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Cobalt disulfide nanosphere dispersed on multi-walled carbon
nanotubes: an efficient and stable electrocatalyst for hydrogen
evolution reaction
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Abstract
Novel cobalt disulfide on multi-walled carbon nanotubes (CoS2/MWCNTs) was synthesized via a facile one-step hydrothermal
method in the presence of cetyltrimethyl ammonium bromide. The physical properties of as-prepared materials were character-
ized by Fourier transform infrared spectrum, X-ray diffraction, Raman spectrum, and scanning electron microscopy techniques.
Physical characterizations revealed that cattierite CoS2 nanospheres dispersed on the surface ofMWCNTs uniformly. In addition,
electrochemical performances of as-prepared materials for hydrogen evolution reaction were investigated by polarization curves,
Tafel plots, and electrochemical impedance spectrum in 0.50 M H2SO4 electrolyte. It was demonstrated that MWCNT-based
electrode exhibited almost no current response while CoS2/MWCNT nanocomposite-based electrode exhibited better electro-
chemical performances than pure CoS2-based electrode, including lower potential of − 257mV for 10mA cm−2 and smaller Tafel
slope of 83 mV dec−1. Furthermore, CoS2/MWCNT nanocomposite retained its high activity even after 1000 cycles of cyclic
voltammetry scans, demonstrating superior stability under acidic condition. The enhanced electrocatalytic activity of CoS2/
MWCNT nanocomposite-based electrode was ascribed to more exposed sulfur edges of CoS2, larger accessible surface area,
and higher conductivity derived from MWCNTs. The results suggested that CoS2/MWCNT nanocomposite had a potential
application to hydrogen evolution reaction.
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Introduction

In recent years, renewable energy has become an urgent issue
on consideration of alleviating global warming and lessening
our reliance on fossil fuels [1, 2]. Exploitation of abundant and
renewable energy sources has attracted much attention [3, 4].
Unlike fossil fuels, hydrogen is considered as a clean carrier
for energy storing and transporting [5, 6]. It is regarded as the
most promising candidate for replacing fossil fuels in energy
devices because of its numerous advantages, such as satisfac-
tory recyclability, free pollution, and high efficiency when
consumed [7–9]. However, hydrogen does not exist abundant-
ly on earth, and we have to prepare it before use. Therefore, it
is of great practical significance to develop highly efficient
hydrogen production technology.

Among a great deal of techniques for hydrogen generation
(steam methane reforming, coal gasification, chlor-alkali
electrolyzers and water-alkali electrolyzers, etc.),
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electrocatalytic water splitting offers an attractive avenue to
convert electricity harvested from water into high-purity hy-
drogen without any pollution and emission of carbon dioxide;
therefore, it has been regarded as a clean energy technology
enabling a hydrogen economy in the future [10–12]. Water
splitting consists of two half reactions: the oxygen evolution
reaction (OER) and the hydrogen evolution reaction (HER)
[13–15]. The slow kinetics and transfer of multiple electrons
in water splitting can result in a considerable electrochemical
overpotential, which is energy consumptive. Hence, it is de-
sirable to develop highly efficient electrocatalysts with low
overpotential toward water electrolysis to accelerate the
HER rate and to thus improve the energy conversion
efficiency.

Nowadays, platinum-based catalysts are considered to be
the state-of-the-art electrocatalysts for HER owing to their low
overpotential and high electroactivity in acidic media [16, 17].
However, the extreme scarcity, high cost, and limited durabil-
ity severely restrict their widespread utilization in hydrogen
production through water splitting on a global scale [18–20].
Therefore, researchers have been exploring earth abundant,
stable, and efficient hydrogen evolution electrocatalysts with
great enthusiasm to alternate commercially available Pt-based
electrocatalysts in the past few years, and transition metals
(Fe, Co, and Ni) and their compounds (carbides, nitrides,
and phosphides) are considered as promising substitutes for
platinum-based electrocatalysts [21–24]. Among these mate-
rials, transition metal chalcogenides account for the largest
proportion [25, 26].

Compared with other transition metal sulfides, cobalt
disulfides (CoS2) are more attractive in energy storage and
conversion for the facile preparation method and favorable
thermal stability [27–29]. It was reported that CoS2 exhibited
better overall performances than FeS2 and NiS2 in HER due to
its intrinsically metallic features and disulfide-terminated
edges as active sites [30]. Despite the advantages above, the
electronic conductivity and acidic durability of CoS2 still need
to be enhanced in consideration of electrocatalytic perfor-
mances and energy consumption.

