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Abstract
In this report, a nitrite electrochemical sensor was developed by electrochemical deposition of copper nanoparticles on the
polypyrrole nanotubes (PPy-Cu). The PPy nanotubes were synthesized via pyrrole polymerization on electrospun polystyrene
nanofibers (PS) with the diameter of 150 nm, followed by PS removal. The prepared nanotubes were characterized using Fourier
transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Ultrafine Cu nanoparticles with the size of
4.2 ± 1.2 nmwere uniformly deposited on PPy tubes by electrolysis. The existence of zero valence Cu particles was demonstrated
by transmission electron microscopy (TEM) and X-ray photo spectroscopy (XPS). The electrochemical behaviors of the PPy and
PPy-Cu electrodes were investigated by cyclic voltammetry (CV). PPy enhances the deposition of Cu dramatically and facilitates
the uniform distribution of the copper nanoparticles. The obtained PPy-Cu exhibits an excellent catalytic activity to the reduction
of nitrite. The catalytic performance of the resultant PPy-Cu electrodes was optimized by varying the PPy morphology and Cu
deposition amount. Using hydrodynamic current-time curves, the linear relationship was obtained, under the optimized condi-
tions, in the range of 0.1 μM to 1 mM with a limit of detection of 0.03 μM (S/N > 3). The sensor presents good reproducibility
and stability for nitrite determination.
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Introduction

Conducting polymers, due to the special physical and chemi-
cal properties, are becoming more and more attractive in a
diversity of fields with the rapid development of electric in-
dustries and information technologies [1]. Conducting poly-
mers include polyacetylene (PA) [2, 3], polyaniline (PANI)
[4–6], polymelamine (PMel) [7, 8], polypyrrole (PPy) [9,
10], and polythiophene (PT) [9, 11]. Among these conducting

polymers, PPy, as one of the most popular candidates, finds
widespread applications ranging across solar cell [10],
electrochromic device [12], photodiode [13], supercapacitor
[14, 15], and electrochemical sensor [16–18] due to the excel-
lent features of high conductivity, high stability, good bio-
compatibility, facile fabrication, and low cost [17, 19].
Morphologically, various forms of PPy nanomaterials have
been fabricated, including cauliflower nanospheres [10],
nanowire [20, 21], and nanotubes [22]. Among these, three-
dimensional nanotube has a high specific surface area and
accessible active sites for ion transportation. Moreover, their
inner and outer diameters as well as the aspect ratio of the
tubes are tunable for different applications. This fabrication
process and the form are controllable during synthesis typical-
ly by an electro-spinning technique.

Nano-structured PPy has often been used as a conducting
matrix or support for deposition of metal nanoparticles be-
cause of its porous structure, excellent conductivity, and high
specific surface area [17, 23]. Meanwhile, the metal agglom-
eration can be abated due to the interaction of pyrrolic N and
metal [24, 25]. PPy-Pt [10, 16], PPy-Ag [21, 26, 27], and PPy-
Au [28, 29] have been successfully fabricated for adsorption,
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catalysis, energy storage, and sensing applications. Base metal
copper nanoparticles possess unique catalytic activity in a va-
riety of fields including chemical synthesis, sensor, and energy
storage [30–32]. In addition, it has excellent advantages of
good conductivity, strong redox property, low cost, and natural
abundance, compared with the noble metals. The combination
of Cu and PPy may achieve the synergetic effect for catalysis
application. However, in the PPy/metal composite preparation,
PPy was prepared mostly by electropolymerization [25, 33] or
bulk synthesis [34, 35], which leads to dense and thick film,
difficult for the even deposition of the highly dispersed metal
particles. Three-dimensional PPy nanotube is supposed to pro-
vide huge surface area and a large quantity of active sites for
the effective interaction of PPy and Cu, preventing the ag-
glomeration of Cu. However, to our knowledge, the Cu nano-
particles decorated PPy nanotube composite has not been re-
ported to date.

