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Abstract
An activated carbon was prepared using physical activation from date stone. This activated carbon was characterized by SEM,
XRD, and FT-IR. This composite was used as modifier of carbon paste electrode (AC/CPE) for electrochemical determination of
catechol (CC) and hydroquinone (HQ) using cyclic voltammetry. The electrochemical experiments indicated that the modified
electrodes can simultaneously determinate HQ and CC at an oxidative and reductive peaks separation of about 125 and 120 mV,
respectively. Furthermore, differential pulse voltammetry (DPV) of the sensing platform showed wide linear responses in the
presence of 5.0 × 10−5 mol L−1 CC with the limit of detection (S/N = 3) of 7.1 × 10−8 mol L−1. At the same time, the oxidation
peak current of CC was linear to its concentration with the limit of detection (S/N = 3) of 5.23 × 10−8 mol L−1 in the presence of
1.0 × 10−4 mol L−1 HQ.
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Introduction

Phenolic compounds and its substitute are important organic
intermediates for the products of industrial raw and synthetic
in cosmetic, pharmaceutical, tanning, and pesticide industries,
etc. [1–4], for example, dihydroxybenzene compounds such
as catechol (CC, 1,2-benzenediol) and hydroquinone (HQ,
1,4-benzenediol). Unfortunately, these two isomers are broad-
ly distributed in soil and aquatic environment and are difficult
to be degraded due to their high toxicity and high stability in
the ecological environment [5–7]. It is highly toxic to human
health even at very low concentrations [8], which are

considered as environmental pollutants by the US
Environmental Protection Agency (EPA) and the European
Union (EU) [9]. Moreover, CC and HQ usually coexist in
the environmental samples and have similar structures and
properties, which make it difficult to determinate them simul-
taneously. Therefore, the development of a sensitive, simple,
and rapid method for simultaneous determination of HQ and
CC has become the most important study.

Up to now, many instrumental methods such as chroma-
tography [10], chemiluminescence [11, 12], and spectropho-
tometry [13] have been commonly employed for quantifica-
tion of CC and HQ. In fact, these techniques require expen-
sive, complicated instruments and time consuming procedure.
However, the electrochemical methods offer the practical ad-
vantages including easy operation, satisfactory sensitivity, and
low cost of instrument [14–21]. The simultaneous determina-
tion of the two dihydroxybenzene isomers CC and HQ repre-
sents a serious problem, which arises from the adjacent poten-
tials in the direct oxidation and reduction at most unmodified
electrode surfaces. Therefore, it is very important to develop
novel materials with excellent conductivity and catalytic ac-
tivity for the simultaneous determination of CC and HQ.

Activated carbon (AC) is a carbonaceous material, and it is
highly porous over a broad range of pore sizes and various
functional groups on the surface [22, 23]. Due to their good
chemical stability, large aspect ratio, excellent electrical

* M. A. El Mhammedi
elmhammedi@yahoo.fr

1 Laboratoire de Chimie et Modélisation Mathématique (LCMM),
Faculté Polydisciplinaire, Univ. Hassan 1er, BP 145,
25000 Khouribga, Morocco

2 Laboratoire des procédés chimiques et matériaux appliqués
(LPCMA), Faculté Polydisciplinaire, Univ. Sultan Moulay Slimane,
BP 592, 23000 Béni Mellal, Morocco

3 Equipe de Catalyse et Environnement, Faculté de Sciences, Univ. Ibn
Zohr, BP 8106 Cité Dakhla, Agadir, Morocco

4 Equipe d’Analyse des Micropolluants Organiques, Faculté de
Sciences, Univ. Chouaib Doukkali, El Jadida, Morocco

Ionics (2019) 25:2285–2295
https://doi.org/10.1007/s11581-018-2648-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s11581-018-2648-6&domain=pdf
mailto:elmhammedi@yahoo.fr


conductivity, and being cost effective [24–27], ACwas widely
used in the development of high-performance electrochemical
sensors [28]. The price of commercial activated carbon varies
between 0.8 and 10 €/kg [29]. However, because the commer-
cial production of activated carbon is not cost effective and
together with the fact that the regeneration of used activated
carbon is extremely difficult, much attention has been given to
synthesizing amorphous activated carbon from renewable
sources [30]. Many researchers turn their attention from fossil
fuels to cheaper biomass, which is viewed as a veritable way
to make full use of agricultural/industrial wastes and reduce
carbon emission [31–33].