In principle, the electrocatalytic performances of
electrocatalysts can be enhanced through the following two
approaches. One is to tailor the size of electrocatalyst particles
into nanoscale to increase the specific surface area [31]. The
other is to incorporate electrocatalysts with large-surface sub-
strates, such as carbon materials, to modulate the electronic
structure on the surface of electrocatalysts, which is beneficial
to enhance the conductivity [32, 33].

As one kind of carbon materials, carbon nanotubes (CNTs)
attract researchers’ attention for the applications in electro-
chemical energy storage and transformation devices due to
the structural integrity, large surface area, compact arrange-
ment, and favorable mesoporosity [34, 35]. CNTs are mainly
divided into two categories: single-walled carbon nanotubes

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs).
MWCNTs have advantages of large specific surface area,
good conductivity, and structural flexibility, and thus,
MWCNTs are used to improve the electronic conductivity
and stability of HER electrocatalysts in the long-term opera-
tion [36, 37]. Based on the considerations above, CoS2/
MWCNT nanocomposite is likely to be an efficient and stable
electrocatalyst for HER.

Herein, CoS2/MWCNT nanocomposite was successfully
synthesized through a one-step hydrothermal method with
conductive matrix of acid-treated MWCNTs and assistant of
cetyltrimethyl ammonium bromide (CTAB), working as sur-
factant and soft template. The introduction of MWCNTs alle-
viated the aggregation of as-prepared CoS2, and furthermore,
it enhanced the conductivity and electrocatalytic activity of
CoS2. The results showed that CoS2/MWCNT nanocomposite
exhibited excellent electrocatalytic activity and favorable sta-
bility for HER in acidic medium.

Materials and methods

Reagents and materials

CoCl2·6H2O, CTAB, HNO3, and C2H5OH (> 99.95 wt.%)
were analytical grade and purchased from Chengdu Kelong
Chemical Reagent Factory (Chengdu, China). CH4N2S and
H2SO4 were analytical grade and purchased from Aldrich
Chemical Reagent Co., Ltd., (Shanghai, China). Nafion solu-
tion (5 wt.%) was supplied by Jinan Henghua Chemical
Reagent Factory (Jinan, China). The doubly distilled water
used throughout the whole experiment was obtained from a
Millipore system.

Commercial MWCNTs (outer diameter × inner diameter ×
length 20~40 nm × 10~15 nm × 5~15 μm, purity > 95%), pur-
chased fromChengdu Institute of Organic Chemistry, Chinese
Academy of Science (Chengdu, China), were treated with the
mixed solution of concentrated H2SO4 and HNO3 (volume
ratio of 3:1) for 2 h with ultrasonication to remove the impu-
rities and endow the surface with hydrophilic carboxylic acid
groups. After the reaction, the obtained sample was filtered
off, washed with distilled water, and dried at 80 °C under
vacuum for 24 h.

Preparation of CoS2/MWCNT nanocomposite

Shown in Scheme 1 was schematic illustration of the prepa-
ration of CoS2/MWCNT nanocomposite based on hydrother-
mal method. In a typical synthesis, 0.15 g acid-treated
MWCNTs was firstly added into 50 mL deionized water,
and then, the mixture was stirred ultrasonically for 1 h at room
temperature, resulting in a homogeneous suspension.
Subsequently, 0.36 g CTAB as surfactant along with soft
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template and 1.04 g CoCl2·6H2O as cobalt source were added
into the above suspension, followed bymechanical stirring for
30 min. Afterwards, 1.55 g thiourea was added as sulfur pre-
cursor and reductant. Then, pH was adjusted to 6.5 by
dropping 0.10MHCl solution, and the suspension was diluted
to 80 mL, followed by ultrasonication for 1 h. The final sus-
pension was transferred into a 100 mLTeflon-lined autoclave
and then heated at 180 °C for 18 h. As the autoclave cooled,
the precipitate was collected, washed with distilled water and
absolute ethanol thoroughly, and further dried at 60 °C for
24 h in air. The obtained substance was denoted as CoS2/
MWCNT nanocomposite.

For comparison, pure CoS2 was synthesized according to
the similar procedure above without addition of MWCNTs.

Preparation of modified electrodes

Prior to modification, glassy carbon electrode (GCE, Ф =
3 mm) was polished with 500 and 50 nm aluminum oxide
powders to a mirror-like appearance, respectively, and then
washed successively with ethanol and doubly distilled water
for several times. Subsequently, the cleaned GCE was gently
blown under a nitrogen stream.

