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Abstract
The present study investigates the ion transport properties and structural analysis of plasticized solid polymer electrolytes (SPEs)
based on carboxymethyl cellulose (CMC)-NH4Br-PEG. The SPE system was successfully prepared via solution casting and has
been characterized by using electrical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy, and x-ray
diffraction (XRD) technique. The highest conductivity of the SPE system at ambient temperature (303 K) was found to be 1.12 ×
10−4 S/cm for un-plasticized sample and 2.48 × 10−3 S cm−1 when the sample is plasticized with 8 wt% PEG. Based on FTIR
analysis, it shows that interaction had occurred at O–H, C=O, and C–O moiety from CMC when PEG content was added. The
ionic conductivity tabulation of SPE system was found to be influenced by transport properties and amorphous characteristics as
revealed by IR deconvolution method and XRD analysis.
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Introduction

Over the past century, the utilization of polymers in different
applications has outperformed other class of materials that in
turn has allowed the polymer industry to grow more rapidly
than any other industry in recent years. Polymer electrolyte is
an essential component in energy conversion and energy stor-
age system, such as fuel cells, batteries, and dye-sensitized
solar [1–3]. Although the performance of such polymer elec-
trolytes is not any better than that of lithium-based electro-
lytes, they do not pose any safety issues; it has better contact
between electrode and electrolytes apart from exhibiting good
mechanical properties [4, 5].

Owing to the aforesaid factors, polymer electrolytes have
received due attention from researchers, particularly of those
who aim of utilizing the polymer electrolytes as polymer host
based on natural polymers in proton conducting of solid poly-
mer electrolytes (SPEs). Different types of natural polymers
have been investigated, namely, rice starch [6], chitosan [7],

iota-carrageenan [8], and methylcellulose (MC) [9]. Previous
works have demonstrated that natural polymer possesses the
ability to solvate the dopant that supplies mobile ions, in the
event that there is a direct interaction between the lone pair
electron of the heteroatom, i.e., oxygen or nitrogen in the
polymer [10, 11]. A potential candidate to act as polymer host
for solid electrolyte is carboxymethylcellulose (CMC). CMC
is one of the cellulose derivatives which displays biodegrad-
able and non-hazardous properties [12]. It has been widely
used in different industrial applications such as in the food
industry as a thickener and a binder, in the oil industry as a
lubricant for oil production, and in the cosmetic industry as a
stabilizer [13]. In this work, CMC is chosen as it has good
film-forming property, high mechanical intensity, and ability
to form transparent film [14].

Several approaches were suggested in the literature in order
to enhance the conductivity performance, including the use of
blend polymers, the addition of a ceramic filler, plasticizer,
and even radiation [15]. According to Bhide et al. [16], the
addition of plasticizer is the simplest andmost effective way to
improve the conductivity of SPEs in comparison to other tech-
niques. Examples of plasticizer which has been employed in
polymer electrolytes systems include ethylene carbonate [17],
glycerol [18], dimethylacetamide (DMA) [19], and tetra (eth-
ylene glycol) dimethyl ether [20] among others. These plasti-
cizers were chosen based on a number of properties such as
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high dielectric constant, its ability to enhance the ionic disso-
ciation, low viscosity, decrease the glass transition, and in-
crease the amorphous content [21–23].

In the present work, a proton-conducting SPE system based
on CMC-NH4Br plasticized with PEG was prepared and in-
vestigated. The CMC-NH4Br-PEG-based SPE system have
been characterized via Fourier transform infrared (FTIR) spec-
troscopy, electrical impedance spectroscopy (EIS), and x-ray
diffraction (XRD) in order to study the interaction between
polymer-salt complexes plasticized with PEG by determining
the functional group that introduces in the complexation SPEs,
the degree of crystallinity to establishes the amorphousness
nature of SPEs, and the electrolyte composition that yields
the best electrical conductivity. Moreover, for further investi-
gation in ionic transport properties of SPEs, the FTIR vibra-
tional effect was evaluated by using deconvolution method to
confirm the conduction of ions that dissociate in the SPEs
electrolyte system.