The novelty of this work is the simultaneous determination
of the catechol and hydroquinone using an AC. This material
having the advantages of very low cost and facilitates the
charge transfer, which can enhance the electrocatalytic perfor-
mance and anti-interference proprieties of the modified
electrode.

In this study, we presented a simple and general method to
prepare activated carbon from date stone through physical
activation. The result was demonstrated to be an effective
material for the fabrication of electrochemically modified
paste carbon electrode (AC/CPE). The performance of the
fabricated electrode (AC/CPE) and their catalytic effect on
HQ and CC behaviors were investigated using cyclic volt-
ammetry (CV). Moreover, the fabricated AC/CPE was suc-
cessfully applied to the simultaneous detection of HQ and CC
by differential pulse voltammetry (DPV) with good sensitivi-
ty, wide linear range, and low limit of detection.

Experimental

Reagents

All reagents employed were of analytical grade and were used
without further purification. Hydroquinone (HQ) and catechol
(CC), dibasic potassium phosphate, and potassium
dihydrogen phosphate were obtained from Sigma-Aldrich.
Its stock solution was prepared with distilled water.
Phosphate buffer solutions were prepared by mixing the stock
solutions of 0.1 mol L−1 K2HPO4 and 0.1 mol L−1 KH2PO4 at
different rations to adjust the pH value. Carbon graphite pow-
der (particle size < 100 μm) used for constructing electrodes
was supplied from Carbone Lorraine (Lorraine, France; ref.
9900).

Apparatus

The electrochemical experiments, including cyclic voltamm-
etry (CV) and differential pulse voltammetry (DPV), were
performed with an eDAQecorder/potentiostat EA163 con-
trolled by the eDAQEChem data acquisition software, with

a three electrode system. The working electrode was unmod-
ified carbon paste or that modified by activated carbon (AC/
CPE) with cavity geometric surface of 0.1256 cm2. Reference
electrode and counter electrode used were Ag/AgCl/saturated
KCl and platinum, respectively. pH measurements were car-
ried out using a pH-meter sensION™ (pH 31), with a com-
bined pH glass electrode calibrated against standard phos-
phate buffer solutions.

The activated carbon was characterized by X-ray diffrac-
tion (D 2-PHASER of BRUKER-AXS, Cu-radiation, λKα1 =
1.54060 Å and λKα2 = 1.54439 Å) performed at room tem-
perature. The external surface of the activated carbon was
examined by a scanning electron microscope VEGA3
TESCAN. Fourier Transform Infrared (FT-IR) spectroscopy
(FTIR-2000, Perkin Elmer) was used also to evaluate the
chemical structure properties. The infrared spectrum was col-
lected in a range of 4000–400 cm−1.

Preparation of activated carbon modified carbon
paste electrode

The activated carbon was prepared according to the method
reported in the literature [34]. Briefly, activated carbons were
prepared from date stones by pyrolysis under nitrogen flow
and activation under water vapor. Moreover, the carbon paste
mixture was prepared by hand mixing of graphite powder and
an appropriate amount of activated carbon to form a mixture
well homogenized [34, 35].

Results and discussion

Characterization of the activated carbon

X-ray diffraction patterns for activated carbon were shown in
Fig. 1a. The positions of the peaks due to d002 and d100 reflec-
tions are attributed to 2θ = 23.5° and 43.5°, respectively [36].
These diffraction peaks are evidence that the samples have an
amorphous structure.