In this article, we present a PPy nanotube fabrication meth-
od using Py polymerization on an electrospun PS fiber follow-
ed by solvent etching. The morphology of PPy nanotubes can
be tuned by Py concentration. By convenient one-step elec-
trolysis, Cu nanoparticles are deposited on the PPy tubes. The
influence of PPy structure on Cu deposition and the catalytic
performance to nitrite reduction are investigated. The well-
defined three-dimensional tubular structure facilitates the Cu
deposition. In light of synergetic effect of PPy and Cu on the
reduction of nitrite, the PPy-Cu electrode has been used as a
sensitive sensor for nitrite determination. In addition, the drop-
cast method is easy for batch fabrication and the obtained
PPy-Cu electrode is very stable and reusable without loss of
activity, showing a great potential for future sensing
application.

Experiments

Reagents

Pyrrole (Py, ≥ 98%), polystyrene (PS, Mw = 280,000), and
polyvinylidene fluoride (PVDF) were purchased from
Sigma-Aldrich. Py was purified by reduced pressure distilla-
tion. N,N-Dimethylformamide (DMF), tetrahydrofuran
(THF), and 1-methyl-pyrrolidone (NMP) were supplied by
Lingfeng Reagent (Shanghai). All other chemicals (analytical
grade) were obtained from Sinopharm Chemical Reagent
Company and used as received. The ultrapure water
(18.2 MΩ cm, 25 °C, Thermo Fisher Scientific) was used for
aqueous solution preparation.

PS nanotube preparation

The PS nanofibers (about 150 nm in diameter) were prepared
by electrospinning method analogous to that reported

previously [36]. The PS nanofibers were sulfonated in a con-
centrated sulfuric acid (98%) for 4 h at 40 °C to facilitate the
growth of PPy. Following the cleaning of sulfonated fibers
with ultrapure water, they were soaked in various concentra-
tions of Py ethanol solution (0.2%, 0.4%, 0.6%, 0.8%, v/v) for
24 h to adsorb Pymonomer onto the PS surface. The oxidation
polymerization of Py occurred upon the addition of FeCl3
solution to the above solution [n(FeCl3):n(Py) = 1:1]. The po-
lymerization reaction lasted for 24 h at 4 °C. Subsequently, the
inner PS core of PS/PPy fiber was removed by THFwash. The
final PPy nanotubes were obtained after ethanol and water
wash followed by vacuum dry (50 °C) for 10 h. PPy tubes
synthesized by 0.2%, 0.4%, 0.6%, and 0.8% Py were named as
PPy(0.2), PPy(0.4), PPy(0.6), and PPy(0.8), respectively.

Preparation of PPy-Cu modified glassy carbon
electrode

Aglassy carbon electrode (GCE;Ø = 3mm)was first polished
successively with 1.0 and 0.3 μm Al2O3 slurries and then
sonicated with a mixture of water and ethanol after each
polishing. Subsequently, GCE was dried with high purity ni-
trogen to obtain a mirror-like surface. A suspension solution
of PPy nanotubes was prepared by dispersing PPy nanotubes
and PVDF solvent (PPy:PVDF = 8:1, weight ratio) in 10 mL
NMP and sonicating for 10 min. The PPy nanotube-modified
glassy carbon electrode (PPy/GCE) was obtained by drop
coating 5 μL of the above suspension onto a clean GCE sur-
face and dry under N2 gas.

The deposition of copper nanoparticles on the PPy/GCE
was performed by electrolysis at −0.7 V for 200 s in 0.1 M
H2SO4 aqueous solution in the presence of 0.05MCuSO4 and
1 mM KCl. Following the thorough wash by water, the PPy-
Cu modified glassy carbon electrode (PPy-Cu/GCE) was
obtained.

