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Abstract
A glassy carbon electrode modified with TiO2 anchored on multiwalled carbon nanotube particles was used for voltammetric
determination of nitrite in phosphate buffer solution (pH 7). Characterization of modified electrodes was performed using
transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDS), and voltammetric techniques. Under
optimal conditions, TiO2/MWCNT/GCE reduced oxidation potential by 250 mVand enhanced ipa by 2.7-fold (≈ 172%) higher
when compared with bare glassy carbon electrode. A linear voltammetric response from 0.02 to 600 μMwith a detection limit of
0.011μM(s/n = 3)was obtained usingDPV. The apparent diffusion coefficient for nitritewas calculated to be 2.15 × 10−6 cm2 s−1.
The fabricated sensor was used for the determination of nitrite in water samples and the results were consistent with the values
obtained by the ultraviolet–visible spectroscopy (UV-Vis) method.
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Introduction

Nitrite is an inorganic anion composed of a nitrogen atom
bonded to two oxygen atoms. Its use as a preservative in food
industry and as a corrosion inhibitor during industrial water
preparation has been highlighted [1–5]. The effect of high
concentrations of nitrite in environmental water bodies and
human health has been discussed [3, 6, 7]. Themaximum limit
of nitrite in water samples should not exceed 3 mg L−1, ac-
cording to World Health Organization [8]. Hence, it is neces-
sary to develop a simple and selective sensor for continuous
monitoring of nitrite so that if recommended limits by regula-
tory bodies are exceeded then remediation techniques can be
sought quickly without posing environmental harm.

Literature survey reveals that different instrumental tech-
niques have been used for nitrite determination with great
success [9–13]. However, time-consuming, high costs of the

equipments, and the need for qualified technicians have been
cited as some drawbacks [14]. In an attempt to rectify this,
electrochemists have shifted to voltammetric techniques as an
option as evidenced by working principles which are easy to
follow when monitoring environmental samples [15, 16].
Furthermore, voltammetric techniques involving exploitation
of chemically modified electrodes (CMEs) incorporating dif-
ferent modifiers [2, 3, 5, 15–22] have been reported for
electro-oxidation of nitrite.

The use of carbon nanotubes in electrochemical sensing
of numerous environmental pollutants has received attention
[14, 15, 23] mainly due to their small particle size, en-
hanced voltammetric peaks, and high electronic conductiv-
ity [24, 25]. On the other hand, metal and metal oxide
nanoparticles are the mostly widely employed nanomaterials
due to excellent and catalytic properties. TiO2 has been
used in sensor fabrication [20, 26–29] due to low cost,
non-toxicity, large surface area, strong adsorptive ability,
high uniformity and excellent catalytic activity [29]. In con-
tinuation of our studies involving CMEs [14], carbon nano-
tubes were used as substrates for anchoring TiO2 nanopar-
ticles in order to provide influence on morphology and
electrochemical responses of nitrite through oxidation pro-
cess since there is no interference from nitrate and molecu-
lar oxygen [15, 16, 30]. The ease of fabrication, simplicity,
and low-detection limit are the main advantages of this
sensor over the previous reported ones.

* Mambo Moyo
moyom@staff.msu.ac.zw

1 Sensor Laboratory Research Group, Department of Chemical
Technology, Midlands State University, Private Bag 9055, Senga,
Gweru, Zimbabwe

2 Department of Environmental, Water, and Earth Sciences, Tshwane
University of Technology, 175 Nelson Mandela Drive, Arcadia
Campus, Pretoria 0001, South Africa

Ionics (2018) 24:2489–2498
https://doi.org/10.1007/s11581-017-2358-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11581-017-2358-5&domain=pdf
mailto:moyom@staff.msu.ac.zw


Experimental

Materials

Phosphate buffer solutions (as supporting electrolyte) with
different pH values were prepared by mixing standard stock
solutions of 0.10MNa2HPO4 and 0.10MNaH2PO4. NaNO3,
K3Fe(CN)6, K4Fe(CN)6, N,N-dimethylformamide (DMF),
TiO2 nanopowder and MWCNT were obtained from Sigma-
Aldrich (South Africa). All solutions were prepared using ul-
tra Millipore water from Milli-Q Water Systems (Millipore
Corp. Bedford, MA, USA). The purification of MWCNTs to
remove metal oxide catalysts was followed as reported [2].

Equipment

Transmission electronmicroscopy (TEM) imagewas obtained
from a Zeiss Libra TEM 120 model operated at 90 kV using
carbon-coated 200 mesh grids. The energy dispersive X-ray
spectrometer (EDS) images were obtained using a TESCAN
Vega TS 5136LM electron microscope. Cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS),
chronoamperometry, linear sweep voltammogram (LSV),
and differential pulse voltammetry (DPV) were performed
using an Autolab potentiostat PGSTAT 302F (Eco Chemie,
Utrecht, Netherlands) equipped with NOVA 1.10 software.

Preparation of TiO2/MWCNT nanocomposite

An appropriate ratio of MWCNT:TiO2 (3:1 w/w) was mixed
and then suspended in 80 mL of Millipore water through
sonication for 30 min. The suspension obtained after sonica-
tion was magnetically stirred for 12 h and the precipitate ob-
tained thoroughly washed with Millipore water using centri-
fugation process for 30 min and then dried prior to electrode
modification.

