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Effect of SHI on properties of template synthesized Cu nanowires
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Abstract
Metallic as well as semiconducting nanostructures have generated wide interest and are achieving growing importance because of
their potential applications in various devices, such as batteries, manufacturing of electrical contacts in microelectronics, MEMS,
and solar cells. In the present work, template synthesis method coupled with electrodeposition has been used to synthesize copper
nanowires of diameter 200 nm into the pores of a polycarbonate track-etched (PCTE) membrane. The synthesized Cu nanowires
were irradiated with 150-MeV Ti9+ swift heavy ions at Inter University Accelerator Centre (IUAC), New Delhi, India. The
pristine and irradiated nanowires were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy
dispersive spectroscopy (EDS), and Keithley 2400 series source meter to study their structural, morphological, elemental, and
electrical properties, respectively. XRD analysis confirmed the face-centered cubic crystal system for pristine as well as irradiated
samples. The lattice strain and crystallite size were evaluated using line broadening analysis methods following modified
Scherrer method. Theoretical calculations have been done to obtain Young’s modulus of the nanowires and that has further been
used to evaluate stress generated in the nanowires. Hall-Petch relation has been used to evaluate the change in strengthening
coefficient in the nanowires due to irradiation. SEM analysis confirmed the cylindrical morphology of wires with a uniform
diameter throughout the complete length of the wires. A change in electrical conductivity of the nanowires has been observed
with increase in the fluence which is attributed to change in the orientation of grain boundaries and formation of defects.
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Electrical properties

Introduction

In last few decades, one-dimensional nanostructures like
nanowires, nanorods, nanotubes, and nanowhiskers have
drawn attention of the researchers worldwide. A number of
synthesis techniques are being used to create low dimensional
structures, such as photolithography, nanolithography, electro-
deposition, chemical vapor deposition, and microcontact
printing [1–6]. However, some of these techniques cannot
be employed for large-scale industrial fabrications as they
are not economical and also time-consuming. In past few
years, alternatively few cost-effective and high-output

fabrication techniques have been investigated. Kaps et al. [7]
have reported a single step flame method for the growth of
free standing ZnO nano/microwires. Sanger et al. [8] have
deposited vertically ordered Pd-decorated nanocauliflowers
on Ag-coated porous anodic alumina substrate by DCmagne-
tron sputtering. Holken et al. [9] have reported the successful
cost-effective synthesis of 3D hollow aero-Si nano/
microstructure (tetrapods and spheres) by sacrificial template
nanotechnology. Kumar et al. [10] have fabricated symmetric
supercapacitor based on α-MnO2 nanorods by reactive DC
sputtering as it is a versatile and facile method to achieve
high-performance combination and binder free electrodes on
a large scale. Amongst them, the template-assisted electrode-
position approach can be used to pattern low dimensional
structures and allow large-scale synthesis of metal and semi-
conductor compounds and heterostructures in which optical
and electronic properties can be tailored by just altering the
constituents, morphology, and dimension distribution
[11–14]. The growth mechanism of nanowires using this tech-
nique is a multistep process. The deposition of metal into
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pores of the template is associated with mobility-assisted
growth model. The first step involves initial nucleation and
growth of nuclei of the material we want to deposition inside
the pores. The concentration of ions to be deposited has to be
high enough to control the hydrogen evolution. The next step
is the continuous growth of nuclei which impinge inside the
template. The homogenous growth is achieved if the
electroactive species migrate towards the channels of the
membrane fast enough to travel to the barrier layer. The last
step is to cease the deposition at the point when deposition
reaches the ends of the pores. Quite often the templates used
had been basically the track-etch membranes having the
length to diameter ratio in the range 10–1000 and size varying
from 10 nm to several μm [15]. The nanostructures synthe-
sized using templates exhibit small roughness and large aspect
ratio. The diameter of the wires can be changed by using
prefabricated templates (Whatman, Sterlitech) of different di-
mensions. The nanostructures can be removed from the poly-
mer template by using a suitable etchant, and this is important
for their morphological characterization and to study the prop-
erties of an isolated nanowire or nanotubule. However, to
develop specific devices and to characterize these wires and
tubules, they are kept in the host material. Arrays of nanowires
of Ag, Fe, Ni, ZnS, and Ag2Se have been prepared by using
this electrochemical deposition approach [16–20]. The free-
standing vertically aligned wires can be synthesized by vari-
ous techniques including flame transport method, lithography,
and template-assisted deposition [21, 22]. The wires obtained
by template-assisted electrochemical deposition are uniform
throughout the complete length, support multilayer deposi-
tion, and flexibility for deposition of low dimensional struc-
tures of different shapes. The synthesis is possible at low tem-
peratures (< 100 °C) without any need of vacuum that makes
it an economic and energy-efficient method (low temp.). The
nanowires deposited electrochemically often grow with cer-
tain preferential crystallographic orientations that are influ-
enced by electrochemical deposition potentials [23, 24].
Kotok et al. [25] have shown that the 92 nm and 185 nm
diameter Au nanowires possess conductivity near to the bulk
conductivity if the nanowires are highly crystalline and
smooth. Ag and Au nanowires can be used as an ideal inter-
connect in nanoscale devices due to their excellent properties,
but nowadays, copper is widely used as it is abundantly avail-
able and less expensive [26].