Experimental

Preparation of solid polymer electrolytes

In this present work, SPE system has been prepared via solu-
tion cast technique; 25 wt% NH4Br (Merck Co.) was added
into CMC (Acros Organics Co.) solution, and the mixture was
stirred continuously until complete dissolution was obtained
[24–26]. Then, the various compositions of PEG (Mw ~ 1100:
Sigma Aldrich Co.) plasticizers were added (in wt%) into the
mixture and were stirred until it becomes a homogenous so-
lution. The homogeneous solution was then casted into sever-
al Petri dishes and left dried at room temperature until film
form. For further drying, the dried sample was put it in the
desiccators before being characterized to ensure that no water
content or gelling form obtained in the polymer electrolyte
system. The compositions of PEG and classification of the
sample for SPEs system are tabulated in Table 1.

Characterization of CMC-NH4Br SPEs system

EIS

The ionic conductivity of SPEs system was analyzed via
EIS using HIOKI 3532-50 LCR Hi-Tester at a different
frequency in the range of 50 Hz to 1 MHz. The sample
was cut into a suitable size and placed between two
stainless steel blocking electrodes of the sample holder.
The ionic conductivity of SPEs system was calculated
using the equation:

σ ¼ d
RbA

ð1Þ

where d is the thickness of the sample, Rb is the bulk
resistance, and A is the cross-sectional area.

FTIR spectroscopy

FTIR spectroscopy measurement was carried out using
PerkinElmer Spectrum in order to confirm the complexation
in the SPEs system. The spectrometer was equipped with an
attenuated total reflection (ATR) accessory. The germanium
crystal was used for ATR, and the infrared light was passed
through the sample in the range of 700–4000 cm−1 with a
resolution of 4 cm−1.

Deconvolution study

The FTIR deconvolution was carried out using Gaussian-
Lorentz function adapted to the Origin Lab 9.0 software.
In the deconvolution method, the FTIR peaks due to the
dominant ionic movement were selected, and the sum of
the intensity of all the deconvoluted peaks was ensured to
fit the original spectrum. The area under the peaks was
determined, and the free ions (%) were calculated using
the equation [27, 28]:

Free ions %ð Þ ¼ Af

AfþAc

� 100% ð2Þ

where Af is an area under the peak representing the free
ions region, Ac is the total area under the peak
representing the contact ions, M is the moles of each
wt% PEG, NA is the Avogadro’s constant, Vtotal is the
total volume of SPEs system, k is the Boltzmann con-
stant, T is the absolute temperature, and e is electron
charge. The number density (ƞ), mobility (μ) and diffu-
sion coefficient (D) of the ions were calculated with the
following equation [29–31]:

η ¼ MNA

VTotal
x free ions %ð Þ ð3Þ

Table 1 List of samples with their compositions respectively

Samples CMC (g) NH4Br (g) PEG (wt%)

A 0

B 2

C 4

D 2 0.6666 6

E 8

F 10

G 12
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where

VTotal ¼ weight
density

CMC þ NH4Brð Þ
� �

þ weight
density

PEGð Þ
� �

ð4Þ

μ ¼ σ
ηe

ð5Þ

D ¼ kTμ
e

ð6Þ

XRD

XRD-RigakuMiniFlex II was employed to study the nature of
samples whether amorphous or crystalline or both [32]. It was
directly scanned at angle 2θ between 5° and 80° with
1.5406 Å wavelength generated by a CuKd source. In XRD
deconvolution technique, Origin Lab 9.0 software was used,
and the baseline function was applied to the specified region.
By using the Gaussian function, the amorphous and crystal-
line peaks were deconvoluted, and all peaks were ensured to
fit the original spectrum. After extracting the peak, the area
under the peaks was determined, and the percentage of crys-
tallinity was calculated using Eq. (7) below [33, 34].

