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Abstract
Graphene oxide (GO) was synthesized by an improved Hummers method and then reduced with NaBH4; GO became rGO with
regular layered structure. Polyaniline (PANI)/rGO composite was prepared by a adsorption double oxidant method with rGO as a
template. Some physical characterization methods (Fourier transform infrared spectroscopy analysis, X-ray diffraction, scanning
electron microscope, and transmission electron microscope) were used to analyze the morphology and crystallinity of the composite.
The electrochemical properties were characterized by cyclic voltammetry, impedance spectroscopy, galvanostatic charge/discharge,
and rate capability. The first discharge specific capacity of the rPANI/rGO and PANI/rGO was 181.2 and 147.8 mAh/g. After
100 cycles, the capacity retention rate was still 90.2 and 88.9% separately, and the coulombic efficiency of batteries is close to
100%. These results demonstrate the composite has exciting potentials for the cathode material of lithium-ion battery.
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Introduction

In 1977, Shirakawa [1] found that the conductivity of
polyacetylene could reach a metal level at room temperature
when doped with iodine. The discovery aroused great concern
for polymers. Since then, people have developed
polythiophene [2], polypyrrole [3], polyaniline [4, 5], and oth-
er conductive polymer materials. Polyaniline (PANI) has a
series of excellent performance, such as corrosion resistance
[6], high conductivity [7], good electrochromic performance
[8], and a good charge storage performance by mixing the
proton acid or salt with reversible self-redox reaction. So it
can be used in many fields, such as anti-corrosion materials
[9], supercapacitors [10, 11], and secondary batteries [12–14].

As for the current lithium-ion battery cathodematerials [15,
16], such as LiCoO2 [17, 18], LiFePO4 [19, 20], LiMn2O4

[21], and LiNiO2 [22], all have their own shortcomings. And
this will limit its widespread application. The properties of
high electrochemical activity, good chemical stability, and
easy synthesis [23, 24] as well as its unmatched economic

benefit make PANI more suitable for secondary battery elec-
trode materials [25, 26]. But the pure polyaniline newly syn-
thesized is easily agglomerated, affecting the utilization of the
material and thereby affecting its physical and chemical prop-
erties. Therefore, PANI should be modified by other materials
to improve its performance.

Graphene oxide (GO) has a large specific surface area,
good electrical conductivity, high intrinsic mobility, and ex-
cellent chemical stability [27–29]. Therefore, it is often used
to improve the performance of PANI [30, 31]. In this work, the
PANI was modified by reduced graphite oxide (rGO), via an
adsorption double oxidant method. PANI was coated on the
surface of graphene to form a layered structure. Due to the
modification of rGO, the physical and chemical properties of
PANI were greatly improved.

Experiment

Materials

Graphite powder, potassium persulfate (K2S2O8), phosphorus
pentoxide (P2O5), sulfuricacid (H2SO4,98%),potassiumperman-
ganate (KMnO4), hydrogen peroxide (H2O2, 30%), sodium car-
bonate (Na2CO3), aniline (AN),manganese sulfate (MnSO4), am-
monium persulfate (APS, (NH4)2S2O8), hydrochloric acid (HCl,
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37%), ammonia (NH3·H2O, 28%), manganese sulfate (MnSO4),
sodium borohydride (NaBH4, 98%), hydrazine hydrate (N2H4·
H2O, 80%), anhydrous alcohol (C2H6O)were all analytical grade
chemicals and purchased from National Pharmaceutical Group
Chemical Reagent Company (No. 52 Ningbo Road, Shanghai,
China). Lithiummetal foil, aluminum foil, acetylene black, ethyl-
ene carbonate (EC), dimethyl carbonate (DMC), styrene-
butadiene rubber (SBR, 50%), and lithium hexafluorophosphate
(LiPF6) were all battery grade, purchased from Aladdin (Y891
(Branch), FengxianDistrict, Shanghai, China).

