ORIGINAL PAPER

Fabrication of Ag₂S electrode for CO₂ reduction in organic media

Feng-xia Shen¹ · Jin Shi¹ · Feng Shi² · Tian-you Chen¹ · Yun-fei Li¹ · Qing-yuan Li¹ · Yong-nian Dai¹ · Bin Yang¹ · Tao Qu¹

Received: 28 May 2018 / Revised: 23 August 2018 / Accepted: 9 September 2018 / Published online: 8 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Electro-reduction of carbon dioxide (CO_2) to carbon monoxide (CO) has been extensively studied on metal and alloy electrodes for many decades. However, owing to their disadvantages of low current density and high over-potential, the practical application of these electrodes has been limited. Hence, it is highly desirable to explore new and high efficient electrode for CO_2 reduction to CO. Ag₂S has been widely studied as electrode material in electrochemistry due to its unique properties, such as high conductivity, chemical stability, and easy to be prepared. In this work, we have fabricated an Ag₂S electrode via electro-oxidation of Ag in aqueous solution. X-ray diffraction (XRD) and scanning electron microscope (SEM) confirm that Ag₂S has been modified on Ag foil, which made the electrode surface roughness. And then, we have evaluated the performance of Ag₂S electrode as the cathode for CO_2 reduction in propylene carbonate/tetrabutylammonium perchlorate. The cathodic current density reaches to 9.85 mA/cm², with the faradic efficiency for CO formation remaining stable at 92% during 4 h long-term electrolysis.

Keywords CO_2 electro-reduction \cdot Organic electrolyte \cdot Ag₂S electrode

Introduction

Electrochemical reduction of CO_2 to CO is the first step in the synthesis of more complex carbonaceous products [1–4]. In the past decades, numerous works have been done to explore an efficient electrode to convert CO_2 into CO with high efficiency. Most of the works focused on metal and alloy electrodes. However, owing to their disadvantages of low current density and high over-potential, the practical application has been limited. Hence, it is highly desirable to develop new electrode to improve the efficiency of CO_2 reduction [5–10].

Jin Shi shijin1118@163.com

⊠ Tao Qu 17456528@qq.com Silver sulfide (Ag₂S) has been widely used as electrode materials in electrochemistry, because it possesses many unique properties such as high conductivity, low price, and anti-poisonous characteristics [11–15]. In recent years, it was found that Ag₂S has high catalytic effects towards hydrogen evolution [16, 17]. But little attention has been given to investigate electro-reduction CO₂ on Ag₂S. In present work, we intend to study the electrochemical property of Ag₂S towards CO₂ reduction.

 CO_2 is a non-polar molecule and is highly soluble in organic electrolyte. Therefore, it would be beneficial to conduct the electrochemical reduction of CO_2 in an organic electrolyte. Selection of suitable supporting electrolyte and organic solvent is essential to CO₂ reduction. Because CO₂ is a non-polar molecule and has high solubility in organic solution, it would be beneficial to conduct CO₂ reduction in organic media. Among the commonly used organic solvents (AN, DMF, DMSO, and PC), acetonitrile (AN) is not suitable for practical application, because it is toxic and easily volatilize at ambient condition, it would result in hazardous effect to human health and environment. N,N-Dimethylformamide (DMF) is not suitable for practical application also, because it is poisonous and readily hydrolysis. Towards dimethyl sulfoxide (DMSO), because its melting point is 18 °C, CO₂ reduction cannot be conducted at ambient condition below 18 °C. Propylene

¹ State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, College of Metallurgy and Energy Engineering, The National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, 121 Street, Wenchang Road 68, Kunming 650093, China

² Department of Electrical Engineering and Renewable Energy Engineering, Oregon Institute of Technology, 3201 Campus Drive, Klamath Falls, OR 97601, USA

carbonate (PC) [18] is normally used as CO₂ absorber in industry, and also, it is a widely used medium in organic electrochemical, which has many advantages, such as non-toxicity, wide electrochemical window, low volatility, high CO₂ solubility, high boiling point, and high dielectric constant [19]. Thereby, we select PC as the organic solvent. Imidazolium ionic liquids (ILs) has been extensively studied as a novel support electrolyte for CO₂ reduction [20–22], owing to that they have some unique properties, such as negligible vapor pressure, wide electrochemical window, low volatility, and adjustable physical and chemical properties. Nevertheless, due to their disadvantages of high cost and readily decomposition at very negative potential (electro-reduction of CO_2 requires large negative potential) [23], it is not ideal for industry application. Tetrabutylammonium perchlorate (TBAP) [24, 25] is a commonly used supporting electrolyte in the organic electrochemistry, which possesses many outstanding advantages, such as low cost, easily to be prepared, and wide electrochemical windows. Hence, in this work, we select TBAP as the supporting electrolyte.