Swift heavy ions (SHIs) transfer energy in a specific way in
the matter in small portions along their path thereby resulting
in developments in the field of science and technology on the
nanoscale [27–32]. The modifications at the electronic level of
any material occur due to a large amount of energy deposition
by SHI beams [33]. The changes may be attributed to various
factors, such as crosslinking, creation of defect sites in molec-
ular structure, structural rearrangements, and molecular emis-
sion. Irradiation generates crystal defects that disturb the

periodicity in the crystalline media that leads to variation in
electrical properties and mechanical properties [34]. The mod-
ifications induced are influenced by the parameter, such as
incident ion species, energy, charge state, beam current, and
properties (density, crystalline, amorphous, etc.) of the target
medium. The modification also depends on the electronic en-
ergy loss and nuclear energy loss that are governed by two
phenomenological models, i.e., thermal spike model and
Coulomb explosion model [35]. According to Coulomb ex-
plosion model, the host material is modified on account of
ionization produced by the passing SHI along its path follow-
ed by electrostatic repulsion and leading to explosion among
the charges produced. These SHIs create almost vertical, cy-
lindrical damage trails of diameter 5–10 nm. SHIs create
tracks and transfer a notable amount of energy to the matter,
which is then transferred to matter resulting in thermal spike.
During this process, shooting up of atomic energies takes
place for picoseconds resulting in atomic displacement and
mass movement. Researchers have irradiated thin films and
nanostructures to understand the ion interaction with matter.
SHI when enters a material causes modification in properties
of the target material by dense electronic excitation, which
may not be possible to achieve by conventional methods.
Zhao et al. [36] have reported changes in the microstructure
that led to change in the degree of hardening on irradiation
with He ion. Wang et al. [37] have explained that electrical
resistivity of Cu/V multilayer films increases on He ion irra-
diation due to an increase of the point defects induced by ion
irradiation. Singhal et al. [38] have reported modifications in
structural, electrical, and optical properties of Cu-C60 nano-
composite thin films. Nath et al. [39] have reported that irra-
diation with 100-MeV Si9+ has led to enhancement of electro-
chemical properties of the ionic liquid nanocomposite poly-
mer electrolyte. The cylindrical damage tracks formed during
the process of slowing down of energetic ion in the target
material lead to change in structural properties of the pure
metals [40]. The damage caused during ion irradiation com-
prises of two aspects—Frenkel defects and other based on
thermal spike [41, 42]. Structural variation in the nanowires
results into change in electrical, optical, and mechanical prop-
erties [43–45], whereas decrease in the electronic transport
properties is due to obstacles produced during irradiation in
the path of moving charge carriers that make the flow less
smoother than earlier [46]. The directional flow of charge
carriers is seized due to irradiation that amputates the ballistic
transport and increases the diffusive transport [47]. Our previ-
ous work [48] has reported the effect of gamma radiation on
copper microstructures; however, the modifications caused
due to SHI and gamma rays are completely different from
each other. The SHI interacts with materials in both ways,
i.e., elastic as well as inelastic, whereas gamma radiation in-
teracts with the material only the way of inelastic interaction.
Also, in the previous work published, the pore diameter of the
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nanowires was 1 μm, whereas in this work, the pore diameter
in 200 nm. Also, few other groups have used SHIs and gamma
radiation to study the change in properties of different mate-
rial. Srivastava et al. [49] and Singhal et al. [50] have tailored
the properties of PEDOT: PSS/non-graphite nanocomposites
SHI and gamma rays, respectively. The SHI irradiation leads
to change in strain and strengthening coefficient of the nano-
wires. Many reports are not available in the literature that
evaluates Young’s modulus and explain the change in strain
and strengthening coefficient of the nanowires upon irradia-
tion. Herein, we demonstrate a facile template-assisted elec-
trodeposition technique with the reduction of Cu2+ ions to Cu
using appropriate reduction potential to synthesize Cu nano-
wires. The as-synthesized nanowires were irradiated with 150-
MeV Ti9+ ions at four different fluences, viz., 5 × 1010, 1 ×
1011, 5 × 1011, and 1 × 1012. The effect of electronic stopping
power (dE/dX)e on structural and mechanical properties has
been investigated. Hall-Petch relation has been used to evalu-
ate the change in strengthening coefficient in the nanowires
due to irradiation. A change in electrical conductivity of the
nanowires has been explained using Mayadas and Shatzkes
(MS), Fuchs & Sondheimer (FS), and electrochemical poten-
tial gradient models.