Xc ¼ Ac

AT
� 100% ð7Þ

where Ac is an area of the crystalline region; AT is the total area
under the peak representing the area of the crystalline region,
Ac, and area of the amorphous region, Aa; and Xc is the degree
of crystalline in percentage.

Result and discussion

Impedance analysis

MacDonald [35] reported that the impedance spectroscopy
(EIS) gives a good overview, especially to solid-state phenom-
ena. It should be understood as Bimmittance,^ i.e., any form of
the transfer function of two terminal systems: impedance Z,
admittance Y = Z−1; modulusM = jωCoZ; and complex permit-

tivity M−1, where j =
ffiffiffiffiffiffi
−1

p
, ω is angular frequency (ω = 2πf),

and Co is the permittivity of free space. The principle of its
operation is relatively straightforward: a series of small-
amplitude ac signals spanning a broad frequency range is ap-
plied to a multiphase system. Analysis of the ensuing electri-
cal response via electrical circuit theory results in a complete
description of the physicochemical properties of the system.
Figure 1 shows the Cole-Cole plots at ambient temperature
(303 K) for various sample of SPEs system.

Based on Fig. 1, it can be observed the Cole-Cole plots
only consists of a spike line which can be related to the

migration of ions which may occur through the free vol-
ume of the matrix polymer and this can be represented by
a resistivity element of the present sample [36]. Moreover,
the spike line is attributed to the influence of electrode
polarization, which is the characteristic of the diffusion
process and it also indicates that the current carriers are
ions and the total conductivity is mainly the result of ion
conduction of SPEs system [37–39]. The inclination of
the spike in Cole-Cole plot as observed in the present
system shows an angle less than 90° with the real axis
when PEG was added and this is attributed to the non-
homogeneity or roughness of the electrode-biopolymer
electrolytes interface [40].

Since the spike in this present system did not arise at the
origin with the addition of PEG for SPEs system, the
equivalent circuit is implied to consist of a resistor and
constant phase element (CPE) in series connection. CPE
can be assumed as a leaky capacitor, to compensate for
non-homogeneity between electrode-SPE surface [40]. As
shown in Fig. 1, the impedance of the expected equivalent
circuit fits the experimental impedance data very well. The
value Zr and Zi associated to the equivalent circuit can be
expressed as [41, 42]:

Zr ¼ Rb þ
cos

πp
2

� �
Cωp ð8Þ

Zi ¼ Rb þ
cos

πp
2

� �
Cωp ð9Þ

where

Z totalð Þ ¼ Zr−jZi ð10Þ

where C is the capacitance of CPE, ω is the angular frequency
(ω = 1/f; f is frequency in Hz), p is related to the deviation of
the plot from the axis, and j is

ffiffiffi
1

p
and the real and imaginary

parts of impedance, Zr and Zi, respectively.
Based on theoretical fitting in Fig. 1, the parameter of the

circuit elements for SPEs system is tabulated in Table 2.
Shuhaimi et al. [43] report that if p = 1, Ztotal = R − j/ωC; if
p = 0, the constant phase element is a perfect resistor where
Ztotal is frequency independent and if the value of p lies be-
tween 0 and 1, CPE will act in a way intermediate between a
resistor and a capacitor for conducting sample. From Table 2,
it shows the value of p lies between 0 and 1, and this reveals
that the SPEs system has a resistive and capacitive behavior
which is similar as reported in [43].

It is evident that the sample becomes more capacitive
than resistive as the PEG composition increases. The bulk
resistance, which was obtained from the intercept of the
Cole-Cole plot with the Zr axis decreases as the PEG is
increased. The increase in capacitance values with
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increasing plasticizer is in good agreement with the follow-
ing equation [44, 45]:

C ¼ εoεrA
d

ð11Þ

where ɛo is vacuum permittivity and ɛr is dielectric
constant.