The effective active surface areas of GCE, PPy/GCE, and
PPy-Cu/GCE were calculated to be 0.11, 0.20, and 0.18 cm2

by CV in 1 mM K3[Fe(CN)6] solution, based on the literature
method [37]. The detailed calculation can be found in SI (Fig.
S1). The slight decrease of surface area after Cu deposition is
presumably due to the interaction of partial oxidized Cu ions
in PPy-Cu with [Fe(CN)6]

3− to form the deposit during CV
scan [38].

Characterization method

Scanning electron microscopy (SEM; Hitachi, S-4800) and
transmission electron microscopy (HRTEM; Talos F200S*)
were used to observe the morphology of the nanomaterials.
The composition of the fibers was studied by Fourier trans-
form infrared spectroscopy (FT-IR; Nicolet 6700) and X-ray
photo spectroscopy (XPS; AXIS Ultra DLD).
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For TEM characterization, the PPy-coated GC plate was
electrolyzed at −0.7 V for certain times (50, 100, 200,
300 s). After washing with copious 0.1 M H2SO4 and water
successively, the PPy-Cu sample was carefully collected by
scratching out of the GC surface and then dispersed in ethanol
solution by sonification.

Analytical method

The electrochemical experiments were carried out using CHI
760D electrochemical workstation (Shanghai Chen Hua CHI
Instrument Company) with a three-electrode system including
a GCE working electrode, an Ag/AgCl (3 M KCl) reference
electrode, and a Pt counter electrode.

The electrochemical behavior of the work electrodes was
investigated by cyclic voltammetry (CV). All the CV signals
reached a steady state in 5 cycles of scans. The current re-
sponse of PPy-Cu/GCE to nitrite was recorded by i-t curve
at −0.4 V.

Results and discussion

Formation and analysis of PPy nanotubes

Polymerization of Py and the formation of PPy nanotubes
were characterized by FT-IR. The spectra of sulfonated PS,
PS/PPy, and hollow PPy nanotubes are shown in Fig. 1. The
absorption bands at 1494, 1452, 754, and 694 cm−1 corre-
spond to the C=C framework of benzene, methylene, and
methane groups in PS [39]. The absorption peaks at 1180,
1070, and 1035 cm−1 are related to the stretching vibration
of sulfonic group [40, 41], indicating that the sulfonic groups
have been successfully grafted to the PS fiber surface. The
presence of the –SO3

− ensures that the Py monomer can be
adsorbed stably and uniformly on the surface of the PS nano-
fibers. After polymerization of Py, two new peaks appear at
1566 and 1550 cm−1, corresponding to the characteristic ab-
sorption peaks of C=C and C–C stretching vibration of PPy,

respectively [42]. New absorption bands at 1386 and
968 cm−1 are found, which are ascribed to the C–N stretching
vibration and the in-plane deformation vibration of N–H, re-
spectively [42]. These confirm the formation of PPy polymer
on the PS surface. After THF washing, the characteristic ab-
sorption bands of PS at 754 and 694 cm−1 disappear, demon-
strating that the PS nanofibers are removed with THF wash-
ing. However, the absorption peaks at 1180, 1070, and
1035 cm−1 representing the sulfonic group on the PPy nano-
tubes still exist, indicating that some sulfonic ions are doped
into the PPy chain. It concludes the PPy nanotubes in oxida-
tion state are formed successfully.

Figure 2A displays the morphology of PS nanofibers with
an average diameter of 150 nm. After polymerization of Py, the
fibers maintain the original continuous and uniform structure,
but the surface becomes a bit coarser and rougher (Fig. 2B).
Through THF etching, the tubular PPy is found clearly from
the cross-section image of SEM (inset of Fig. 2C). This indi-
cates the formation of PPy nanotubes.