The fabrication procedure of working electrodes was as
follows. Five milligram as-prepared CoS2/MWCNT nano-
composite and 30 μL 5 wt.% of Nafion solution were dis-
persed in 1.0 mL solution composed of water and ethanol with
a volume ratio of 1:1, followed by ultrasonication for 30 min.
Subsequently, 5.0 μL as-prepared dispersion was dropped on-
to the surface of a polished GCE and naturally dried in air at
room temperature to form uniform films. And the CoS2/
MWCNT nanocomposite-modified GCE (CoS2/MWCNTs/
GCE) with a mass loading of 0.35 mg cm−2 was obtained.

For comparison, MWCNT-modified GCE (MWCNTs/
GCE) and CoS2-modified GCE (CoS2/GCE) were fabricated
according to the similar process above.

Characterization of as-prepared materials

The morphologies of as-prepared materials were investigated
with scanning electron microscope (SEM) images acquired

from Ultra 55 microscope (Carl Zeiss AG, Germany). The
crystalline structures of as-prepared materials were character-
ized by X-ray diffraction (XRD) (X’ Pert PRO, Netherlands)
with Cu Kα radiation (λ = 0.154060 nm) and recorded in 2θ
range from 10° to 80° at a speed of 2° min−1. Fourier trans-
form infrared spectra (FTIR) of as-prepared materials were
obtained with a Fourier transform infrared spectrometer
(Nicolet 5700, USA) in the wavenumber range of
4000~1000 cm−1 with KBr pellet. Raman spectra of as-
prepared materials were characterized by InVia (Renishaw
Instrument Co., UK) in the wavenumber range of
2500~100 cm−1.

Electrochemical measurements

All electrochemical measurements were conducted in 0.50 M
H2SO4 solution with a three-electrode test system comprising
the platinum electrode as counter electrode and as-prepared
material-modified GCE as working electrode referred to satu-
rated calomel electrode (SCE). The electrolyte was purged
with high-purity nitrogen (99.999%) before electrochemical
measurements. Electrochemical impedance spectroscopy
(EIS) measurement was carried out with a PARSTAT 2273
electrochemical workstation (Princeton Applied Research,
USA). Tafel plot, polarization curves, and cyclic voltammetry
(CV) curves were obtained with a CHI 760C electrochemical
workstation (CH Instruments, China). All the reported poten-
tials were calibrated to the reversible hydrogen electrode
(RHE) scale at 298 K on the basis of Nernst equation as
follows:

ERHE ¼ ESCE þ 0:059 pHþ 0:242 V ð1Þ

Results and discussion

Physical characterizations of as-prepared materials

FTIR spectra analysis

Shown in Fig. 1 were FTIR spectra of raw MWCNTs and
acid-treated MWCNTs. The weak bands located at 2915 and
2835 cm−1 in curve a corresponded to -CH stretching vibra-
tion. The bands at 1384 and 1113 cm−1 were ascribed to
stretching vibration of C-C and C-O, respectively. The strong
bands observed at 3435 cm−1 and the weak one at 1632 cm−1

were attributed to the stretching vibration and bending vibra-
tion, respectively, arisen from trace amounts of water [38, 39].
Compared with curve a, FTIR spectrum of acid-treated
MWCNTs (curve b) exhibited an additional band at
1710 cm−1, corresponding to stretching vibration of C=O of
-COOH group [40]. This additional band indicated

Scheme 1 Schematic illustration of synthetic procedure of CoS2/
MWCNT nanocomposite
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hydrophilic -COOH group on the wall and port of MWCNTs,
which further enhanced the dispersity of MWCNTs.

XRD analysis

For confirming the as-prepared CoS2 and CoS2/MWCNTs,
XRD patterns are shown in Fig. 2. As for pure CoS2 (curve
a), the diffraction peaks at 27.9°, 32.4°, 36.3°, 40°, 46.4°,
55.1°, 60.4°, and 63.04° corresponded to the lattice planes
(111), (200), (210), (211), (220), (311), (230), and (321) of
cattierite CoS2 (JCPDS No. 41-1471), respectively [41].
Compared with pure CoS2, the diffraction angle and intensity
of CoS2/MWCNTs (curve b) did not change obviously except
that two additional peaks appeared at 26.1° and 44.5°, which
corresponded to the lattice planes (002) and (100) of hexago-
nal graphite-like structure of MWCNTs, respectively, imply-
ing the successful combination of CoS2 and MWCNTs [42].