Herein, for the first time, we have reported CO_2 reduction on Ag_2S in PC/TBAP using two-compartment cell. Since electro-reduction of CO_2 to CO naturally generates H_2O , the presence of water in PC/TBAP is inevitable, and water plays in crucial role during CO_2 reduction process. Thereby, we have also discussed water effects on CO_2 reduction on Ag_2S .

Experimental section

Materials

Propylene carbonate (PC, analytical grade) was purchased from Meryer Chemicals and distilled before use. Tetrabutylammonium perchlorate (TBAP, analytical grade) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Ethanol absolute (AR, analytical grade), sulfuric acid (H₂SO₄, 98.08%), and sodium sulfide (Na₂S, 99.99%) were used as received from Aladdin Ltd. (Shanghai, China) without further purification. Ion-exchange membrane (Nafion 117) was purchased from DuPont Company. CO₂ and Ar (99.99%, purity) were purchased from Messer Company (Hainan, China). All the water in the experiment is double distilled.

Preparation of Ag₂S electrode

The Ag electrode was polished with 0.05 μ m alumina slurry and then sonicated in double-distilled water for 3 min, subsequently pretreated by degreasing in acetone, immersed in 10% nitric acid 3 min, and rinsed with a copious amount of doubly distill water. Ag₂S was prepared by anodic oxidation method in 0.1 M Na₂S solution. During this process, Ag⁺ resolved in Na₂S solution via anodization of Ag electrode at 0.9 V (NHE). It reacts with S^{2-} and formed a film of Ag_2S , which was deposited on Ag electrode. The electrode reaction is as follows:

Anode :
$$Ag - e^- \rightarrow Ag^+$$

 $Ag^+ + S^{2-} \rightarrow Ag_2s$ (1)

Cathode:
$$2H^+ + 2e \rightarrow H_2$$
 (2)

Electrochemical experiments

A two-compartment electrolysis cell [26] has been designed for CO_2 reduction in propylene carbonate (PC)/ tetrabutylammonium perchlorate (TBAP) electrolyte. The electrolysis cell is separated into two compartments by an ion-exchange membrane (Fig. 1). In this cell, CO₂-saturated organic electrolyte was used as the catholyte, and 0.1 M H₂SO₄ aqueous solution was used as the anolyte. The required proton and electrons for CO2 reduction through from the anolyte, the reaction can be carried out more easily. Ag₂S modified Ag electrode (99.99%, 2 mm × 2 mm) was used as the cathode. A graphite rod (99.99%, 5 mm in diameter and 15 cm in length) was used as the anode [27]. An I_3^{-}/Γ electrode was used as the reference electrode [28]. This reference electrode was constructed by immersing a Pt wire in a 0.1-M PC/TBAP solution containing 0.05 M I₂ and 0.1 M Bu₄NI. The I_3^{-}/I^{-} reference electrode was end with a porous Teflon cylinder and isolated from the cathode compartment by a salt bridge. The salt bridge contained the same solution as the catholyte. The salt bridge was separated from the catholyte by an ultra-fine glass firt. The tip of the salt bridge was placed 3 mm away from the cathode. The graphite rod was polished with 1200 grid sandpaper, and then, the Ag₂S electrode and graphite rod are cleaned using ultrasonication in distilled water and rinsed thoroughly with double-distilled water. During the electrolysis process, the generated protons from H₂O oxidized transfer through the proton-exchange membrane and diffuse to the cathode. On the cathode, CO₂ is reduced to CO with the participation of proton. The half reactions of anodic and cathodic are as follows in Fig. 1.

