalent use in many applications, i.e., transparent
conducting films, anode buffer layer in OPVs [32], and electro-
chemical supercapacitors [33–38]. To produce NiO films, there
are several technical available: sol–gel [30], chemical deposition
[39], spray pyrolysis [40], thermal evaporation [41], sputtering
[42], and electrodeposition [43] deserving special attention.

Among conducting polymers, poly(3-hexylthiophene)
(P3HT), polythiophene (PTh), and polyaniline (PANI) with
electron-donating properties are particularly used in
supercapacitors applications. Electron flow from conducting
polymers could be mitigated by the hybridization of the poly-
mer with a high surface area material that has additional nec-
essary properties to improve the overall capacitive perfor-
mance of the final composite. The conducting polymers-
electrode porous structure and material surface area are deter-
minant for the optimum capacitance, which is due to the sur-
face phenomena associated with supercapacitors [8, 37, 44].

In the present research, we prepared a P3HT-NiO composite
material in which NiO was obtained through chrono-
amperometry. The NiO was then blended into P3HT in various
proportions (1–10%) so that the P3HT-NiO composite could be
spin coated on indium-tin oxide (ITO). The capacity and
photoelectrochemical properties of the different composite
films were respectively studied by galvanostatic charge/
discharge and photocurrent measurement.

Experimental

Synthesis of the NiO powder

Figure 1 represents the electrochemically prepared NiO pow-
der by applying a constant 0.91 V vs. SCE cathode potential
on a fluorine-doped tin oxide (FTO)–coated glass used as

Fig. 1 Chronoamperograms of NiO synthesis under 0.91 V vs. SCE
cathodic potential

Fig. 2 XRD spectra of FTO (a) and NiO (b)

Fig. 3 XRD spectra of ITO/P3HT (a), ITO/P3HT-NiO 1 wt% (b), ITO/
P3HT-NiO 5 wt% (c), and ITO/P3HT-NiO 10 wt% (d)
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working electrode. A graphite rod and SCE counter electrode
was used as reference electrode. The electrolyte was a solution
of 0.1 M NiSO4·6H2O, 0.1 M Na2SO4, and 0.1 M
CH3COONa in a water deionizer. The NiO deposit was
cleaned with deionized water and scraped with a blade. The
resulting powder was annealed for 1 h at 500 °C.

P3HT-NiO thin films preparation

ITO-coated glass substrates were obtained from SOLEMS.
ITO thickness was 100 nm with about 25 Ω/sq resistivity
and 93% average transmittance in the visible. ITO substrates

were ultrasound cleaned 15 min successively in deionized
water, ethanol, and acetone.

P3HT containing different amounts of NiO (0–10 wt%)
was dissolved in chlorobenzene (C6H5Cl) by stirring during
24 h and spin coated at 500 rpm for 30 s on ITO. Spin-coated
films were annealed at 80 °C in air during 10 min.

Characterizations

Electrochemical tests were carried out at normal environment
temperature in one compartment cell by the use of PGZ-301
Voltalab connected to computer with voltamaster 4 operating

(a) (b)
Fig. 4 SEM images of ITO/P3HT
(a) and ITO/P3HT-NiO (b)

RMS=4.42 nm

RMS=18.27nm
RMS=10.13nm

RMS=9.32nm

(a)

(d)(c)

(b)Fig. 5 AFM images of ITO/
P3HT (a), ITO/P3HT-NiO 1 wt%
(b), ITO/P3HT-NiO 5 wt% (c),
and ITO/P3HT-NiO 10 wt% (d)
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software. The latter enables selection of the electrochemical
technique under the aimed parameters. Electrochemical mea-
surements were operated in a three-electrode cell with indium-
tin oxide (ITO) as working electrode, saturated calomel

electrode (SCE) as reference electrode, and a graphite rod as
auxiliary electrode.