Raman spectra analysis

Raman spectra in Fig. 3 showed the structural information of
MWCNTs and CoS2/MWCNTs. As seen from the Raman
spectrum of MWCNTs (curve a), there were characteristic D
band and G band at 1360 and 1589 cm−1, respectively. The D
band arose from sp3 hybridization of carbon and the G band
was associated with sp2-bonded graphite-like carbon atoms.
Shown in curve b, the peaks at 190, 471, and 672 cm−1 signi-
fied the successful fabrication of CoS2, which was consistent
with the results of XRD analysis [41]. The co-existence of
peaks at 1360 and 1589 cm−1 of MWCNTs and peaks at
190, 471, and 672 cm−1 of CoS2 verified the fabrication of
CoS2/MWCNTcomposite, which was in well agreement with
the results obtained from XRD analysis. Furthermore, it was

obvious that the ratio of ID/IG of CoS2/MWCNTs was larger
than that of pure MWCNTs, indicating that the structure of
MWCNTs was destroyed during the hydrothermal process,
and thus, more defect sites were exposed [43].

SEM analysis

Shown in Fig. 4 were SEM images of CoS2, MWCNTs, and
CoS2/MWCNTs. As can be seen from Fig. 4a, CoS2 was
sphere-like particles with a diameter of 0.7 μm and it stacked
loosely, which indicated that CoS2 particles aggregated to-
gether during hydrothermal process. It was worth noting that
MWCNTs constructed a conductive network, providing a
great deal of attachment sites for CoS2. During the

Fig. 1 FTIR spectra of rawMWCNTs (a) and acid-treated MWCNTs (b) Fig. 2 XRD patterns of CoS2 (a) and CoS2/MWCNTs (b)

Fig. 3 Raman spectra of MWCNTs (a) and CoS2/MWCNTs (b)
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hydrothermal process, CoS2 adhered onto the surface of
MWCNTs and combined well with MWCNTs (Fig. 4c).
Notably, the aggregation of CoS2 was relived, and the diam-
eter of CoS2 decreased with the introduction of MWCNTs,
leading to a much larger specific surface area and thus more
exposed electroactive sites.

Electrochemical performances of as-prepared
modified electrodes

In order to investigate the influence of MWCNTs on the elec-
trocatalytic performances of CoS2 for HER, polarization
curves of MWCNTs/GCE, CoS2/GCE, and CoS2/MWCNTs/
GCE were tested in 0.50 M H2SO4 solution. As shown in Fig.
5, it was clearly observed that the potential of CoS2/
MWCNTs/GCE was more positive than that of CoS2/GCE
at the same current density. The potentials of CoS2/GCE and
CoS2/MWCNTs/GCE at the current density of 10 mA cm−2

were − 290 and −257 mV, respectively, demonstrating higher
electrocatalytic activity of CoS2/MWCNTs/GCE. When

Fig. 4 SEM images of CoS2 (a), MWCNTs (b), and CoS2/MWCNTs (c)

Fig. 5 Polarization curves of MWCNTs/GCE (a), CoS2/GCE (b), and
CoS2/MWCNTs/GCE (c) in 0.50 M H2SO4 solution. Scan rate 2 mV s−1
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current density reached 29 mA cm−2, the required potential of
CoS2/MWCNTs/GCE (− 303 mV) shifted positively about
100 mV compared with that of pure CoS2/GCE (− 401 mV).
In addition, it was obvious that the current density of CoS2/
MWCNTs/GCE (73 mA cm−2) was higher than that of CoS2/
GCE (29 mA cm−2) and MWCNTs/GCE (3 mA cm−2) at the
potential of − 400 mV, indicating better conductivity of CoS2/
MWCNTs/GCE. The favorable electrocatalytic performances
of CoS2/MWCNTs/GCEwere attributed to the introduction of
MWCNTs, which significantly alleviated the aggregation of
CoS2 and increased the effective surface area, thus facilitated
the diffusion of electrolytes and electrons to the electroactive
electrocatalysts, leading to more exposed catalytic active sites
of CoS2 and increased electronic conductivity.

To gain further insights into the HER kinetics, Tafel
plots of as-prepared electrodes were investigated (Fig.

6). The linear regions of Tafel plots fitted the Tafel
equation as follows.