Various PPy nanotubes were obtained by varying the con-
centration of Py monomer (0.2%, 0.4%, 0.6%, 0.8%) during
polymerization. Figure 3 presents the cross-section images of
different PPy tubes. It can be seen from Fig. 3A that the surface
of the PPy(0.2) nanotubes is grainy and rough with an average
wall thickness of 80 nm. With increasing the concentration of
Py, the obtained PPy nanotubes become well-defined, and the
surface is uniform with some pores (Fig. 3B, C). It is possible
that few PPy nuclei are formed at low concentration, leading to
large particles, and thus the PPy nanotube is poor-defined.
However, high concentration (0.8%) of Py leads to agglomera-
tion of PPy particles and thick wall (Fig. 3D).

Electrochemistry of PPy/GCE and Cu deposition
on PPy/GCE

As demonstrated in SEM, various Py monomer concentra-
tions lead to different morphologies of PPy nanotubes. CV is
applied to investigate the redox properties of various PPy/
GCEs. Figure 4A presents the CV curves of the PPy/GCEs
coated with same mass but different PPy structure.
Compared with bare GCE (curve a), there is a broad redox
peak at round 0 V, which corresponds to the redox doping and
dedoping of PPy. The reaction is described as below [43]:

PPyþ A−ð Þ þ e− ⇄
Dedoping

Doping
PPy0 þ A− ð1Þ

The PPy/GCE obtained with well-defined PPy nanotubes
presents higher redox current, indicating the large specific
surface and better electron transfer of the PPy nanotube (vide
supra).
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The PPy-modified GCE with large specific surface area is
supposed to facilitate the deposition of Cu due to Cu-PPy
interaction and reducing property of PPy [33, 44, 45]. The
deposition of Cu on PPy/GCEs is performed in 0.1 M
H2SO4 solution containing 0.05 M CuSO4 and 1 mM KCl.
Figure 4B exhibits the CV curves of Cu/GCE and various
PPy-Cu/GCEs. In the absence of PPy, very weak reduction
and oxidation signals of Cu are found at about −0.16 and 0 V.
It indicates that very low amount of Cu is deposited on bare
GCE (curve a). In contrast, the redox signal of Cu is enhanced
dramatically in the presence of PPy, and the highest peak is
observed on PPy(0.6)-Cu/GCE, with the peak-peak separation
of 200 mV. Under the polarization condition for Cu deposi-
tion, the oxidized PPy is reduced, and the reduced state PPy0

promotes the reduction of Cu [44]. The reaction can be de-
scribed in the following equation.

PPyþ þ e−→PPy0 ð2Þ

2PPy0 þ Cu2þ→2PPyþ þ Cu ð3Þ

The PPy nanotube with large specific surface area facili-
tates the charge transfer. Therefore, the deposition of Cu on
PPy nanotube electrode is highly promoted. The peak current
and reversibility of signal are highly dependent on the mor-
phology of PPy. The current intensity of Cu arrives at the
maximum at the PPy(0.6)/GCE with the same coating mass
of PPy tube, because the PPy(0.6) nanotube is much uniform
and well-defined, compared to other PPy nanotubes (see SEM
in Fig. 3). It concludes that the well-defined PPy tube with
uniform surface possesses higher active sites, facilitating the
adsorption and deposition of Cu, being consistent with the CV
in Fig. 4A.

Fig. 3 Cross-section SEM
images of PPy nanotubes
prepared with different
concentrations of pyrrole: 0.2%
(a), 0.4% (b), 0.6% (c), and 0.8%
(d)

Fig. 2 SEM images of three different nanofibers. a PS nanofibers. b PS/PPy composites. c PPy nanotubes. Inset is the cross-section image (upper right)
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Effect of Cu deposition time

By changing the Cu deposition time, Cu nanoparticles with
different sizes were obtained. Figure 5A–D shows the TEM
images of PPy-Cu with various deposition times. Ultrafine
Cu particles are uniformly decorated on the PPy surface. As
the deposition time increases, there are more and more Cu
particles observed and the particle size is slightly increasing
(insets of patterns A-D). When the deposition time increases
to 300 s, there is a little agglomeration between Cu particles
(Fig. 5D). The relationship of particle size with deposition
time is drawn in Fig. 5E. The average particle size is 4.2 ±
1.2 nm at the electrolysis time of 200 s. The uniform distribu-
tion of Cu and increase of Cu content with increasing

deposition time have been demonstrated by TEM mapping
and energy-dispersive X-ray analysis (details in Fig. S2 and
Table S1 in supporting information).