Measurements

All the electrochemical experiments are performed on CHI660D electrochemical working station at room temperature. PT-101 ultrasonic cleaner was purchased (Germany Branson Company, China). During the electrolysis process, the cathodic gas products are collected in a gas collector and analyzed by a gas chromatograph (Agilent-7890B, Westeast Analytical Instruments, China). The temperatures of the injector, the oven, and the detector are maintained at 130 °C, 120 °C, and 110 °C. X-ray diffraction (XRD) analysis of the

samples was performed on the X-ray diffractometer (Model D/MAX2500, Rigaka Denki Co., Ltd., Japan) with Cu-K_{α} radiation ($\lambda = 1.54184$ Å) at a voltage/current of 40 kV/ 40 mA, and the scan speed was 2°min⁻¹ and a step size of 0.02°. Variable temperature XRD data were collected using a Shimadzu XRD-7000 with Cu-K_{α} radiation ($\lambda = 1.54184$ Å). The morphologies of Ag₂S electrode was characterized by a HITACHI S-4800 scanning electron microscope (SEM) (Hitachi, S-4800, Tokyo, Japan) with a magnification of 100 k and emission voltage of 10 kV.

Results and discussion

XRD analysis

Figure 2a shows the pictures of Ag electrode which were taken before and after the electro-oxidation of Ag electrode in Na₂S solution. Before the electro-oxidation, Ag electrode displayed mirror-like surface. After the electro-oxidation, a film of black

trode. To determine the ingredient of the black adsorbates, Xray diffraction (XRD) was performed (Fig. 2b). Comparing with the pure Ag, several characteristic monoclinic planes of Ag₂S have been observed, which located at 28.1°, 34.3°, and 36.4°, corresponding to 200, -121, and 022. These results demonstrated that Ag₂S was formed and deposited on Ag foil. The formation process of Ag₂S should be explained as follows: when the Ag electrode was electro-oxidation in Na₂S aqueous solution, Ag⁺ was generated and entered into the aqueous solution, which further reacted with S^{2–}, resulting in the formation of Ag₂S. Because the solubility of the Ag₂S is very low, it was crystalled on Ag foil and formed a film. Thus, Ag₂S-modified Ag electrode was obtained.

substance was formed and deposited on the surface of Ag elec-

Linear sweep voltammetry

Fig. 2 a Photographs of Ag electrodes before and after

deposition of Ag_2S ; **b** XRD patterns of Ag and Ag_2S

Figure 3 shows linear sweep voltammetry (LSV) measured on Ag₂S. In Ar-saturated PC/TBAP, the negative limiting potential was detected as -2.35 V (Fig. 3a). After purged

1923

70

80

🔺 Ag

Ag₂S

Fig. 3 Linear sweep voltammetry on Ag_2S in 0.1 M a PC/TBAP with Ar; b CO₂-saturated PC/TBAP solution; c CO₂-saturated PC/TBAP/+ 6.8 wt% H₂O solution

with CO₂, the onset potential shifted positively to -1.70 V (vs. Fc/Fc^+), and the current density increased obviously (Fig. 3b), indicating that CO_2 electro-reduction took place on Ag₂S-modified electrode. Because electro-reduction of CO_2 to CO naturally produces H_2O , the accumulation of H_2O in PC/TBAP is inevitable [29]. When the content of H₂O exceeds saturation level, it would separate from PC/ TBAP due to the hydrophobic nature of PC/TBAP. The saturation content of H₂O in PC/TBAP is 6.8 wt% (measured via Karl Fisher titration) [29]. We have also conducted LSV measurements in the PC/TBAP + 6.8 wt% H_2O . The results are shown in Fig. 3c. As can be seen, the current density detected on Ag₂S increased sharply up to 14.18 mA/cm², and the onset potential shifted positively to -1.50 V(vs. Fc/Fc⁺). These results verified that H₂O has catalytic effects on CO₂ reduction.

Kinetic analysis

Tafel curves have been measured on Ag₂S in PC/TBAP. Since CO₂ is a thermodynamically stable molecule, electrochemical reduction CO₂ needs high over-potential. Hence, the equilibrium potential of CO₂ reduction was – 1.72 V (Fig. 4a). After adding 6.8 wt% of H₂O in 0.1 M PC/TBAP, the onset potential shifted positively to – 1.50 V (Fig. 4b). These results further demonstrated that H₂O has catalytic effects on CO₂ reduction.