η ¼ aþ b log j ð2Þ
where a was the constant, b the Tafel slope (mV dec−1),
and j the current density (mA cm−2). The CoS2/GCE
and MWCNTs/GCE exhibited Tafel slopes of 88 and
253 mV dec−1, respectively, while the slope of CoS2/
MWCNTs/GCE was 83 mV dec−1, demonstrating faster
HER kinetics of CoS2/MWCNTs/GCE.

To gain a direct comparison, electrocatalytic performances
toward HER of CoS2-based electrodes reported in literatures
are listed in Table 1. It was clearly observed that the electro-
catalytic activity of CTAB-assisted synthesized CoS2/
MWCNT-based electrode in this work was higher or compa-
rable with those in reported literatures, showing that as-
prepared CoS2/MWCNT-based electrode exhibited excellent
electrocatalytic performances.

EIS measurement was carried out to obtain kinetic
parameters of HER at the electrode/electrolyte interface
with AC perturbation of 5 mV in the frequency range
from 105 to 10−2 Hz. Shown in Fig. 7 were Nyquist
plots of as-prepared modified electrodes, and the insert
was an equivalent circuit for fitting the impedance data
of CoS2/MWCNTs/GCE, where Rs was the resistance at
electrode/electrolyte interface, Rct the charge transfer re-
sistance, Zw the Warburg resistance, and CPE the con-
stant phase element.

It was obviously observed that all the Nyquist plots
consisted of two regions: a semicircle at high frequencies
and a linear part at low frequencies. Rct for MWCNTs/GCE,
CoS2/GCE, and CoS2/MWCNTs/GCE were 154, 700, and
300 Ω, respectively, indicating faster HER kinetics of CoS2/
MWCNTs/GCE than that of CoS2/GCE. The lower Rct of
CoS2/MWCNTs/GCE originated from the excellent conduc-
tivity of MWCNTs.

Fig. 6 Tafel plots of MWCNTs/GCE (a), CoS2/GCE (b), and CoS2/
MWCNTs/GCE (c) in 0.50 M H2SO4 solution. Scan rate 1 mV s−1

Table 1 Comparison of HER
electrocatalytic performance of
CoS2-based electrodes

Electrode materials Electrolytes Tafel slope (mV dec−1) η10
a (mV) Ref.

CoS2 0.50 M H2SO4 88 538 [44]

CoS2/Ti 1.0 M KOH 133 244 [45]

CoS2/RGO
b 0.50 M H2SO4 327 300 [46]

CNFc@CoS2 1.0 M KOH 66.8 110 [47]

CoS2/CNTs 0.50 M H2SO4 114 160 [48]

MoS2/CoS2/CC
d 0.50 M H2SO4 73.4 87 [49]

CoS2/RGO 0.50 M H2SO4 285 143 [50]

CoS2/MWCNTs 0.50 M H2SO4 83 257 This work

a Overpotential at cathodic current density of 10 mA cm−2

b Reduced graphene oxide
c Carbon nanofiber
d Carbon cloth
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Besides the electrocatalytic activity, stability was an-
other significant criterion to evaluate an advanced
electrocatalyst. To investigate the long-term cycling sta-
bility of as-prepared CoS2/MWCNTs/GCE in acidic en-
vironment, polarization curves were recorded after
performing continuous cyclic voltammetry scans be-
tween − 0.6 and + 0.1 V at 50 mV s−1 for 1000 cycles
and shown in Fig. 8. No obvious differences on onset
potential or current density were observed between the
initial plot and the last one, indicating that the CoS2/
MWCNTs/GCE exhibited excellent long-term stability
for HER.

Conclusion

In this work, a novel CoS2/MWCNT nanocomposite for HER
was designed and constructed hydrothermally in the presence
of CTAB. Compared with CoS2/GCE and MWCNTs/GCE,
CoS2/MWCNTs/GCE required much lower potential (−
257 mV) to reach the current density of 10 mA cm−2.
Meanwhile, CoS2/MWCNTs/GCE exhibited low Tafel slope
(83 mV dec−1), low charge transfer resistance (300 Ω), and
long-term stability. The outstanding electrocatalytic activity of
as-prepared CoS2/MWCNT nanocomposite was attributed to
the highly exposed sulfur edges of CoS2 and excellent electri-
cal conductivity of MWCNTs. CoS2/MWCNT nanocompos-
ite was a promising candidate for highly efficient
electrocatalyst for practical hydrogen evolution through water
splitting under acidic conditions.
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