Fig. 7 Cyclic voltammograms of ITO/P3HT (a), ITO/P3HT-NiO 1 wt% (b), ITO/P3HT-NiO 5 wt% (c), and ITO/P3HT-NiO 10 wt% (d), at different
scan rates in 0.1 M LiClO4/CH3CN electrolyte

Fig. 8 Specific capacitance of ITO/P3HT (a), ITO/P3HT-NiO 1 wt% (b),
ITO/P3HT-NiO 5 wt% (c), and ITO/P3HT-NiO 10 wt% (d) obtained
under different scan rates

Fig. 6 UV–visible spectra of ITO/P3HT (a), ITO/P3HT-NiO 1 wt% (b),
ITO/P3HT-NiO 5 wt% (c), and ITO/P3HT-NiO 10 wt% (d)
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The ITO/P3HTand ITO/P3HT-NiO (1, 5, and 10wt%) thin
films were examined under different techniques. XRD analy-
sis was carried with a Rigaku powder X-ray diffractometer

(model RINT 2100) with a CuKα source (λ = 1.54 Å). UV–
visible was then taken with a Shimadzu UV-1800 UV–VIS
spectrophotometer. Atomic force microscopy (AFM) images
were taken in the contact mode with a MFP 3D AFM from
Asylum research. The images were used to quantify thin film
roughness. Scanning electronmicroscopy (SEM)micrographs
were obtained from a Neo Scope, JEOL, JCM-5000.

Photoelectrochemical tests were carried out in (LiClO4

0.1 M +CH3CN) electrolyte; the photocurrent was obtained
after switching the lights on and off, with an applied potential
of − 1.2 to + 1 V vs. SCE. The working electrode was irradi-
ated with a 500-W white light lamp, in which intensity was
measured using a Luxmetertesto-540 as100 Wm−2.

Results and discussion

XRD in Fig. 2 shows peaks at 2θ = 37°, 43°, and 62°. The
peak values are likely to be those characterizing the cubic
NiO, in harmony with standard specific values, i.e.,
(JCPDS01-073-1519) [33, 43]. NiO grain size is figured out
through XRD according to Debye–Scherrer’s law:

Fig. 9 Galvanostatic charge–discharge curves of ITO/P3HT (a), ITO/P3HT-NiO 1 wt% (b), ITO/P3HT-NiO 5 wt% (c), and ITO/P3HT-NiO 10wt% (d),
at different current density, in 0.1 M LiClO4/CH3CN electrolyte, carried out from 0.3 to 0.8 V vs. SCE

Fig. 10 Specific capacitance of ITO/P3HT (a), ITO/P3HT-NiO 1 wt%
(b), ITO/P3HT-NiO 5 wt% (c), and ITO/P3HT-NiO 10 wt% (d), at
different current density
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D ¼ 0:9λ=w cos θ ð1Þ
whereD is grain size, λ is XRDwavelength,w is the full width
half maximum, and θ is the peak position. NiO grain size is
estimated around 25 nm.

Figure 3 shows the XRD spectra of P3HT and P3HT-NiO
(1–10%) composite films, where the peaks are shown at 2θ =
37°, 43°, and 62° as compared film without NiO. This con-
firms the incorporation of NiO nanoparticles in the P3HT
films.

SEM images of composite films on ITO are shown in
Fig. 4. The P3HT film in Fig. 4a presents smaller crystal-
line domains, with a nodular-like structure [45]. The

P3HT-NiO composite film consists in larger crystalline do-
mains as compared to P3HT. Some material surrounding
NiO clearly manifests, which is attributed to attach P3HT
polymeric chains [46].

Figure 5 shows the AFM surface morphology of the P3HT
and P3HT/NiO thin films. Surface roughness of the 0, 1, 5,
and 10 wt% P3HT blends are respectively 4.42 nm, 9.32 nm,
10.13 nm, and 18.27 nm. Surface roughness increases under
NiO addition up to 10 wt% in P3HT.The composite film ex-
hibits a relatively sharp granular morphology with uniform
grain size, suggesting the presence of a nanosized grain struc-
ture in the composite films [47–50]. It is recognized that sur-
face morphology and device interfaces are of paramount im-
portance for high-performance P3HT.

The optical spectra of NiO in P3HT are shown in Fig. 6.
P3HT absorption is enhanced by 1–10 wt % NiO incorpora-
tion. The absorbance spectrum of pure P3HT film shows
peaks at 610, 550, and 525 nm, which are in accordance with
literature [51–53]. The absorption peak of the ITO/P3HT-NiO
10 wt% sample at 300 nm can be attributed to the cubic nickel
oxide (NiO) [54–56]. This peak does not appear in the other
spectra (1 and 5 wt%) owing to the low NiO concentration.
NiO insertion clearly raises the overall absorbance of the film.
This can be attributed to scattering by the NiO nanoparticles in
which index of refraction is 2.1. This suggests an interaction
between the NiO nanoparticles and P3HT.