The dynamic parameters of CO_2 reduction were calculated according to Eqs. (3)–(5) [30]. The results are listed in Table 1.

$$\eta = \mathbf{a} + b\log|\mathbf{i}| \tag{3}$$

$$a = \frac{RT}{n\alpha F} \ln i_0, b = \frac{2.3RT}{n\alpha F}$$
(4)

$$R_{ct} = \frac{RT}{nFi_0} \tag{5}$$

Fig. 4 Tafel curves for CO_2 reduction to CO on Ag_2S in 0.1 M a PC/TBAP; b PC/TBAP/+ 6.8 wt% H₂O (condition same as Fig. 3)

Where η is the activation over-potential, *a* and *b* are Tafel constant, α is the charge transfer coefficient, *n* is the number of electron transfer, *i*₀ is the exchange current density, *F* is Faraday's constant, *R* is universal gas constant, *T* is the absolute temperature, and R_{ct} is the polarization resistance.

As can be seen, the exchange current density i_0 measured on Ag₂S in PC/TBAP is 0.6144 × 10⁻⁴ A·cm⁻². The polarization resistance R_{ct} is 209.2812 Ω ·cm⁻² (Table. 1). These results are consistent with LSV (Fig. 3). After adding 6.8 wt% of H₂O in 0.1 M PC/TBAP, i_0 increased to 0.9784 × 10⁻⁴ A·cm⁻², and R_{ct} decreased to 98.2960 Ω ·cm⁻². The increase of i_0 and decrease of R_{ct} are caused by the catalytic effects of H₂O.

Long-term stability

Long-term potentiostatic electrolysis was carried out on Ag₂S in PC/TBAP. To avoid the decomposition of the electrolyte, the electrode potential was controlled at -2.3 V (vs. Fc/Fc⁺). The results are shown in Fig. 5. As can be seen, the cathodic current density kept stable at 6.63 mA/cm² (Fig. 5a). After adding 6.8 wt% of H₂O in 0.1 M PC/TBAP, the current density increased significantly. It reached to 9.85 mA/cm² and remained stable at this level until the completion of the electrolysis experiment (Fig. 5b).

The faradaic efficiency (η) of CO formation had been calculated according to Eq. (6) [31, 32].

$$\eta = 2nF/Q \tag{6}$$

Table 1 Dynamic parameters for CO_2 reduction in PC/TBAP over $\mathrm{Ag}_2\mathrm{S}$ electrode

Electrolyte	a	b	α	$i_0/(A \cdot cm^{-2})$	$R_{ct}\!/\!(\Omega\!\cdot\!cm^{-2})$
Blank 6.8 wt% H ₂ O	0.7180	0.1437	0.2042	0.6144×10^{-4} 0.9784×10^{-4}	209.2812 98.2960

Fig. 5 Potentiostatic electrolysis and faradaic efficiency for CO formation on Ag₂S in 0.1 M a PC/ TBAP; b PC/TBAP/+ 6.8 wt% H_2O

Where *n* is the amount of substance of CO produced, *F* is the faradaic constant (96,485 C/mol), and Q is the total charge passed. The results are shown in Fig. 4b. In the initial period, the faradaic efficiency of CO formation is low (both in PC/ TBAP and PC/TBAP/ + 6.8 wt% H_2O). This is because a part of CO dissolved in the catholyte [33], which could not be collected for analysis. After 40 min of electrolysis, the faradaic efficiency of CO formation increased significantly and kept stable at high level until the end of the electrolysis. In CO₂saturated PC/TBAP, the faradaic efficiency of CO formation is high (85%). Owing to the presence of residual water, hydrogen was generated on the cathode, the faradaic efficiency for H₂ formation arrived to 15%. After long-term electrolysis, because CO₂ electro-reduction into CO naturally produces H₂O, the accumulation of H₂O increased. The faradaic efficiency of H₂ formation increased with time. When H₂O content reached to 6.8 wt% (saturated concentration), the faradaic efficiency of CO and H₂ arrived to 92% and 8%, respectively, which remained stable until the end of the electrolysis. Because the electrochemical reduction of CO₂ to CO naturally

produces H_2O , H_2 has been detected on the cathode from water electro-reduction.

SEM observation

To further understand the high performance of Ag_2S electrode for CO_2 reduction, scanning electron microscope (SEM) was employed to observe the morphology of the cathode. Because Ag electrode was polished with aluminum oxide before the tests, it showed mirror surface (Fig. 6a). After deposition of Ag₂S on the Ag electrode by electro-oxidation, the surface of the Ag electrode turned into roughness (Fig. 6b). A layer of black adsorbates adhered to Ag electrode. During the electrolysis process, a part of loosened Ag₂S split away from the cathode. A layer of strongly absorbed Ag₂S was exposed (Fig. 6c). When the image was enlarged, uniformly distributed Ag₂S nanoparticles could be observed (Fig. 6d). This nanostructure results in a comparatively lager surface area and catalytic effects towards CO_2 reduction. As a consequence,

Fig. 6 a SEM image of Ag; b-dSEM image of deposition of Ag₂S

the potentiostatic electrolysis current density increased significantly (Fig. 5), and the onset potential shift positively (Fig. 3).