Experimental

Electrodeposition of Cu nanowires

The nanowires were grown in polycarbonate track-etched
(PCTE) membrane. Conventional two-electrode setup was
used for the cathodic electrodeposition performed under
potentiostatic conditions. The template was mounted on top
of a conducting copper tape adhesive from one side using
transparent plastic tape. The combination of template and Cu
tape was pasted over a Cu metal strip that acted as the cathode
(working electrode) and a cylindrical copper rod acted as a
counter electrode. The schematic representation of the electro-
chemical cell used during the synthesis is shown in Fig. 1.
PCTE membrane with a thickness of 10 μm, pore density
1 × 108 pores/cm2 and pore diameter 200 nm, purchased from
Whatman, were used as templates for the deposition of Cu
nanowires. During the electrodeposition, the electroactive
species migrating into the nanochannels have to reach the
barrier layer quite fast such that homogenous electrodeposi-
tion in the pores can be obtained. Also, the concentration of
Cu ions has to be sufficient enough to suppress the production
of hydrogen evolution. The electrolyte was prepared by dis-
solving 1M CuSO4·6H2O in deionized water (MILLI Q 18-
MΩ). The pH was adjusted to 1.7 by using concentrated sul-
furic acid. The electrodeposition was carried out at 300 K at a
potential of − 0.34 V.

Swift heavy ion irradiation

The SHI irradiation was carried out in high vacuum in mate-
rials science chamber using a 15 UD Pelletron accelerator at
Inter University Accelerator Centre (IUAC), New Delhi,
India. The copper nanowires were irradiated with 150-MeV
Ti9+ ion beam at different fluences of 5 × 1010, 1 × 1011, 5 ×
1011, and 1 × 1012 ions/cm2 keeping the current constant at
0.5 pnA. The energy of Ti9+ ion beam was chosen as
150 MeV such that it could completely cross the length of
the nanowire. The projected ion range was calculated using
transport of ions in matter (TRIM) software. Stopping and
range of ions in matter (SRIM) were used to calculate the
electronic and nuclear energy losses that were 1.434 × 103

and 1.586 eV/Å, respectively.

Characterizations

The XRD analysis was performed using a Bruker X-ray pow-
der diffractometer having a Cu anode and an X-ray mirror on
the primary side. CuKα radiation of wavelength 1.5406 Å,
operated at 40 kV and 40 mAwas used during investigation.
All diffract graphs were examined from 40° to 95° with a step
size of 0.02°. Field emission scanning electron microscopy
(EVO18, Carl Zeiss) was employed to characterize the mor-
phology of the nanowires. The chemical composition of the
synthesized samples was analyzed by energy dispersive X-ray
spectroscopy. I-V characteristic (IVC) measurements were
done using a Keithley 2400 source meter. The tungsten tip
was used as one electrode in two-electrode setup to make
contact between the nanowires embedded in the polycarbon-
ate membrane, while Cu tape acted as another electrode dur-
ing the I-V measurements. At a time, the tungsten probe cov-
ered around 80 parallel nanowires and the measurements were
carried out in different regions of the PCTE membrane.