Figure 7 shows the cyclic voltammograms of ITO/P3HT
and ITO/P3HT-NiO (1, 5, and 10 wt%) composite films in the
potential range of 0.3 to 0.8 V vs. SCE at various scan rates
(10, 25, 50, 100 mV s−1). We notice that the CV curves of the
electrode materials are nearly rectangular shaped [37].
Compared with the ITO/P3HT film, all ITO/P3HT-NiO com-
posite films show an increase in the cyclic voltammetry
charge–discharge areas, due to the increased NiO mass em-
bedded into the polymer matrix.

The large cyclic voltammetry currents obtained for the
ITO/P3HT-NiO 10 wt% composite film meaningfully shows
a higher specific capacitance than ITO/P3HT, which is attrib-
uted to the rough surface of the ITO/P3HT-NiO composite
films as compared to the ITO/P3HT film. The ITO/P3HT-
NiO composite films show high electrical conductivity param-
eter, which is a prerequisite for supercapacitors. NiO present
inside the polymer enables a high contact interface between
P3HT and the electrolyte. The specific capacitance is evaluat-
ed using the following Eq. (2):

Fig. 11 Nyquist plots of ITO/P3HT, ITO/P3HT-NiO 1 wt%, ITO/P3HT-
NiO 5 wt%, and ITO/P3HT-NiO 10 wt%, in 0.1 M LiClO4/CH3CN
electrolyte

Table 1 Impedance electrical parameters for ITO/P3HT, ITO/P3HT-NiO 1 wt%, ITO/P3HT-NiO 5 wt%, and ITO/P3HT-NiO 10 wt%

Element ITO/P3HT ITO/P3HT-NiO 1 wt% ITO/P3HT-NiO 5 wt% ITO/P3HT-NiO 10 wt%

R1 (Ω cm2) 65.16 50.24 61.08 63.77

R2 (Ω cm2) 4906 784 128 70.85

Q2 (μF cm2) 68.98 38*10−5 19.1*10−1 35.6*10−1
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SC ¼ ∫E2

E1
i Eð ÞdE

2 E2−E1ð Þm v
ð2Þ

where SC is the specific capacitance, E2–E1 is the potential

window of cyclic voltammetry, ∫E2

E1
i Eð ÞdE is the voltammetric

charge obtained by integration of the CV-curve, m is the de-
posited material weight on the working electrode, measured
with 0.01-mg accuracy, and v is the scan rate.

The specific capacitance of ITO/P3HTand ITO/P3HT-NiO
(1, 5, and 10 wt%) composite films obtained at different scan
rates is given in Fig. 8. The ITO/P3HT film has a specific
capacity of 14 F g−1 at 10 mV/s. Upon NiO nanoparticle
insertion, a significant increase in the specific capacitance
happens with 16 F g−1, 19 F g−1, and 25 F g−1, respectively.
The specific capacitance increase may be a direct consequence
of the morphology changes upon NiO nanoparticle insertion.

Fig. 12 Photocurrent response of
ITO/P3HT (a), ITO/P3HT-NiO
1 wt% (b), ITO/P3HT-NiO 5 wt%
(c), and ITO/P3HT-NiO 10 wt%
(d), at − 0.2 (A), − 0.4 (B), − 0.6
(C), − 0.8 (D), − 1 (E), and −
1.2 V (F) vs. SCE in 0.1 M
LiClO4/CH3CN electrolyte,
observed upon switching the
white lights on and off, at 100-
mW cm−2 light intensity

Fig. 13 Photocurrent potential curve of ITO/P3HT (a), ITO/P3HT-NiO
1wt% (b), ITO/ P3HT-NiO 5wt% (c), and ITO/P3HT-NiO 10wt% (d), in
the potential range − 1.2 to 1 V vs. SCE in 0.1 M LiClO4/CH3CN
electrolyte
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Figure 9 shows the galvanostatic charge–discharge (GCD)
curves of ITO/P3HT and the ITO/P3HT-NiO (1, 5, and
10 wt%) films at various current densities under voltages be-
tween 0.3 and 0.8 V vs. SCE. A typical charge−discharge
curve is almost equilateral triangle shaped, which suggests a
linear response to time potential in the charge–discharge pro-
cess that witnesses good reversibility in the operation, indicat-
ing an excellent capacitive behavior. The electrode materials
undergo two distinctive stages of voltage drop with quick
discharge in the primary potential zone and some delay in
the second potential zone. This has proven to be significant
in terms of electrochemical performance.