FT-IR was used to determine the functional groups in-
volved in activated carbon. In the FT-IR spectra (Fig. 1b),
the presence of –OH group stretching at wave number of
3500 cm−1 (stretching vibration) with low signal was indicat-
ed. Similarly, at wave number of 2924 cm−1, it was attributed
to C-H interaction with the surface of the carbon [37], with
moderate intensity. Then, the wave numbers of 1645 cm−1–
1678 cm−1 showed the C=C bonds of an alkene compound
type, while 1516 cm−1–1541 cm−1 showed the C=C bonds of
the aromatic ring compound type; this is supported by the
presence of C–O at wave number of 1112 cm−1 [38].

Scanning electron microscope (SEM) picture of activated
carbon is shown in Fig. 1c. The picture shows the highly
porous characteristics of activated carbon with full of cavities.
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The porous surface morphology of the prepared carbon is a
positive point for adsorption of hydroquinone and catechol.

Effect of activated carbon on the separation peak
potential of HQ and CC

Figure 2a, b displays the individual electrochemical behaviors
of HQ and CC at the CPE and AC/CPE in 0.1 M PBS (pH
7.0), respectively. From Fig. 2a, it can be observed that at AC/
CPE, the potential differences between anodic and cathodic
peaks of HQ were determined to be 0.233 and − 0.037 V,
respectively. After the CPE modified with AC, the peak po-
tential separation (ΔEP) decreased from 0.49 to 0.27 V. For
CC (Fig. 2b), at CPE, the abroad anodic and cathodic peak
potentials of CC appear at about 0.393 and 0.016 V, respec-
tively. While at AC/CPE, the anodic and cathodic peaks ap-
pear at 0.312 and 0.054 V, respectively, and theΔEP is exten-
sively narrowed to 119 mV. The above results further confirm
that the electrochemical reversibility of CC at the AC/CPE can
be improved, similar to the observation in the case of HQ at
the AC/CPE. It is evident that the AC could be an effective
electrocatalyst for the redox reaction of dihydroxybenzene
isomers.

The cyclic voltammograms of a mixture containing HQ
and CC (1.0 × 10−3 mol L−1) in PBS (pH 7.0) at CPE and
AC/CPE are shown in Fig. 2c. At CPE, a large broad peak

centered at + 0.314 V is observed for the oxidation reaction,
while a narrower peak centered at 0.022 V is observed for the
reduction reaction. These behaviors showed that the oxidation
and reduction peaks of HQ and CC were characterized by the
overlapping peaks, and it was impossible to separate these two
compounds easily at the CPE. Also, the peak potential sepa-
ration (ΔEp = Epa − Epc) of 292 mV indicates the irreversibil-
ity of the reactions. On the other hand, at AC/CPE, two pairs
of well-defined peaks are apparent. The peaks at + 0.022 and +
0.147 V correspond to the oxidation of HQ and CC, respec-
tively, and the reduction peaks are observed at − 0.016 V (HQ)
and + 0.104 V (CC), with the values ofΔEp = 38 mV for HQ
and ΔEp = 43 mV for CC. Additionally, a separation of 125
and 120 mV between the oxidation and reduction peaks, re-
spectively, of HQ and CC is large enough for the simultaneous
determination of the dihydroxybenzene isomers. The AC/CPE
electrode exhibited an efficient electrocatalytic oxidation of
HQ compared to CC (peak shift), due to high adsorption of
the proposed modifier toward the molecules containing more
than one groupment BOH.^. The variation of the adsorption
capacity as a function of the BOH^ position serves to pro-
mote the separation of the HQ and CC peaks. From the
obtained results, it is found that the HQ adsorbs better than
the CC. Consequently, the best adsorption capacity was
observed for the molecule with Bpara^ position compared
to the ortho isomers. As well as the difference between the

Fig. 1 aX-ray diffraction (XRD).
b Infrared spectra (IR). c SEM-
EDX of activated carbon
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oxidation potentials facilitated the sensitive and accurate
detection of the two compounds [39–41].

The excellent performance of AC/CPE may attribute to the
following reasons. Firstly, the hydroxyl, carboxyl, and lacton-
ic groups in activated carbon could interact with the hydroxyl
groups in two isomers (CC and HQ) via H-bonding. Secondly,
in the PBS of pH 7.0, the negatively charged AC (pHzpc = 7.6)
could also interact with the positively charged HQ (pKa 9.96)
and CC (pKa 9.48) through the favorable electrostatic

attraction. These interactions may help to lower the activation
energy of the redox reactions required. The overpotential of
reactions was therefore decreased. Thirdly, the two isomers
can be enriched on AC/CPE due to the large specific surface
area of the AC.