Ionic conductivity analysis

The effect of PEG composition on the conductivity at room
temperature is depicted in Fig. 2. Based on [46], the highest
conductivity for un-plasticized SPEs system containing with
CMC-NH4Br is achieved at 1.12 × 10−4 S cm−1 for the sample
with 25 wt% NH4Br. For the present system, the addition of
PEG is found to influence the increment in ionic conductivity
except for sample B which contains 2 wt% of PEG. The de-
crease of ionic conductivity at lower PEG composition may be
due to the insufficient energy from PEG for ions (H+) to de-
tach fromNH4

+ substructure of NH4Br in order tomigrate into

Table 2 The value of circuit elements of the SPEs system

Samples
C (F) p (radian) Rb (Ω)

A 9.68 × 10–6 0.71 109
B 3.14 × 10–6 0.68 201
C 3.83 × 10–5 0.71 22.8
D 4.04 × 10–5 0.72 18.0
E 7.03 × 10–5 0.80 1.11
F 4.95 × 10–5 0.81 7.98
G 4.12 × 10–5 0.73 28.1
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Fig. 1 The Cole-Cole plot of
various samples SPEs system
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COO− group of CMC. The addition of PEG at lower compo-
sition could cause the delaying of ions pathway to migrate
towards polymer backbone thus the reduction in ionic conduc-
tivity was observed. Furthermore, the small amount of PEG
suggests that the PEG is not able to overcome the rate of ion
association between CMC and NH4Br, thus demonstrating a
decrease in conductivity [47].

The highest ionic conductivity for the present system is
achieved at 2.48 × 10−3 S cm−1 for sample containing 8 wt%
PEG. This observation suggests that the amount plasticizer is
sufficient to assist the dissociation of H+ for undissociated H+

of NH4Br, allowing the released of H+ for migration towards

COO− group of CMC. As a result, an increase in the ionic
conductivity and transport properties in SPEs system are ob-
served [48–50]. The decrease in crystalline content or an in-
crease in amorphous content is expected to influence an in-
crease in conductivity [51] of these SPEs system, and these
observations can be proven from XRD analysis which will be
discussed later.

Apparently, it shows that beyond 8 wt% of CMC-NH4Br-
PEG SPE system, the conductivity starts to decrease and it
may be due to the re-association of the ions [52]. In the present
system, the PEG does not supply ions towards CMC-NH4Br,
but it is believed that PEG assisted in dissociatingmore dopant
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into ions, hence, increasing the ionic conductivity and trans-
ports mobility [53].

Figure 3 shows the temperature dependence of ionic con-
ductivity for CMC-NH4Br-PEG system investigated in the
temperature range from 303 to 373 K in order to understand
the conductivity-temperature behavior of SPE salt polymer
system plasticized with the PEG films. It can be observed that
the conductivity increase gradually with the increase in tem-
perature, which shows that the SPE system is thermally
assisted. The regression values, R2 was close to unity [39,
40, 54], which indicates that the temperature-dependent ionic
conductivity revealed that the SPEs system obeys the
Arrhenius rule via the following equation:

σ ¼ σ0exp
−Ea
KTð Þ ð12Þ

where σ0 is the pre-exponential factor, Ea is the activation
energy, and k is the Boltzman constant.

FTIR analysis

Figure 4 shows the possible interaction between the CMC-
NH4Br-PEG for SPE system in the regionwave number between
3600 and 900 cm−1. Researchers [55–57] reported that from the
FTIR spectra, polymer electrolyte structure according to their
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compositions and the occurrence of complexation and interac-
tions between CMC, NH4Br, and plasticizer (PEG) could be
investigated. Based on the previous work done by Samsudin
et al. [46], the main component of polysaccharide CMC can be
found at wave number 3236 cm−1 shifted to 2920 cm−1,
1589 cm−1 shifted to 1587 cm−1, and 1066 cm−1 shifted to the
1050 cm−1 that attribute to O–H bending, C=O stretching, and
C–O− of carboxylate anions of CMC [58–60] and these peaks
were identified an interaction when NH4Br was added.