Figure 10 represents the GCD plots of the electrode mate-
rials, set at current densities of 0.1, 0.2, 0.5, 1, and 2 A/g. It is
found that the increase in the current density corresponds to
the decrease in the discharge times of the electrode materials.

The ITO/P3HT-NiO 10 wt% composite films reaches the
largest discharge time among the materials tested, witnessing
its better specific capacitance. The specific capacitance (SC)
of the studied electrode materials was calculated from the
charge–discharge profile using Eq. (3):

SC ¼ it
mΔ V

ð3Þ

where i/m is the current density used, ΔV is the potential
window, and t is the discharge time in seconds. The ITO/
P3HT-NiO 10 wt% composite film reaches about 81.4 F/g
specific capacitance at a 0.1-A/g current density. The ITO/
P3HT, ITO/P3HT-NiO 1 wt%, and ITO/P3HT-NiO 5 wt%
reach 20.8, 26.2, and 38 F/g capacitance values under the
same applied current density of 0.1 A/g, as shown in
Fig. 10. Increasing the current density causes a general de-
crease in a specific capacitance, which is understood as elec-
trolyte ion depletion in the vicinity of the electrodes at higher
current densities. Specific capacitance at different current den-
sities was calculated from Eq. (2).

The impedance spectra of ITO/P3HT and ITO/P3HT-NiO
composite films computed at open circuit potential (0.1 V vs.
SCE) are displayed as Nyquist diagrams in Fig. 11.The films
were studied in (LiClO4 0.1M +CH3CN) solutions. The spec-
tra were plotted in the 100 KHz to 50 MHz frequency band
under 10-mValternative voltage.

In the spectra, the semicircle diameter decreases with in-
creasing NiO content in the P3HT matrix. This shows that
electric conductivity decreases in the NiO composite films,
from 4906 Ω cm2 for ITO/P3HT to 784 Ω cm2 for ITO/
P3HT-NiO 1 wt%, 128 Ω cm2 for ITO/P3HT-NiO 5 wt%,
and 70.85 Ω cm2 for ITO/P3HT-NiO 10 wt%. These values
are reported in Table 1. Insertion of NiO in P3HTsignificantly
increases the conductivity of the polymer.

Figure 12 shows the photocurrent amplitudes versus ap-
plied cathodic potential of the ITO/P3HT and ITO/P3HT-

NiO composite films under illumination. Tests were carried
out in (LiClO4 0.1 M +CH3CN) electrolyte solution under an
applied potential between 1.2 and 1 V vs. SCE for 100-mW/
cm2 light intensity. For all samples, both photocurrent and the
depletion region increase with the applied cathodic potential.
This is fully expected for a p-type semiconductor [12, 13, 20,
57, 58]. The photocurrent amplitude mostly increases with the
NiO content of the composite film.

Figure 13 shows the photocurrent density as a function of
the applied potential between − 1.2 to 1 V vs. SCE for ITO/
P3HT and ITO/P3HT-NiO electrodes with different NiO con-
tents. The photocurrent is negative in all the potential range
and it decreases with NiO content.

Conclusion

Composite films of P3HT-NiO obtained by blending P3HT
with various NiO amounts were deposited by spin coating on
ITO substrates. It is shown that addition of NiO nanoparticles
modified the morphology, spectroscopic and electrochemical
properties of the P3HT film.

Moreover, the obtained specific capacity for the composite
films (P3HT-NiO) was larger than that of the pure polymer,
which is due to improved electronic conductivity. The specific
capacitance for the P3HT material alone is about 20.8 F g−1,
which is increased to 81.4 F g−1 for the P3HT-NiO 10 wt%
composite film at 0.1 A/g.

Our results also show that NiO nanoparticles improved the
optical and photoelectrochemical response of the P3HT com-
posite films. The photocurrent increases more than three times
with 10% NiO nanoparticles in P3HT, thereby suggesting the
use of this composite, an electron donor in OPVs.
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