Synthesis of reduced graphite oxide

Graphite oxidewas synthesized by an improvedHummersmeth-
od [32]. In the beaker, 5 g of graphite powder, 2.5 g of K2S2O8,
2.5 g of P2O5, and 15mL of H2SO4 were mixed evenly and then
reacted for 6 h in an 80 °C water bath. One hundred twenty
milliliters of H2SO4 was added to the product and was stirred
together in an ice bath for 30min.Next, 15 gKMnO4was slowly
added, keep the temperature below 20 °C, and stirred at high
speed for 2 h. Once mixed, the temperature of the water bath
was raised to 35 °C and reacted for 2 h. Two hundred thirty
milliliters of deionized water was added to the solution and
stirred for 1 h under 95 °C. Afterwards, 700mL of distilled water
and 25 mL of H2O2 were added to the solution. When the color
of the solution becomes yellow, the reaction stopped. After fil-
tering and washing for three times, the composite was prepared
into 10 mg/mL dispersions (GO dispersions).

In 200 mL of GO dispersions, Na2CO3 was added to adjust
the pH of the dispersion to 8–9. And then, 15 g of NaBH4 was
added slowly at 70 °C in a water bath for 5 to 10min, followed
by stirring at 70 °C for 2 h. The product was dried at 60 °C in a
vacuum for 24 h; the rGO was obtained.

Synthesis of PANI/rGO

1.4 g rGO, 200 mL deionized water, 150 mL HCl, and 0.5 g
triton were stirred together in an ice bath for 1 h. Seventy grams
of anilinemonomer and activeMnO2 (50mL solution containing
10.14 g of MnSO4 and 200 mL solution containing 6.32 g of
KMnO4 were stirred at 40 °C for 2 h.) was added in the solution,
controlling the reaction temperature below 6°C for 30 minutes.
Afterwards, 1 g APS was added to the solution per minute,
repeating 100 times. Meanwhile, deionized ice was added to
control the temperature below 5 °C. Once finished, 3 g of acet-
ylene black was added and reacted for 3 h. After washing with
deionized water and anhydrous alcohol, the PANI/rGO doped
with HCl was obtained.

Deionized water and NH3·H2O mixed solution (volume ratio
3:1) were added into the above preparation of the composite, de-
doping reaction at 40 °C for 8 h. After washing with deionized
water and anhydrous alcohol and drying for 8 h under vacuum
condition, the PANI/rGO composite was obtained.

N2H4·H2O and PANI/rGO composite at mass ratio of 1:1
were added into an appropriate amount of deionized water and
reacted for 12 h in 45 °C water bath. Then, after washing and
drying, the rPANI/rGO composite was obtained.

Structure and morphology characterization

Fourier transform infrared (FT-IR) spectra were obtained by a
Nicolet 380 FT-IR spectrometer (Thermo Electron
Corporation, USA), scanning from 500 to 4000 cm−1. X-ray
diffraction (XRD) was recorded by a DX 2700 diffractometer
(Dandong Haoyuan Instrument Co., Ltd., China), using Cu
Kα radiation (λ = 1.5425 Å) and scanning from 10° to 80°.
Surface morphology and microstructure of powders were an-
alyzed by a field emission scanning electron microscope (FE-
SEM MERLIN Compact, Zeiss, Germany) and transmission
electron microscope (TEM JEM-2100, JEOL, Japan).

Electrochemical measurements

All the electrochemical performance of the composites was
conducted in CR2025-type coin-cell configuration. The com-
posite of the cathode was prepared by coating the mixed slurry
of active material (90 wt%) and styrene-butadiene rubber
(10 wt%) on aluminum foil, which serves as a current collec-
tor. Before assembling the battery, the composite electrode
was dried at 80 °C for 12 h under a vacuum. The test cells
were assembled in Ar-filled glove box. One molar of LiPF6
dissolved in a mixture of EC/DMC (volume ratio 1:1) was
used as lithium-ion electrolyte solution. The specific discharge
capacity, coulombic efficiency, cycling performance, and rate
capability of the battery were tested by a LAND-CT2001A
cycle life tester (Wuhan Jinnuo Instrument Co. Ltd., Wuhan,
China) at the cut-off voltages of 2.4–3.8 V. Cyclic voltamm-
etry (CV) was recorded from 2.0 to 4.5 V at the scan rate of
0.5 mV/s. Electrochemical impedance spectroscopy (EIS) was
carried out at open circuit potential in the frequency range
from 0.01 Hz to 100 kHz. CV and EIS were measured by
CHI660E Electrochemical Workstation (CHI660E, Shanghai
Chenhua Device Company, China). All electrochemical mea-
surements were carried out at room temperature.