Based on Fig. 4, it can be clearly seen that the slight different
broadness of the peak at 3450 cm−1 corresponds to the hydroxyl
group (O–H) of plasticizer composition and this band are also
comparable with the result observed by Yu et al. [61]. The peak
begins to decrease in the broadness in the region of range 3437 to
3450 cm−1 when the PEG is increased to up to 12 wt%.
Hydrogen bonding of alcohols to electronegative atoms or ions
reduces the frequency and broadens the FTIR band associated
with the O–H stretch. Samsudin et al. reported that the hydrogen

bonding of the monomeric (O–H) shifts from a sharp band to
broadband with the addition of ammonium salt to the solution
[62]. The shifts in (O–H) indicates that the intra and intermolec-
ular hydrogen bonding between PEG and various anions are
complicated. This observation is evident, as the addition of plas-
ticizers caused the peak intensity of the samples to increase and
the growth in the number of free ions, which in turn, influence
the change of ionic conductivity [63].

Figure 5 shows the FTIR spectrum of CMC-NH4Br-PEG
in the region from 1500 to 1700 cm−1. Based on Fig. 5, an
absorption peak appeared at 1583 cm−1 corresponding to the
C=O stretching moiety of CMC. The intensity of the peak at
1583 cm−1 is clearly found to increase as the content of PEG is
increased to up to 8 wt% as shown in Fig. 5. This implies that
PEG can serve as an alternative transit site for ion conduction
for H+ from NH4Br towards C=O of the carboxyl group in
CMC for SPEs system. It is believed that the use of PEG
allows for the dissociation of more H+ from NH4Br and it
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would create a shorter distance or new pathway for ion migra-
tion in order to interact with C=O. This observation is similar
to the observation of Nirali et al. [64], where the interaction
occurred when plasticizer was added in the polymer-salt com-
plexes, consequently influencing either the intensity of peak

or changes of wave number in FTIR spectra. On the other
hand, it can be seen that the intensity of the peak at
1583 cm−1 begins to decrease when PEG is added beyond
8 wt%, and this is expected due to the overcrowding of H+

ions in CMC-NH4Br-PEG SPEs system where it is expected
that the ions start recombined to form neutral ion aggregate as
NH4Br.

Meanwhile, in Fig. 6, peaks at 1065 cm−1 corresponds to C–
O− moiety of carboxylate anion from COO− was found to
decrease to a lower wave number at 1059 cm−1 when PEG
was added. A more significant band in comparison to C=O
from CMC where the interaction has occurred in this band.
The shifted peak shows the more H+ interacted at C–O− of
CMC and this may be due to the strong absorbance bandwhich
similarly observed by Chai et al. [65] and Kamarudin et al.
[66]. Based on the observation, it is proved that the addition
of PEG in CMC-NH4Br SPEs system has performed as an
agent in enhancing the dissociation of NH4Br towards CMC.
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Table 3 The free and contact ions of the CMC-NH4Br-PEG SPEs
system

Samples Free ions (%) Contact ions (%)

A 8.637 91.363

B 24.246 75.754

C 55.875 44.125

D 60.852 39.148

E 74.908 25.092

F 32.861 67.139

G 25.241 74.759
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Deconvolution analysis

In the present work, wave numbers between 1040 and
1080 cm−1 were used for deconvolution analysis where
it is believed the complexes between CMC-NH4Br and
PEG has occurred as proven from FTIR analysis.
Figure 7 presents the deconvolution spectra for various
sample of CMC-NH4Br-PEG SPEs system.