Optimization of parameters

Effect of the mass ratio of AC

In order to obtain a better electrochemical performance of
modified paste carbon electrode (AC/CPE) for the simulta-
neous detection of HQ and CC, the mass ratio of AC used in
the fabrication of the modified electrode was investigated by
CV. From Fig. 3, the modified electrodes fabricated with dif-
ferent mass ratios of AC behaved differently on the detection.
When the mass ratio of AC was 2%, the resulting modified
electrode exhibited the largest peak current, while the oxida-
tion peak of HQ and CC could be completely separated. Thus,
the optimum mass ratio of AC was selected as 2%.

Effect of solution pH

The electrochemical oxidation of hydroxyl aromatic com-
pounds always involves proton transfer to form quinone
[42]. So, to obtain the best electrochemical response of HQ
and CC at the AC/CPE, the effect of the solution pH on the
electrochemical responses was also investigated by the CV in
0.1 mol L−1 buffer phosphate solution, with a pH range of 5–
8.5. As can be seen in Fig. 4, the anodic peak potentials of HQ
and CC shifted negatively with the increase of pH from 5 to
8.5, revealing the participation of protons in the present elec-
trochemical redox process [43]. The linear relationship of the
formal potential of HQ and CC with pH can be expressed as
the following equations (Eq. (1) and (2)):

HQ : Epa Vð Þ ¼ 0:5594‐0:0574 pH R2 ¼ 0:9715
� � ð1Þ

CC : Epa Vð Þ ¼ 0:3187‐0:0420 pH R2 ¼ 0:9917
� � ð2Þ

The slopes values of the two equations closed well with the
theory value of 59 mV/pH that deduced from the Nernst equa-
tion (dEp/dpH = 2.303 mRT/nF, m and n are protons and elec-
trons numbers). Based on these results, the redox reaction of
HQ (or CC) at AC/CPE should be a two electron and two
proton processes [44, 45]. Therefore, the probable reactions
of HQ and CC on AC/CPE are described as Schema 1.

Figure 4 also shows that the oxidation peak current of HQ
and CC increased with increasing the pH value until 7.0 and
then decreased when the pH further increased. For the detec-
tion of HQ and CC simultaneously, pH 7.0 was selected as an
optimal value of pH.

Fig. 2 a, b, and c are CVs of 1.0 × 10−3 mol L−1 HQ, 1.0 × 10−3 mol L−1

CC, and mixture of 1.0 × 10−3 mol L−1 HQ and 1.0 × 10−3 mol L−1 CC in
0.1 mol L−1 PBS (pH 7.0) at CPE and AC/CPE at 50mV s−1, respectively
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Effect of scan rate

The effect of scan rate on the redox of two isomers HQ and
CC were investigated on the AC/CPE using CV. Figure 5

showed the CV plots with different scan rates (30–
400 mV s−1) in 1.0 × 10−3 mol L−1 HQ and CC. The oxidation
peaks current vs. scan rate for the HQ and CCwhich exhibited
the linearity with the linear regression equation Ipa (μA) =

Fig. 4 CVs at AC/CPE in
0.1 mol L−1 PBS with different
pH containing 1.0 × 10−3 mol L−1

HQ and 1.0× 10−3 mol L−1 CC;
plot of Ea CC and Ea HQ vs. pH
value; plot of Ia CC and Ia HQ vs.
pH value

Fig. 3 CVs of AC/CPE with the
mass ratios of AC at 1, 2, 3, 4, and
5% in 0.1 mol L−1 PBS (pH 7.0)
containing 1.0 × 10−3 mol L−1 HQ
and 1.0 × 10−3 mol L−1 CC; plots
of variation of Ia and Ea with mass
ratios of AC
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0.114 υ μA/mVs−1 + 3.63 μA (R2 = 0.9966) for HQ and Ipa
(μA) = 0.133 υ μA/mVs−1 + 6.15 μA (R2 = 0.9959) for CC.
From the slopes (0.8606 and 0.8613) found from the graph of
log sweep rate (υ) versus the Log of anodic peak current (Log
Ipa) for HQ and CC is nearly to the theoretically obtained
value of 1.0 for an adsorption controlled electrode process
[46, 47]. This study indicates that the electrocatalytic behavior
of HQ and CC at the surface of AC/CPEwas controlled by the
adsorption controlled electrochemical process [48].