Results and discussions

Morphological and EDAX studies

The Scanning electron microscopy (SEM) images of pristine
and irradiated Cu nanowires are shown in Fig. 2. SEMhas been
employed to study the morphology of Cu nanowires as it is the
most convenient method to study the peripheral topography of
thematerial. For themorphological study, the PCTEmembrane
was dissolved in dichloromethane (CH2Cl2). The rinsed and
dried samples were coated with a 5 nm thin layer of Au-Pd
using a Quorum sputter coater to make sample conducting.
The samples were viewed under scanning electron microscope
(EVO 18 SEM from Carl Zeiss, Germany) at an accelerating
voltage 15 kV. Figure 2a, b, c displays SEM images of pristine
Cu nanowires of diameter 200 nm at different magnifications.
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Figure 2d, e manifests SEM images of irradiated nanowires at
the minimum (5 × 1010 ions/cm2) and maximum (1 ×
1012 ions/cm2) fluences, respectively. The SEM studies reveal
that the nanowires were standing and have a uniform diameter
equal to the diameter of the template in pristine as well as
irradiated nanowires. Few wires have aggregated together after
the dissolution of the membrane due to the surface tension of
the solvent drops. The template-assisted electrodeposited nano-
wires were found to be highly ordered, smooth, cylindrical
shaped, and vertically aligned. The diameter dispersion within

the as-synthesized Cu nanowire sample was only 8%. The
average diameter as obtained from Gaussian fit was found to
be 205 nm as shown in Fig. 3. No change in the external
morphology of the nanowires has been observed after irradia-
tion. The energy dispersive spectroscopy has been used to
make the elemental analysis of the as-synthesized Cu nano-
wires. As the irradiation was performed in vacuum, there were
no chances of change in elemental composition during irradia-
tion. The weight% of Cu was found to be 96.65% along with
very little oxygen of 3.35% as shown in Fig. 4.

Fig. 1 Schematic diagram
illustrating electrochemical cell
used during the synthesis of Cu
nanowires

Fig. 2 SEM images of Cu
nanowires (a, b, c) pristine at
three different magnifications, (d)
irradiated at fluence 5 × 1010

ions/cm2, and (e) irradiated at
fluence 1 × 1012 ions/cm2
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XRD studies

Figure 5 shows the X-ray diffraction (XRD) pattern of
pristine and irradiated Cu nanowires. The diffraction peak
of the samples, i.e., (111), (200), (220), and (311) at 2θ
position (43.31), (50.45), (74.13), and (89.94), respective-
ly, is in good agreement with the standard vaterite poly-
morph (JCPDS No. 85-1326). The wires could be indexed
as a face-centered cubic structure with lattice constant a =
3.165 Å. Crystal planes of different families were present
in the XRD pattern that indicated polycrystalline nature of
pristine and irradiated nanowires. Variation in relative in-
tensity of peaks was observed with increase in fluence
that signifies a change in preferred orientation of the
planes in the nanowires upon irradiation. Few other
groups have observed similar results [51, 52]. The crys-
tallite size has been evaluated using modified Scherrer
method [53, 54].

Peak broadening with crystallite size and lattice strain
arising due to dislocation can be calculated using XRD.
The width of each XRD peak (δ) is a combined effect of

broadening arising due to sample (δmeasured) as well as an
instrument (δinstrument). XRD pattern of standard silicon
material is used to determine the instrumental broadening.
The broadening due to the sample can be evaluated using
the relation [55]:

δ ¼
h
δ2measured−δ

2
instrumental

i
: ð1Þ

Crystallite size of Cu nanowires was calculated using
Debye-Scherrer formula [56–59]:

L ¼ Aλ
δcosθ

ð2Þ

where λ is the wavelength of CuKα radiation (1.54056 Å), A
is a constant equal to 0.94, L represents the crystallite size in
nanometers, θ is the Bragg peak position, and δ is the peak
broadening (radians). On taking the log of Eq. (2),

lnδ ¼ ln
Aλ
L

þ ln
1

cosθ
: ð3Þ

Plotting the values of lnδ against ln(1/cosθ), the crystal-
lite size was estimated from the y-intercept of the linear fit
curve as shown in Fig. 6. The calculated average crystallite
size is given in Table 1. The observed decrease in grain
size due to fragmentation results from an inelastic collision
between an incident atom and host material. Mallick et al.
[60] and Kumar et al. [61] have observed a similar decrease
in crystallite size due to SHI irradiation. The change in the
grain size results in high density of incoherent interfaces
and other defects. The dislocation density (D) and strain (s)
were also calculated and shown in Fig. 7. The dislocation
density (D) was calculated from Williamson Smallman’s
formula [62, 63] shown in Eq. (4)