Based on Fig. 7, the peak at ~ 1055 cm−1 that attributed
to free anions, conversely, the peaks at ~ 1040 cm−1 rep-
resents the contact ion pairs, and 1068 cm−1 is an indica-
tion for the formation of ion aggregates [67, 68]. The
percentage area of free ions and contact ions were calcu-
lated from the ratio of the area of free or contact ions to
the total area of deconvolution peaks, respectively.
Table 3 shows the percentage of free ions and contact
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ions of the CMC-NH4Br-PEG SPEs system. Based on
Table 3, it can be seen that the percentage of free ions
increased when PEG content is added until 8 wt%. The
increase of the ion dissociation corresponds to the free
ions from the plasticizer, and the H+ ions of the NH4

+

from the salt improve the ionic conductivity as observed
from ionic conductivity analysis. The percentage of free
is inversely proportional to the percentage of contact
ions. The decrease of free ions at 10 to 12 wt% relates
to the formation of ion pairing/aggregate consequently
reduced the rate of increment in ionic conductivity.

From the free and contact ions in Table 3, the number of
mobile ions (ƞ), ionic mobility (μ), and diffusion coefficient
(D) can be calculated using the equation as presented in Eqs.
(3), (5), and (6). Figure 8 depicts the transport parameter of
CMC-NH4Br-PEG SPE system.

Based on the literature, the ionic conductivity of a polymer
is generally linked to the number of ions and the mobility of
conducting species in the polymer complexes [69–71] with
the relation base Eq. (5).

From the transport properties, as shown in Fig. 8, it
can be inferred that the conductivity is governed by the
number of mobile ions, ionic mobility and diffusion
coefficient. The increase of η value from 4 to 8 wt%
of PEG composition were observed and this attributed
to the enhancement of dissociation of H+ from NH4Br
when the PEG was introduced in the present system.
This result obtained is in reasonable agreement with
the changes of FTIR analysis where the interaction in-
fluenced to the contribution of ion transport characteris-
tic. Moreover, it also related to the increase in the fa-
cilitation of the H+ coordination in the plasticized sys-
tem, enabling continuous motion of charge carrier that
led to the maximum ionic conductivity of CMC-NH4Br-
PEG SPE system. With the increment of the dissociation
of H+, the conductivity for SPE system does respond
better from the association of ion count and this is
demonstrated through the increase of μ and D that cor-
responds to the conductivity until it reaches the opti-
mum composition [72, 73]. This is due to the flexibility
of the segmental motion of the polymer chains in the
SPEs system which leads to the enhancement of the
transport properties and conductivity [74, 75].

On the other hand, it shows that the transport prop-
erties of SPEs system were found to decrease at higher
PEG composition (> 8 wt%). This is primarily due to
the aggregation of the ions, which leads to the forma-
tion of ion cluster where the dipole interaction between
the H+ in the medium increases. This, in turn, reduces
the charge carriers and thus the conductivity [73]. The
value of η, μ, and D calculated is in reasonable agree-
ment with that obtained in refs. [46, 63, 76]. Therefore,
it is proven that Eq. (5) fits well in the present work.

XRD analysis

Figure 9 shows theXRDpattern of un-plasticized and plasticized
samples of CMC-NH4Br-PEG complexes. It can be found that
the diffraction peak became less intense and more broad due to
disruption of amorphous phase when PEG was added in the
present system. These results are in agreement with the findings
of Itoh et al. [77] and Rajendran et al. [78], where it was found
that the plasticizer, which is inserted in polymer electrolytes sys-
tem, would reduce the non-conductive crystalline phase to obtain
better ionic conductivity. A similar observation is found by Leo
et al. [79] where further dilution of the crystalline phase can be
noticed with the addition of the plasticizer as the sharp peaks in
the XRD pattern becomes broadened and less intense.