In order to analyze the valence state of copper, XPS char-
acterization of PPy-Cu sample was performed. Figure 6 shows
the high-resolution scan spectrum of Cu2p. By least square
fitting, Cu2p3/2 and Cu2p1/2 at 933.0 and 953.1 eV, correspond-
ing to zero-valence Cu [46], are observed. In addition, four
weak peaks are found at 934.6, 944.0, 955.1, and 963.7 eV,
which are the characteristic peaks of Cu2p in CuO [47, 48],
indicating the presence of a little CuO due to partial oxidation
of Cu. The result shows that zero-valence Cu is dominated in
PPy-Cu.

Electrocatalytic reduction of nitrite

Electrode materials play a significant role on the reduction
of nitrite. Figure 7 shows the CV curves of various elec-
trodes in 0.1 M H2SO4 solution in the absence and pres-
ence of 0.5 mM NO2

−. There is negligible response on
GCE (a). And the catalytic response of Cu/GCE to the
reduction of nitrite is not found due to very small deposi-
tion amount of Cu (b). On PPy/GCE (c), the reduction
current increases slightly upon the addition of nitrite, while
the PPy-Cu/GCE (d) shows a dramatic enhancement of the
catalytic current at −0.3 V. It is known that PPy can cata-
lyze the reduction of nitrite during the dedoping process of
PPy [49]. Meanwhile, the Cu nanoparticles on PPy-Cu/
GCE can also function as a catalyst for nitrite reduction
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[50]. The nitrite reduction mechanism on the PPy-Cu/GCE
can be described with the following equations:

PPyþ þ NO2
−→PPyþNO2

− ð4Þ
PPyþ þ e−→PPy0 ð5Þ
PPy0 þ NO2

− þ 2Hþ→PPyþ þ NO N2ð Þ þ H2O ð6Þ
3Cu 0ð Þ þ NO2

− þ 8Hþ→3Cu IIð Þ þ NH4
þ þ 2H2O ð7Þ

The thus-synthesized PPy is in its oxidation state (PPy+)
which can accumulate and adsorb NO2

− on the active sites of
PPy+. Upon applying a negative potential, PPy+ is reduced into
PPy0, which further catalyzed the reduction of nitrite into NO or
N2 (Eq. 6). On the other hand, Cu (0) in the PPy-Cu composite
not only has good conductivity to promote the electron transfer
of PPy, but also functions as a reducing agent catalyzing the
reduction of nitrite, as shown in Eq. 7 [51]. Therefore, the
synergetic effect in the PPy-Cu composite contributes much
to its high catalytic activity towards the reduction of nitrite.

As discussed previously, PPy formed by different concen-
trations of Py exhibits various morphologies, and the resultant
PPy electrodes possess different electrochemical activities
(Fig. 4). The catalytic sensitivity of the various PPy-Cu/
GCEs to nitrite reduction is investigated by measuring the
calibration curves through CV scan in different concentrations
of nitrite. Figure 8 shows the sensitivity at different electrodes.
Being consistent with the redox response of PPy on elec-
trodes, the corresponding sensitivity to nitrite reduction in-
creases with the Py monomer and arrives at the maximum
on the PPy(0.6)-Cu/GCE. It indicates that the increase in the
copper deposition amount on the well-defined PPy tubes led
to the enhancement of catalytic sensitivity. However, poor-
defined PPy morphology (Py 0.8%) is not favorable to Cu
deposition, and thus, the low Cu deposition and low

sensitivity to nitrite reduction are observed at PPy(0.8)-Cu/
GCE. The PPy(0.6)-Cu/GCE has the best sensitivity com-
pared to other electrodes. In the subsequent experiments, the
PPy(0.6)-Cu/GCE is used for nitrite measurement.