D ¼ n
L2

ð4Þ

where Bn^ is a factor taken as unity to obtain minimum dislo-
cation density. The strain (s) [64, 65] developed in the Cu

Fig. 3 Histogram showing diameter distribution of pristine Cu nanowire;
the Gaussian fit of the data is also displayed

Fig. 4 Chemical composition of
pristine Cu nanowire deposits
comprise of 96.65-wt% copper
and 3.35-wt% oxygen
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nanowires during irradiation was calculated by using the
relation shown in Eq. (5)

s ¼ δcotθ
4

ð5Þ

where Bδ^ is the full width at half maximum. The strain
was obtained from the slope of the linear curve obtained by
plotting 4sinθ vs. δcosθ as shown in Fig. 8. The strain was
generated in the nanowires due to local distortion. As the
fluence increases, the energy imparted by the Ti+9 ion in-
creases that lead to reorientation of planes. This leads to
increase in distortion and strain the nanowires. It has been
observed that the dislocation density and the strain are
inversely proportional to crystallite size as shown in
Table 1.

Mechanical studies

A linear relation between stress and strain generally known
as Hooke’s law [66, 67]: Y = σy/s, where Y is the Young’s

modulus of elasticity and σy is the stress within the nano-
wire. The modulus of elasticity (Yhkl) for the cubic crystal
system can be theoretically calculated using the relation
[68]:

Y hkl ¼ C11−2 C11−C12ð Þ−0:5C44½ � l12l22 þ l22l32 þ l32l12f g½ �−1

ð6Þ

where C11, C12, and C44 are the elastic compliances of copper
with the values 1.5 × 10−11, − 0.63 × 10−11, and 1.33 ×
10−11 Pa−1 respectively. The average Young’s modulus for
cubic copper nanowires was calculated to be 151.885 GPa.
Using the strain values from Table 1 and average Young’s
modulus, the values of stress obtained are tabulated in
Table 1. Increase in stress was observed with increase in ion
fluence [69, 70]. As the fluence increases, the time for which
the sample remains under irradiation increases that leads the
defects to penetrate deeper into the wire layers. But the wires
remain under elastic range at all fluences, because we observe
an increase in stress with strain. Generation of defects is the
cause of atomic stress; as fluence increases, defects increases
and that in turn increases the stress in the nanowires. The
materials can be strengthened by strengthening their grain
boundaries and that can be done by changing the average
crystallite size [71]. Herein, we have used SHI irradiation to
change the crystallite size and induce stress in the nanowires.
Under the generated stress in the nanowires due to irradiation,

Fig. 5 XRD pattern of pristine and Ti9+ ion irradiated nanowires at
different fluences of 5 × 1010, 1 × 1011, 5 × 1011, and 1 × 1012 ions/cm2

Fig. 6 Modified Scherrer plot of pristine and irradiated Cu nanowires at
different fluences of 5 × 1010, 1 × 1011, 5 × 1011, and 1 × 1012

ions/cm2. Fit the data, the crystallite size L is extracted from the
intercept of the fit
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the dislocations move through the crystal lattice by Frank-
Read sources until they encounter grain boundaries. If there
is large atomic mismatch within the grain boundaries, dislo-
cations pile up at a grain boundary and are unable to move.
These piled up dislocations apply a repulsive force that re-
duces the energetic barrier for diffusion across the boundary
allowing further deformation in the material. As the fluence
increases, the grain size decreases; the pile up at the boundary
decreases which leads to increase in applied stress required to
move the dislocation across the grain boundary. There is an
inverse relation between crystallite size and yield strength of
the material given by the Hall-Petch equation [72–74]:

σy ¼ σ0 þ kyffiffiffi
L

p ð7Þ

where σy is the stress (given in Table 1), σ0 is the material
constant (for Cu it is equal to 25 MPa [75]), ky is the strength-
ening coefficient, and L is the crystallite size. The variation of
strain (s) and strengthening coefficient (ky) with ion fluence
are shown in Fig. 9. As the fluence increases, crystallite size
decreases; strain also increases that leads to increase in ky as
shown in Table 1. Thus, we can conclude that irradiation with
Ti9+ ions leads to the strengthening of the nanowires.