The hump peak observed between 2θ = 20° and 30° for
SPEs system broadened and shifted to the higher angle as
the amount of the plasticizer is increased. The pattern shows
that the amorphousness of biopolymer electrolytes increases
with the increase of the PEG composition. The increase in the
broadness of the peak reveals the amorphous nature with some
localized ordering of the complexed system is observed in the
present system [63, 80]. Hence, it would lead to an increment
of the ionic conductivity in the SPEs as observed from the
conductivity analysis. The results are in accordance to the
findings of Majid and Arof [55] where they observed that
the conductivity of the polymer electrolytes is believed to be
affected if there is a change in amorphousness of polymer
electrolytes system.

Figure 10 demonstrates the XRD deconvolution pattern
of various samples for SPEs system. Based on the
deconvoluted XRD pattern, the intensity of crystalline
peaks decreases and the peak width broadens due to the
breaking of order or folding patterns of polymer chain
which enhances the amorphousness of the SPEs sample.
This implies that the crystallinity of the SPEs is hindered
by the addition of PEG, resulting in a more flexible SPEs
and thus improves their ionic conductivity [81].

Table 4 shows the percentage of crystallinity (Xc) of CMC-
NH4Br-PEG SPEs system decreases with the addition of plas-
ticizer except for sample B. The increase of crystallinity (Xc)
in sample B is attributed due to the amount of residual crys-
tallinity given by the PEG which was found to decrease the
ionic conductivity [26, 82]. Moreover, this observation may
also be due to the ion trapped in CMC-NH4Br SPEs system
when 2 wt% of PEG was added. This can be demonstrated
from the transport properties analysis where the number of
ions (H+) suddenly decreases which reflected in the reduction
of the mobility and diffusion coefficient of ions. In the present
system, sample E represents the lowest value of Xc, and this
suggests that the addition of the PEG has affected the amor-
phous nature of the SPEs system. As stated by Rahaman et al.
[83], the percentage of crystallinity is inversely proportional to
the amorphousness of the SPEs, which means that the
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decreased of Xc indicates the increase of the amorphous of the
SPEs. As reported by Zhou et al. [84], the decrease of crystal-
linity is probably associated with the progressively higher
chain mobility that is facilitated by the corresponding plasti-
cizer which eliminates the cohesive forces between CMC or
NH4Br molecules that in turn enhances the chain mobility,
resulting in a lower percentage of crystallinity, Xc.

Conclusion

The conducting SPEs based on CMC doped with ammonium
bromide (NH4Br) plasticized PEG was investigated with dif-
ferent composition of PEG by solution casting method. The
highest room-temperature ionic conductivity for the SPEs sys-
tem is observed at 2.48 × 10−3 S cm−1 with a composition of
8 wt% PEG at room temperature. According to the FTIR
results, there is a strong contribution of hydrogen bonding of
polymer-salt binary system that influences the coordination
interaction of H+ to the to the C=O stretching moiety of
CMC, as well as the hydroxyl band, that shifts to higher wave
numbers with the increase of the PEG content. From the
deconvolution method, the number of ions, mobility of ions,
and diffusion coefficient properties demonstrated that the free
ions dominated in the ionic transport of SPEs system attribute
to the result of the ionic conductivity. The addition of PEG
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Fig. 10 XRD deconvolution for various samples of SPEs system

Table 4 XRD deconvolution parameter for various samples of CMC-
NH4Br-PEG SPE system

Samples Crystallinity phase Amorphous phase Xc (%)

A 8382.89 19,082.69 30.52

B 89.62 179.24 33.33

C 253.04 960.76 20.85

E 585.23 3602.26 13.98
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plasticizer to up to 10 wt% into CMC-NH4Br SPEs has in-
creased the amorphousness of the electrolyte sample. This has
been proven by calculation of the degree of crystallinity of
CMC-NH4Br-PEG-electrolyte system from the XRD analysis
via deconvolution. From the results obtained, it is apparent
that the present solid polymer electrolytes based
carboxymethyl cellulose-NH4Br plasticized with PEG has
the potential to be used for electrochemical applications.
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