Simultaneous determination of HQ and CC

Differential pulse voltammetry technique (DPV) has been
established to be very sensitive in the detection of micromolar
amounts of chemical species compared with cyclic voltamm-
etry. The effect of the chemical and DPV parameters on the

response of the electrodes has been studied by means of seven
factors. According to our experience, the optimal combination
of chemical and DPV parameters chosen for these studies was
as follows: accumulation time = 60 s, pH = 7, mass ratio of
AC = 2%, step weight = 150 ms, step height = 5 mV, pulse
weight = 50 ms, and step height = 80 mV.

The selective determination of HQ and CC at AC/CPE
was studied by increasing the concentration of one isomer
while keeping the concentration of the other isomer con-
stant. Figure 6a shows that the DPV signals of CC oxida-
tion increased remarkably with the increase of CC concen-
tration, and the coexisted HQ had no effect on the detection
of CC. As shown in the insert of Fig. 6a, the increase of Ipa
fits the linear equation of Ipa (μA) = 0.2457 [CC]
(μmol L−1) + 16.07 (R2 = 0.9965) when the concentration
of CC increases from 1.0 × 10−6 to 1.0 × 10−3 mol L−1. The
AC/CP exhibits good limit of detection (LOD) and limit of
quantification (LOQ) for CC using Eq. (3) and (4) [49, 50]
and found to be 1.83 × 10−8 mol L−1 and 5.5 ×
10−8 mol L−1, respectively.

LOD ¼ 3S=M ð3Þ
LOQ ¼ 10S=M ð4Þ

where, S is the standard deviation and M is the slope.
Similarly, as shown in Fig. 6b, in the coexistence of CC, the

linear range of HQ was from 1.0 × 10−7 to 1.0 × 10−3 mol L−1

with a regression equation of Ipa (μA) = 0.1907[HQ]
(μmol L−1) + 8.945 (R2 = 0.9943). The calculated LOD and
LOQ are 7.1 × 10−8 mol L−1 and 2.36 × 10−7 mol L−1,

Fig. 5 CVs of a mixture of 1.0 ×
10−3 mol L−1 HQ and CC in
0.1 mol L−1 PBS on AC/CPE at
different scan rates (30, 40, 50,
60, 80, 100, 153, 200, 250, 320,
and 400 mV s−1); plot I vs. scan
rate; plot Log Ia vs. Log υ
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Schema 1 Redox reaction of HQ and CC
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respectively. The above results indicate that the oxidation re-
actions of HQ and CC at AC/CPE take place independently.

The simultaneous determination of HQ and CC at AC/CPE
was further studied by synchronously changing the concentra-
tion of HQ and CC in their binary mixture. The results are
shown in Fig. 6c. The oxidation peak currents of HQ and CC
were linearly correlated with their concentrations. The regres-
sion equations for CC and HQ were Ipa (μA) = 0.261 [CC]
(μmol L−1) + 1.5128 (R2 = 0.9948) and Ipa (μA) = 0.1773
[HQ] (μmol L−1) + 3.1801 (R2 = 0.9948), and the limit of

detection was estimated to be 5.23 × 10−8 mol L−1 and 7.7 ×
10−8 mol L−1, respectively. These values are, respectively, in
accordance with those obtained in their selective detection. It
is confirmed that the fabricated AC/CPE is suitable for the
simultaneous detection of HQ and CC in mixed systems.