Conclusions

In this work, in order to improve the current density and decreased the onset potential of CO_2 reduction, we have fabricated Ag₂S-modified Ag electrode using the electro-oxidation method. The catalytic performance of the Ag₂S electrode was assessed in 0.1 M PC/TBAP/6.8 wt% H₂O solution. It was found that Ag₂S-modified Ag electrode exhibited high catalytic activity, selectivity towards CO_2 reduction. The faradaic efficiency of CO and the current density reached to 92% and 9.85 mA/cm², respectively. Ag₂S exhibits a promising in CO₂ reduction for practical application.

Funding information We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC 51164020, 51062009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Analysis and Testing Foundation of Kunming University of Science and Technology (20152102004, 20060130), and Free Exploration Fund for Academician of Chinese Academy of Engineering in Yunnan (2017HA006).

References

- Shen J, Kolb MJ, Göttle AJ, Koper MT (2016) DFT study on the mechanism of the electrochemical reduction of CO₂ catalyzed by cobalt porphyrins. J Phys Chem C 120:15714–15721
- Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh CT, Fan F, Cao C, de Arquer FP, Safaei TS, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley SO, Sargent EH (2016) Enhanced electrocatalytic CO₂ reduction via field-induced reagent concentration. Nature 537:382–386
- Hu B, Guild C, Suib SL (2013) Corrigendum to "Thermal, electrochemical and photochemical conversion of CO₂ to fuels and valueadded products". J CO₂ Util 2:18–27
- Ramakrishnan S, Chidsey CED (2017) Initiation of the electrochemical reduction of CO₂ by a singly reduced ruthenium(II) bipyridine complex. Inorg Chem 56:8326–8333
- Yang D-w, Li Q-y, Shen F-x, Wang Q, Li L, Song N, Dai Y-n, Shi J (2016) Electrochemical impedance studies of CO₂ reduction in ionic liquid/organic solvent electrolyte on Au electrode. Electrochim Acta 189:32–37
- Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K (2016) Cu–Sn bimetallic catalyst for selective aqueous electroreduction of CO₂ to CO. ACS Catal 6:2842–2851
- 7. Cheng T, Xiao H, Goddard WA (2016) Reaction mechanisms for the electrochemical reduction of CO_2 to CO and formate on the Cu(100) surface at 298K from quantum mechanics free energy calculations with explicit water. J Am Chem Soc 138:13802–13805
- Wang F, Cao B, To W-P, Tse C-W, Li K, Chang X-Y, Zang C, Chan SL-F, Che C-M (2016) The effects of chelating N₄ ligand coordination on Co(ii)-catalysed photochemical conversion of CO₂ to CO: reaction mechanism and DFT calculations. Catal Sci Technol 6:7408–7420