Electrical studies

The electrical properties were measured by two-probe
method. One probe was attached to the Cu tape and another
probe that comprised of tungsten tip of 10-μm diameter
was placed exactly on top of the nanowires. The tungsten
probe covered some 80 nanowires arranged parallel to each
other. A Keithley 2400 source meter was used to measure
the equivalent resistance of parallel nanowires by record-
ing the current corresponding to the applied potential,
nanowires arranged parallel to each other, and electrical
measurements. Figure 10 shows the IV characteristics of
pristine and irradiated nanowires. The current (I) vs. po-
tential (V) curve displays fairly linear behavior at room
temperature. All I-V curves manifest perfect linear depen-
dence, thus exhibiting the ohmic behavior as shown in
metals. At room temperature, the resistance of pristine Cu
nanowire was about 40.36 Ω. It increases with increase in
ion fluence. The resistance of Cu nanowires was calculated
from the formula:

RRT ¼ ρ
LH
A

ð8Þ

Table 1 Crystallite size, Stress, Strain, Dislocation density, Strengthening coefficient, and Resistivity of pristine and irradiated Cu nanowires at
different fluences of 5 × 1010, 1 × 1011, 5 × 1011, and 1 × 1012 ions/cm2

S. no. Sample name Crystallite size
(nm)

Stress MPa Strain (10−4) Dislocation density
(1014 m−2)

Strengthening coefficient
(ky) (Pa m

-1/2)
Resistivity
(10−6 Ωm)

1 Pristine 51 48.5 3.7 3.84 5303 0.112

2 5 × 1010 41 121.0 7.9 5.94 19,425 0.117

3 1 × 1011 47 165.3 10.9 4.52 30,396 0.127

4 5 × 1011 42 232.0 15.3 5.66 42,400 0.143

5 1 × 1012 34 263.8 17.4 8.65 44,001 0.197

Fig. 7 Variation of strain (s) and
dislocation density (D) of pristine
and irradiated Cu nanowires with
ion fluence
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where RRT is a resistance at room temperature, ρ is the resis-
tivity, LH is the length of the nanowire (10 μm), and A is the
area of cross section of the Cu nanowire (A = 3.15
(100)2 nm2). The resistivity of pristine nanowire was calculat-
ed to be 0.112 μΩm and resistivity increased with increase in
ion fluence. The Cu nanowires were polycrystalline in nature,
containing many crystal grain boundaries also shown in XRD
graph. The average values of grain size obtained from XRD
analysis were 51, 41, 47, 42, and 34 nm for pristine and

irradiated nanowires at fluences 5 × 1010, 1 × 1011, 5 × 1011,
and 1 × 1012 ions/cm2, respectively. A significant decrease in
grain size and increase in ion fluence suggest breaking of
grains into smaller ones. This would result in increase in grain
fragmentation and consequently increase in grain boundary
that affects the flow of conducting electrons and increases
the resistivity. The collision between incident ions and target
atoms creates point defects, and sometimes if target atoms
attain enough energy, they even get displaced from its original
lattice site. The SHIs deposit their energy in the incident ma-
terial medium that leads to excitation and ionization in lattice
atoms. The primary knock out of atom is followed by the
cascade that increases the number of defects. The kinetic en-
ergy produced by the Ti9+ ion in a cascade is very high that the
material is driven outside the thermodynamic equilibrium
leading to defect formation. The defects can be like point
defects, dislocations, faults, and Frenkel pairs. These defects
act as trapping centers for the conduction electrons that leads

Fig. 8 Strain calculation using the slope of the above liner fit line

Fig. 9 Variation in strain (s) and
strengthening coefficient (ky) of
pristine and irradiated Cu
nanowires with ion fluence

Fig. 10 I-V plot of pristine and irradiated Cu nanowires at different
fluences of 5 × 1010, 1 × 1011, 5 × 1011, and 1 × 1012 ions/cm2. Fit to the
data, the resistance R is calculated from the inverse of the slope
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to decrease in electrical conductivity. The energy of incident
Ti9+ ion is 150 MeV; hence, electronic energy loss dominates
over nuclear energy loss. The electronic energy loss takes
place via ionization and excitation process. This process is
also accompanied by recombination of ions and atoms. This
recombination and dense electronic excitation and de-
excitation process lead to a generation of heat energy, which
causes an increase in the amplitude of lattice vibration. The
increase in lattice vibration leads to increase in scattering of
charge carriers, change in preferred orientation, and diffusion
of dislocation and cavities. The scattering of charge carriers
from the surface interface and grain boundaries ρM − F is
governed by MS and FS model and can be expressed as [75].