A comparison of the proposed electrode AC/CPE with
other electrodes for HQ and CC detection is listed in Table
1. Our proposed method achieved lower limits of detec-
tion, wider linear concentration ranges, and larger separa-
tion anodic potential (ΔEp) value toward the simultaneous

Table 1 Comparison of the fabricated AC/CPE with other reported modified electrodes for the detection of HQ and CC

Modified material Linear range (10−6 mol L−1) LOD (10−6 mol L−1) ΔEpa (mV) Reference

HQ CC HQ CC

Chi/GR 1–300 1–400 0.75 0.75 96 3

GMC 2–50 2–70 0.37 0.31 130 8

PEDOT/GO 2.5–200 2–400 1.60 1.60 100 48

PDA/RGO 1–250 1–230 0.62 0.74 103 51

Nafion-FEPA-CNP/GR 0.3–90 0.6–100 0.157 0.272 105 52

Poly(glutamic acid)/GCE 5–80 1–80 1.0 0.8 102 53

AC/CPE 1–1000 0.1–1000 0.07 0.05 125 This work

Chi-GR chitosan-graphene, GMC graphitic mesoporous carbon, PEDOT-GO poly(3,4-ethylenedioxy-thiophene)-graphene oxide, PDA-RGO
polydopamine-reduced graphene oxide, Nafion-FEPA-CNP-GR Nafion-(4-ferrocenylethyne) phenylamine-carbon nanoparticles-graphene,
Poly(glutamic acid)/GCE poly(glutamic acid) modified glassy carbon electrode

Fig. 6 DPVs of AC/CPE in 0.1 mol L−1 PBS (pH 7.0) containing a
various concentrations of HQ (a–p 1.0 × 10−7 to 1.0 × 10−3 mol L−1) in
the presence of 5.0 × 10−5 mol L−1 CC, b various concentrations of CC
(a–o 1.0 × 10−6 to 1.0 × 10−3 mol L−1) in the presence of 1.0 ×

10−4 mol L−1 HQ, and c various concentrations of HQ and CC (a–m
1.0 × 10−6 to 1.0 × 10−3 mol L−1). The inserts show the relationships
between the peak currents and target concentrations
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determination of HQ and CC, which is superior to the re-
ported in references [3, 8, 48, 51–53].

Interference of coexisting substances

The influence of various substances as compounds potentially
interfering with the determination of HQ and CC was studied
under optimum conditions. For this fact, the interferences of
some common metal ions were evaluated. Experimental re-
sults which show the effect of some common metal ions in-
cluding Na+, Ni2+, Zn2+, Cd2+, Ag+, Al3+, Mg2+, Pb2+, Co2+,
and Fe2+ (each of 1.0 × 10−4 mol L−1) on the peak potential
and intensity of 1.0 × 10−5 mol L−1 HQ and 1.0 ×
10−5 mol L−1 CC were represented in Table 2. The variation
in current and potential peak caused by the interference metal
ions was less than 5%, which proved an excellent selectivity
of AC/CPE. Additionally, for the common interference in bi-
ological samples, 5.0 × 10−5 mol L−1 of 4-nitrophenol, phenol,
paracetamol, and dopamine were investigated in the presence
of 5.0 × 10−5 mol L−1 HQ and CC. The use of the AC/CPE for
the simultaneous determination was demonstrated by the
clean separation of the potential peaks compared with CPE
(Fig. 7). These results demonstrated that the AC-modified
electrode exhibited excellent selectivity for determination of
CC and HQ without interference of other coexisting
substances.

Stability and reproducibility of the AC/CPE

The stability and reproducibility of AC/CPE were also inves-
tigated by DPV and the modified electrodes exhibited nice
properties in these two aspects. When the AC/CPE was stored
at room temperature for about 1 month, the peak currents and

peak potential of HQ and CC decreased merely 5%, indicating
the high stability of AC/CPE (Fig. 8a). In addition, under the
optimized conditions, the reproducibility was investigated
comparing the peak currents and peak potential of the same
concentration of HQ and CC (Fig. 8b). The relative standard
deviations (RSDs) were less to 4%, which obtained for eight
measurements in a solution of 1.0 × 10−5 mol L−1 CC and
1.0 × 10−5 mol L−1 HQ.