Effect of copper size and solution pH on nitrite
reduction at the PPy-Cu/GCE

As discussed in TEM analysis, the fine Cu particles with dif-
ferent sizes can be obtained by adjusting the deposition times.
Nitrite reduction on PPy-Cu/GCE with different sizes was
investigated and the results are shown in Fig. 9. The catalytic
reduction current of nitrite increases with the deposition time
of Cu particles and arrives at the highest when PPy-Cu is
obtained with the deposition time of 200 s. Longer deposition
time leads to the decreased catalytic current, which is probably
due to larger Cu particle size and the agglomeration of Cu
(shown in Table S1). It concludes that the catalytic reduction
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of nitrite by PPy-Cu/GCE is closely related to the Cu amount
and Cu particle size, which is consistent with the morpholog-
ical changes in the TEM image of Fig. 5A–D.

The catalytic reduction performance of the PPy-Cu/GCEwas
studied in different concentrations of H2SO4 solution (different
pH) and the corresponding catalytic sensitivities were obtained

by CV. As shown in Fig. 10, the catalytic sensitivity of the PPy-
Cu/GCE to nitrite reduction increases with pH decreasing at
high pH range (from pH 2.5 to pH 1.22), while decreases when
pH is lower than 1.22. It is reasonable that the presence of H+

facilitates the catalytic reduction of nitrite on PPy-Cu, as stated
in Eqs. 6 and 7. However, excessive acidity leads to severe
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Table 1 Comparison of catalytic
performance of various nitrite
sensors

Electrode Limit of detection (μM) Linear range (μM) References

Cu-MWCNT-RGO/GCE 0.03 0.1–75 [18]

GR-PPy-CS/GCE 0.1 0.5–722 [49]

Cu /GCE 20 50–30,000 [50]

Cu-NDs/RGO/GCE 1.25 1.25–13,000 [51]

CuNp-CNTs/GCE 0.08 1–600 [52]

CuNp-Au/GCE 0.1 0.1–300 [53]

CuII-DHB/CPE 0.05 0.2–2 [54]

Cu-MPS/CPE 0.09 0.25–120 [55]

NaR-SOD-CNT-PPy/Pt 0.05 0.1–1000 [56]

PPy-Cunano/GCE 0.03 0.1–0.7

0.7–1040.7

This work

MWCNT multi-walled carbon nanotubes, NDs nanodendrites, RGO reduced graphene oxide, CNT carbon nano-
tube,Np nanoparticle,GR graphene,CS chitosan,DHBN,N′-bis (2,5-dihydroxybenzylidene)-1,2-diaminoethane,
MPS (3-mercaptopropyl) trimethoxysilane, NaR nitrate reductase, SOD superoxide dismutase
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hydrogen evolution reaction, thereby reducing the catalytic per-
formance of nitrite. In the following experiments, pH 1.22 solu-
tion was used for further measurement.

Amperometric determination of nitrite
at the PPy-Cu/GCE

In order to further analyze the catalytic property of the PPy-Cu/
GCE, the amperometric response is obtained in 0.1 MH2SO4 at
a constant potential of − 0.4 V. Figure 11A shows the typical i-t
curve with successive increments of nitrite under stirring condi-
tion. The reduction current increases steeply upon addition of
nitrite and arrives at a platform in less than 3 s, indicating a rapid
diffusion of nitrite to the PPy-Cu/GCE. A steady increase of
current is observed in a wide concentration range from 0.1 to
0.7 μM. The corresponding calibration plots are shown in
Fig. 11B, C with concentration ranging in 0.1~0.7 and
0.7~1040.7 μM, respectively. The corresponding calibration
equations are calculated to be ipa (μA) = − 1.5688 C − 0.01487
(Ra

2 = 0.9911) and ipc (μA) = − 0.0458 C − 0.77763 (Rc
2 =

0.9996). The limit of detection is about 0.03 μM (S/N > 3).
The analysis performances of this proposed material for nitrite
determination together with other materials previously reported
are listed in Table 1 for comparison. It demonstrates that the
current PPy-Cu/GCE possesses the wide linear range and low
detection limit compared with the state of the art [52–56].