Results and discussion

FT-IR spectroscopic analysis

Figure 1a represents the FT-IR spectra of GO and rGO. The
broad and intense peak of GO at 3246 cm−1 corresponds to the
stretching vibration peak of O-H, indicating that the GO contain
large quantity of adsorbedwater molecules. Peaks at 1727, 1621,
1061, and 1360 cm−1are the characteristic of the stretching vibra-
tion for carbonyl, corresponding to C=O stretching vibrations of
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the –COOH group, O-H deformation of the C-OH group, C-OH
stretching mode, and C-O-C stretching peak, respectively.
However, these peak oxygen functional groups were obviously
weakened suggesting that the oxidation degree of GOwas heavi-
ly decreased. The FT-IR spectra of PANI, PANI/GO, PANI/rGO,
and rPANI/GO composite were shown in Fig. 1b. The peaks at
1582 and 1491 cm−1 represent the C=C stretching vibration of
quinoid and benzenoid structure; its peak intensity ratio repre-
sents the degree of oxidation of the PANI. The peaks appeared at
1297 and 1157 cm−1 corresponding to the stretching vibration of
C-N and C=N, which were a characteristic signature of PANI.
The peak at 819 cm−1 was assigned to C-C stretching vibration.
Since graphene and polyaniline are combined together, the ab-
sorption peak coincides with the polyaniline. Compared with the
curve of PANI/rGO, the intensity of benzoid ring peaks
(1491 cm−1) is greatly increased in the curve of rPANI/rGO,
and the quinoid (1582 cm−1) is decreased. This denotes that, after
the reduction of hydrazine hydrate, the quinone structure is re-
duced to a large extent, and PANI was well reduced.

XRD analysis

The crystal structure of PANI/rGO and rPANI/rGO compos-
ites was characterized by XRD and shown in Fig. 2. The
PANI/rGO pattern reveals three broad crystalline peaks locat-
ed at 2θ = 15.2°, 20.6°, and 24.4°, corresponding to (011),
(020), and (200) crystal planes of PANI/rGO, respectively,
which is a characteristic diffraction peak of PANI. It indicates
that PANI/rGO had been successfully synthesized.
Comparing with the PANI/rGO, the rPANI/rGO only have a
sharp peak at 2θ = 19.9°, which corresponds to the (020) crys-
tal plane of rPANI/rGO. This can be attributed to the crystal-
linity and the regularity of the PANI/rGO was increased after
the reduction of hydrazine hydrate.

Microstructure characterizations

The morphology and structure of GO and PANI/GO compos-
ites were investigated by SEM and TEMobservations (Fig. 3).
The images of GO and rGO were shown in Fig. 3a, b. The

graphene layer of GO is thicker than rGO. And a large block
mass appeared in the image of GO, because of the aggregation
phenomenon. However, the rGO shows clearly the graphene
sheet structure and huge surface area, which is beneficial to
the adsorption of PANI. The purified PANI was shown in Fig.
3c; their shapes are twisted which are interlaced with one
another because of the aggregation phenomenon. Figure 3d,
e shows the morphology of PANI/rGO and rPANI/rGO com-
posites; the PANI/rGO composite is a simple mechanical mix-
ture of PANI and rGO, where the rGO is intercalated between
PANI and the chemical bond does not exist. This will make
the PANI easily detached from the graphene sheet. As for the
rPANI/rGO composite, the rPANI is completely coated on the
surface of the rGO to form a layered structure in which the
sheets are stacked together. The rPANI and the rGO are bond-
ed together by chemical bonds; it also can be seen from the
TEM of rPANI/rGO (Fig. 3f). The rPANI/rGO composite has
good morphology and relatively stable structure, so their elec-
trochemical properties should be better.