Analytical application

In order to check the applicability and validity of the proposed
method, the AC/CPE was applied for the simultaneous deter-
mination of HQ and CC in local tap water samples. Typically,
the sample was prepared by adding 0.1 mol L−1 PBS (pH 7) to

Fig. 7 DPV curves after exposure to a solution containing 5.0 ×
10−5 mol L−1 4-nitrophenol (4-NP), phenol (Ph), paracetamol (PCT),
dopamine (DA), hydroquinone (HQ) and catechol (CC) at CPE (a), and
AC/CPE (b)

Table 2 Influences of coexisting substances on the detection of 1.0 × 10−5 mol L−1 HQ and CC

Interfering Current ratios (%)a Potential ratios (%)b

HQ CC HQ CC

Na+ − 3.80 ± 0.12 − 3.75 ± 0.65 − 1.01 ± 0.85 − 1.23 ± 0.74

Ni2+ − 1.19 ± 0.02 − 0.22 ± 0.04 − 0.82 ± 0.15 − 0.43 ± 0.31

Zn2+ + 0.03 ± 0.48 − 3.07 ± 0.99 + 0.54 ± 1.12 + 0.36 ± 0.22

Cd2+ + 0.55 ± 0.18 + 0.46 ± 018 + 1.12 ± 0.52 + 1.89 ± 0.63

Ag+ + 1.61 ± 1.06 + 0.41 ± 0.28 − 2.13 ± 0.98 − 3.11 ± 1.12

Al3+ − 0.28 ± 0.02 − 3.38 ± 0.42 − 0.15 ± 1.12 − 1.23 ± 1.26

Mg2+ − 0.062 ± 0.17 + 1.01 ± 0.85 + 0.92 ± 0.06 + 0.13 ± 0.14

Pb2+ + 0.34 ± 0.04 − 1.46 ± 0.04 + 1.16 ± 0.08 − 0.65 ± 1.12

Co2+ − 1.64 ± 0.02 − 1.56 ± 0.05 + 1.98 ± 0.94 + 2.29 ± 1.26

Fe2+ + 4.12 ± 1.63 + 3.92 ± 2.16 − 2.19 ± 0.05 − 3.12 ± 2.65

a Ratio of currents for mixtures of substance and HQ and CC compared with HQ and CC only
b Ratio of potential for mixtures of substance and HQ and CC compared with HQ and CC only
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tap water and then spiked with appropriate amounts of CC and
HQ. The electroanalytical curves were recorded using differ-
ential pulse voltammetry.

The results demonstrated that no analytes could be detected
in the real samples, meaning that two isomers HQ and CC
contents were below than the limits of detection. Then, the
amount of hydroquinone in the presence of catechol, as well
as catechol in the presence of hydroquinone in local tap water
samples, was calculated from the calibration method using
differential pulse voltammetry and the results are summarized
in Table 3. The recoveries were found in the range from 95.50
to 97.85% for HQ and from 95.25 to 98.60% for CC, with the
RSDs (below 5%). The obtained recovery results indicate that
AC/CPE modified electrode can be successfully used for the
determination of the concentration of two dihydroxybenzene
isomers in real tap water samples.

Conclusion

In this work, a facile, effective and highly sensitive electro-
chemical method is devoted based on the activated carbon for
the simultaneous and quantitative detection of HQ and CC.
Therefore, due to the excellent electrocatalytic activity of AC,
it showed two well-defined voltammetric peaks with greatly

enhanced peak currents compared to that at bare CPE, which
provided high sensitivity and good reversibility for the oxida-
tion of HQ and CC. After the optimization of the experimental
conditions, the measurable concentration ranges of HQ and
CC using DPV at AC/CPE are expanded remarkably with
lower limits of detection compared to previously reported
electrochemical sensors. Additionally, the proposed modified
electrode was applicable to determine HQ and CC in tap water
with satisfying results. All the results showed that the pro-
posed method is simple, low cost, and effective, which pro-
vides for the simultaneous detection of two diphenol isomers.
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