Anti-interference ability, stability, and reproducibility
of PPy-Cu/GCE

The common interfering substanceswere investigated. Figure 12
is the amperometric response of PPy-Cu/GCE by adding various
interfering substances (NaCl, MgCl2, CaCl2, Na2SO4, KCl,
NaNO3, Na3PO4, ZnCl2, NH4Cl, and C6H12O6) successively
to 0.1 M H2SO4 containing 0.05 mM nitrite. It can be seen that
there is no obvious current response after adding 200-fold of the
above substances (shown in Table S2). It concludes that PPy-Cu/
GCE has good selectivity for nitrite measurement.

The long-term stability and reproducibility of PPy-Cu/GCE
were further evaluated. After leaving the electrode in air for
1 month, the current response can maintain 90% for 0.5 mM
nitrite, manifesting that PPy-Cu/GCE has good stability. In
addition, the relative standard deviation (RSD) for six individ-
ual PPy-Cu/GCEs is 8.8% by assaying 0.5 mM nitrite with the
same method. For six consecutive parallel determinations in
0.5 mM nitrite using the same modified electrode, the RSD of
the corresponding current response was 3.6%, indicating that
the modified electrode has good reproducibility.

Real sample analysis

To evaluate the feasibility of the PPy-Cu/GCE for practical
application, this electrode was applied to detect NO2

− in lake
water and well water samples. All the water samples were
filtered through a 0.2-μm membrane and adjusted to pH
1.22 before detection. The results are shown in Table 2 (n =
3), which are in good agreement with the standard UV-Vis
method (GB/T 5750.5-2006). The spiked water recovery ex-
periment gives the recovery values of 90–97%. Therefore, the
PPy-Cu-modified electrode has acceptable detection accuracy
for NO2

− in real water samples.

Conclusion

Ultrafine Cu-coated PPy nanotube has been fabricated with
electrospun PS nanofibers as template followed by PPy poly-
merization and Cu electrochemical deposition. Py concentra-
tion has significant influence on the morphology and electro-
chemical properties of PPy nanotubes, thus influencing the
deposition amount of Cu. The well-defined PPy tube pro-
motes the deposition of Cu and ultrafine Cu nanoparticles
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Fig. 12 Amperometric responses of PPy-Cu/GCE on successive
injection of 200-fold of NaCl, MgCl2, CaCl2, Na2SO4, KCl, NaNO3,
Na3PO4, ZnCl2, NH4Cl, and C6H12O6 into 0.1 M H2SO4. Applied
potential: −0.4 V

Table 2 NO2
− determination

(μM) and spiked recovery test in
real samples (N = 3) on the PPy-
Cu/GCE under the optimal
conditions

Sample Added Found (μM) Recovery (%) RSD (%) UV-Vis (μM)

Well water 0 0.18 ± 0.08 / 2.3 0.11 ± 0.06

0.1 0.27 ± 0.10 90 2.6 0.22 ± 0.09

Lake water 0 1.35 ± 0.13 / 2.8 1.27 ± 0.15

1.0 2.32 ± 0.21 97 3.3 2.15 ± 0.32
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can be fine-tuned by changing deposition time of Cu. The
PPy(0.6)-Cu/GCEs with 4.2 ± 1.2 nm Cu particle size (200 s
deposition time) present a highly sensitive electrocatalytic per-
formance to the reduction of nitrite, with broad linear detec-
tion ranges and low detection limit. It has been applied suc-
cessfully for the real water sample analysis. The high selectiv-
ity, stability, and repeatability of the PPy-Cu/GCEs demon-
strate a great potential for nitrite sensing application.
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