ρM−F ¼ ρb 1þ 3

8t
1−rð Þ þ 3

2
β

� �
ð9Þ

where ρb is the bulk resistivity of Cu equal to 1.68 × 10−8Ωm,
t = L/λ0 (L is the crystallite size and λ0 is the mean free path of
electron equal to 40 nm; r is the specularity coefficient equal
to 0.5 that describes the fraction of electrons that will be spec-
ularly scattered at the wire surface, upon specular scattering,
but the dimension of Cu nanowires synthesized for this work

has a diameter of 200 nm; so, ρb
3λ0
8L 1−rð Þ factor will not play a

role, β = λ0R / (1 − R)L (R is the grain boundary scattering).
Removing the specularity factor and substituting β in Eq. 9,

we get

ρM−S ¼ ρb þ 0:5
3λ0

L
R

1−R
ρb ð10Þ

ρM − S is inversely proportional to crystallite size L. Thus,
the formation of new grains by fragmentation leads to de-
crease in crystallite size and increase in resistivity of Cu nano-
wires with increasing fluence as shown in Fig. 11. Apart from
the effectiveness of scattering of charge carriers from defects

and grain boundaries, the electrochemical potential also af-
fects the flow of charge carriers and results into a decrease
in electrical conductivity in polycrystalline materials. The
flow of charge carriers is influenced by diffusion of electronic
and atomic defects. The transport of electric charge is
governed by electric potential gradient, and diffusion of atom-
ic defects is governed by the chemical potential gradient. The
diffusion mechanism is governed by various parameters like
grain boundaries, temperature, porosity, and structure. The net
chemical potential would be algebraic sum of potential gradi-
ent due to all type of defects. The electrochemical potential
gradient for one-dimensional case that governs the flow of
charge carriers under the combined effect of chemical and
electric potential is given as [76].

ð11Þ

where ƞ is the electrochemical potential, μ is the chemical
potential, ɸ is the electric potential, and zie is the charge of
the ith mobile particle. The solution of differential Eq. 11 is

ð12Þ

Equation 12 relates the linear combination of chemical and
electric potential. The applied electric potential is same for all
cases (− 1 to 1 V), but chemical potential would be different
for each case due to irradiation at different ion fluences.
Equation 12 suggests that with the increase in ion fluence,
diffusion rate of defects increases which leads to increase in
the effective value of chemical potential [76]. At low fluence,
the diffusion coefficient would be low and therefore will not
play a major role in electrical conductivity, but at higher
fluence, the role of chemical potential also becomes important
in the net flow of charge carriers that further reduces the elec-
trical conductivity of the nanowires.

Thus, increase in defects and grain boundaries in Cu nano-
wires combined with an increase in diffusion rate of defects
with increasing fluence leads to decrease in electrical conduc-
tivity of the nanowires.

Conclusions

Template synthesis method coupled with electrodeposition
has been used to synthesize copper nanowires of diameter
200 nm into the pores of a PCTE membrane. The synthesized
Cu nanowires were irradiated with 150-MeV Ti9+ SHIs at
Inter University Accelerator Centre (IUAC), New Delhi,
India. SEM analysis confirmed the cylindrical morphology
of wires with a uniform diameter throughout the complete
length, and no change in external morphology has been

Fig. 11 Variation in resistivity of pristine and irradiated Cu nanowires
with ion fluence
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observed in the irradiated nanowires. XRD analysis confirmed
the face-centered cubic crystal system for pristine as well as
irradiated samples. The crystallite size was calculated using
the modified Scherrer equation and found to decrease due to
fragmentation of grain boundaries by energy imparted by Ti9+

ions. Theoretical calculations have been done to obtain
Young’s modulus of the nanowires and that has further been
used to evaluate stress generated in the nanowires. Hall-Petch
relation has been used to evaluate the change in strength-
ening coefficient in the nanowires due to irradiation. An
increase in strengthening coefficient is observed with in-
crease in ion fluence. A change in electrical conductivity of
the nanowires has been observed with increase in the
fluence, which is attributed to increase in grain boundaries
and formation of defects.
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