Electrochemical properties of materials

At a constant current density of 0.2 C, the Li/PANI, Li/PANI/
rGO, and Li/rPANI/rGO cells discharging for the first time are
shown in Fig. 4a; the specific capacity of the composites is far
higher than the pure PANI. The specific capacity of rPANI/
rGO composite reached as much as 181.2 mAh/g, which is
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more than that 22.6% of PANI/rGO composite (147.8 mAh/
g). Furthermore, the composites showed excellent cyclability
at 0.2 C galvanostatic charge-discharge conditions in Fig. 4b–
e. The pure PANI has the lowest capacity and poor cycle
performance; it is related to the agglomeration of the material.
The rPANI/rGO and PANI/rGO displayed good battery char-
acteristics and maintained 90.2 and 88.9% of capacity after
100 cycle numbers, and the coulombic efficiency was over
97%, respectively. During the whole cycle, the discharge ca-
pacity of rPANI/rGO is always higher than that of PANI/rGO.
The following explanation can be obtained: for the PANI/rGO
composite, PANI intercalated between rGO and without
chemical bond, it was prone to agglomeration. The material
inside cannot participate in the reaction, resulting in lower
utilization ofmaterials. But rPANI/rGO is connected by chem-
ical bonds, the distribution is more uniform, and it has excel-
lent electrochemical performance.

To explore the rate capability of the materials, we selected
the rPANI/rGO composites with the best capacity and cycle
performance to do the test. The results are shown in the Fig.
4f, The battery of rPANI/rGO delivered a good reversible
capacities of 187, 175, 137, 119, and 93 mAh/g at 0.1, 0.2,
0.5, 1, and 2 C respectively. It is obvious that the discharge
capacity decreases when the current density increases; the
reason is the polarization of electrodes and the lower partici-
pation of active materials.

Figure 5 shows theCVplots of two samples at a sweep rate of
0.5 mV/s, with the potential range of 2.0–4.5 V. Metal lithium is
used for the reference electrode and counter electrode, and com-
posites are the working electrode. The positive currents are for
oxidation and the negative currents are for reduction. The curve
of PANI/rGO has a pair of redox peaks: the peak in the top
represents the reduction state translated into the oxidation
PANI, accompanied by Li+ or PF6

— doping process, and simi-
larly, the peak in the bottom expresses the oxidized state trans-
ferred to the reduced state and Li+ or PF6

— de-doped from the
PANI [33, 34]. Comparing with the PANI/rGO, the CV of
rPANI/rGO has two pairs of redox peaks, corresponding to the
transition of leucoemeraldine base (LEB) to emeraldine base
(EB) and pernigraniline base (PNB). Moreover, the rPANI/rGO
redox peaks are more acute, indicating that more active sub-
stances are involved in the reaction.

In order to study the impedance performance of the com-
posites, the electrochemical impedance spectroscopy (EIS)
curves were given in Fig. 6. And the equivalent circuit of
electrochemical impedance is analyzed; the values of the com-
ponent parameters are shown in Table 1 where RS represents
the solution resistance, RCT represents the charge transfer im-
pedance, and CPE1 and CPE2 represent the electric double
layer capacitance. From the data fitting in Table 1, it can be
seen that the solution resistance of the battery both PANI/rGO
and rPANI/rGO is less than 10 Ω, which is only related to the

Fig. 3 SEM images of GO (a),
rGO (b), PANI (c), PANI/rGO
(d), and rPANI/rGO (e) and TEM
images of rPANI/rGO (f)
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conductivity of the electrolyte. The charge transfer resistance
(RCT) is an important electrochemical property of the electrode
material. The charge transfer impedance of the PANI/rGO

composite is obviously larger than that of the rPANI/rGO,
which indicates that the reduced polyaniline material is more
conducive to ion doping and de-doping in the event of
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electrochemical reaction. The reasons may be rPANI/rGO
composites have better microstructure and crystallinity, which
is beneficial to the doping of ions in the solution.

Conclusion

The PANI/rGO composite was synthesized via an adsorption
double oxidant method with rGO as a template. Through
physical and electrochemical characterization, we found that
the composites have a series of excellent properties. The
rPANI/rGO composite formed a layered structure with good
morphology and crystallinity. And it reached the high specific
capacity up to 181.2 mAh/g, and the capacity retention rate is
90.2%; the coulombic efficiency of batteries is close to 100%.
Under the higher discharge rate conditions (1 and 2 C), the
rPANI/rGO composite still released a good reversible capaci-
ties of 119 and 93 mAh/g. These results demonstrate the com-
posite has exciting potentials for the cathode material of the
lithium-ion battery. The reason is that the regular layer struc-
ture is of great benefit to active materials participating in the
electrochemical reactions. These results illustrate that this kind
of composite will have broad prospects as a cathode material
for lithium-polymer cells in the future.
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