- Choi SY, Jeong SK, Kim HJ, Baek I-H, Park KT (2016) Electrochemical reduction of carbon dioxide to formate on Tin– Lead alloys. ACS Sustain Chem Eng 4:1311–1318
- H. Y, Electrochemical CO₂ reduction on metal electrodes. Springer New York (2008) 89–189
- Catriona O'Sullivan, Robert D. Gunning, Ambarish Sanyal, Christopher A. Barrett, Hugh Geaney, Fathima R. Laffir, Shafaat Ahmed, K. M. Ryan, [11] Spontaneous room temperature elongation of CdS and Ag₂S nanorods via oriented attachment. J Am Chem Soc 131 (2009) 12250–12257
- Fan W, Jewell S, She Y, Leung MK (2014) In situ deposition of Ag-Ag₂S hybrid nanoparticles onto TiO₂ nanotube arrays towards fabrication of photoelectrodes with high visible light photoelectrochemical properties. Phys Chem Chem Physics: PCCP 16:676–680
- Bozanic DK, Djokovic V, Blanusa J, Nair PS, Georges MK, Radhakrishnan T (2007) Preparation and properties of nano-sized Ag and Ag₂S particles in biopolymer matrix. Eur Phys J E 22:51– 59
- Li P, Li Z, Zhang L, Shi E, Shang Y, Cao A, Li H, Jia Y, Wei J, Wang K, Zhu H, Wu D (2012) Bubble-promoted assembly of hierarchical, porous Ag₂S nanoparticle membranes. J Mater Chem 22:24721
- Basu M, Nazir R, Mahala C, Fageria P, Chaudhary S, Gangopadhyay S, Pande S (2017) Ag₂S/Ag Heterostructure: a promising electrocatalyst for the hydrogen evolution reaction. Langmuir 33:3178–3186
- Adams N W H, K. J. R., Potentiometric determination of silver thiolate formation constants using a Ag₂S electrode. Pdf>, Aquat Geochem 5 (1999) 1–11
- Eckert W (1998) Electrochemical identification of the hydrogen sulfide system using a pH₂S (glass/Ag°, Ag₂S) electrode. J Electrochem Soc 1:77–79
- Izutsu K, Kolthoff IM, Fujinaga T, Hattori M, Chantooni MK (1977) Acid-base equilibria of some acids in propylene carbonate.Pdf>. Anal Chem 49:503–508
- Murrieta-Guevara F, Trejo A (1984) Solubility of carbon dioxide, hydrogen sulfide and methane in pure and mixed solvents. J Chem Eng Data 29:456–460
- Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJ, RI M (2011) Ionic liquid–mediated selective conversion of CO₂ to CO at low overpotentials. Science (New York, N.Y.) 334: 643–644
- Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580
- 22. Wang Y, Hatakeyama M, Ogata K, Wakabayashi M, Jin F, Nakamura S (2015) Activation of CO₂ by ionic liquid EMIM-BF4 in the electrochemical system: a theoretical study. Phys Chem Chem Phys: PCCP 17:23521–23531
- Neubauer SS, Schmid B, Reller C, Guldi DM, Schmid G (2017) Alkalinity initiated decomposition of mediating imidazolium ions in high current density CO₂ electrolysis. Chem Electro Chem 4: 160–167
- Oh Y, Hu X (2013) Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO₂ reduction. Chem Soc Rev 42:2253–2261
- House HO, Feng E, Peet NP (1971) A comparison of various tetraalkylammonium salts as supporting electrolytes in organic electrochemical reactions. J Org Chem 36:2371–2375
- Shi J, Shi F, Song N, Liu J-X, Yang X-K, Jia Y-J, Xiao Z-W, Du P (2014) A novel electrolysis cell for CO₂ reduction to CO in ionic liquid/organic solvent electrolyte. J Power Sources 259:50–53
- Andrews E, Katla S, Kumar C, Patterson M, Sprunger P, Flake J (2015) Electrocatalytic reduction of CO₂ at Au nanoparticle electrodes: effects of interfacial chemistry on reduction behavior. J Electrochem Soc 162:F1373–F13F8

- Shi J, Li Q-Y, Shi F, Song N, Jia Y-J, Hu Y-Q, Shen F-x, Yang D-w, Dai Y-N (2016) Design of a two-compartment electrolysis cell for the reduction of CO₂ to CO in tetrabutylammonium perchlorate/ propylene carbonate for renewable electrical energy storage. J Electrochem Soc 163:G82–GG7
- 29. Shi J, Shen F-x, Shi F, Song N, Jia Y-J, Hu Y-Q, Li Q-Y, Liu J-x, Chen T-Y, Dai Y-N (2017) Electrochemical reduction of CO₂ into CO in tetrabutylammonium perchlorate/propylene carbonate: water effects and mechanism. Electrochim Acta 240:114–121
- Fang Y-H, Liu Z-P (2014) Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal 4:4364–4376
- Shaharun MS, Mukhtar H, Yusup S, Dutta BK (2008) Kinetics of hydroformylation of higher olefins using rhodiumphosphite catalyst in a thermomorphic solvent system. Aiche Meeting 1:1–9
- Mosher BW, Czepiel PC, Shorter J, Allwine E, Harriss RC, Kolb C, Lamb B (1996) Mitigation of methane emissions at landfill sites in New England, USA. Energy Convers Manag 37:1093–1098
- Shen F-X, Shi J, Chen T-Y, Shi F, Li Q-Y, Zhen J-Z, Li Y-F, Dai Y-N, Yang B, Qu T (2018) Electrochemical reduction of CO₂ to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate. J Power Sources 378:555–561