Modification of electrodes

A three-electrode system was used with glassy carbon elec-
trode (GCE) as working electrode, an Ag/AgCl (saturated
KCl) reference electrode and platinum wire auxiliary elec-
trode. The GCE was polished to a mirror finish with alumina
slurry (0.3 μm). The electrode was sonicated in Millipore
water for 5 min during the three successive cleaning stages
and finally dried in a stream of nitrogen. The drop dry tech-
nique was employed for electrode modification. TiO2,
MWCNT, and TiO2/MWCNT composite (1 mg mL−1) in
DMF were used as electrode modifiers to give TiO2/GCE,
MWCNT/GCE, and TiO2/MWCNT/GCE which were stored
at room temperature when not in use.

Results and discussion

Microscopic characterization

A monodispersion of TiO2 nanoparticles with almost homo-
geneous size is confirmed by TEM image (Fig. 1). Black dots
represent nanoparticles of average size 19 nm that are present
on the image as depicted on the corresponding histogram
(inset) showing size distribution. These characteristic features
are good in electrochemical sensing.

EDS was further used to show the elemental composition
ofMWCNT (Fig. 2a) and TiO2/MWCNTcomposite (Fig. 2b).
Carbon was mainly observed upon modification with
MWCNTalone. However, titanium and oxygen emerged after
introduction of the nanosized TiO2. The aluminum signal ev-
ident in the EDS spectrum could be coming from the alumi-
num sample holder used during analysis.

CV and EIS studies on modified GCE

Cyclic voltammetry (Fig. 3a) and electrochemical impedance
spectroscopy (Fig. 3b) were employed to study the electron
transfer ability of the modification process in 1 mM
[Fe(CN)6]

3−/4−containing 0.1 M KCl. Table 1 shows the dif-
ference between anodic and cathodic peak potential (ΔEp) of
the modified electrodes. It has been highlighted that a low
value of ΔEp reflects good electron transfer for the redox
probe [23]. The trend in electron transfer in the redox probe
is: TiO2/GCE (102 mV) < bare GCE (92 mV) <MWCNT/
GCE (85 mV) < TiO2/MWCNT/GCE (80 mV). The results
confirmed that anchoring TiO2 on MWCNToffered fast elec-
tron transfer ability.

In the EIS technique, the semicircle part at higher frequen-
cies represents the electron transfer limited process and its
diameter is equated to the electron transfer resistance (Rct).
From the Nyquist plots (Fig. 3b) and Table 1, the GCE
(295 Ω) displays a small semi-circle indicating a low transfer
resistance. The TiO2/GCE (390 Ω) has a larger diameter sug-
gesting that TiO2 acted as insulating layer and barrier. The
MWCNT/GCE (190 Ω) showed less resistance. An almost
straight line and a small circle portion which was quite small
was observed on the TiO2/MWCNT/GCE and might be due to
increase in reactive area, reduced interfacial resistance, and the
composite making the electron transfer faster. Such small Rct
values characterized by relatively small differences between
them for different probes have been reported before for probes
designed for different analytes [31, 32]. The obtained results
are in good agreement with peak current (ipa) values obtained
from CV measurements (Fig. 3c). The information from the
Bode plots (Fig. 3d) further supports that modified surfaces
have different behaviors since their phase angles shifted to
different frequencies.

2490 Ionics (2018) 24:2489–2498



Fig. 2 EDS for (a) MWCNT (b)
TiO2/MWCNT composite
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Nitrite detection

Influence of pH

The pH effect on ipa of nitrite (87 μM) at TiO2/MWCNT/
GCE was investigated using CVs in 0.1 M PBS (pH 2–10)
at a scan rate of 100 mV s−1. The ipa generated from voltam-
mograms increased from pH 2 to 7 and then decreased to pH

10 (Fig. 4). The ipa below pH 6 is due to the instability of the
nitrite in acidic solution and hence its consequent conversion
to nitrate [26, 30]. The lack of protons [18, 33] in supporting
electrolyte above pH 7 has been suggested as a cause for
decrease of ipa and similar trends with different probes have
been reported [5, 15, 26, 34, 35]. Consequently, all the sub-
sequent experiments were carried out in PBS at pH 7for the
oxidation of nitrite.

Fig. 3 a CVs of the modified GCE in the presence of 1 mM [Fe
(CN)6]

3−/4− in 0.1 M KCl at a scan rate of 50 mV s−1. b EIS
behavior of modified GCE measured by impedance in the presence of

1 mM [Fe (CN)6]
3−/4− in 0.1 M KCl. c Plot of ipa and Rct vs. modified

GCEs. d Bode plots for a: GCE, b: TiO2, c: MWCNT, and d: TiO2/
MWCNT/GCE

Table 1 Summary of
electrochemical parameters of
modified electrodes

Electrode surface ΔEp (mV)
(Fe(CN)6

3−/4−
Rct (Ω)
(Fe(CN)6

3−/4−
Background corrected ipa
(μA) NO2

−
ΔEp (mV) pres-
ence of NO2

−

Bare GCE 92 295 7.8 1100

TiO2/GCE 102 390 4.9 1080

MWCNT/GCE 85 190 11.0 751

TiO2/MWCNT/GCE 80 88 18.8 750

2492 Ionics (2018) 24:2489–2498



Cyclic voltammetry detection of nitrite

The voltammogram in 0.1 M PBS (pH 7) showing only back-
ground current before addition of nitrite using GCE probe is
shown (Fig. 5a). The overpotentials ranging from 750 to
1100 mV for the oxidation of nitrite is shown by the probes
prepared. It can be observed that the use of MWCNT in

combination with TiO2 significantly lowered the
overpotential, compare the GCE (1100 mV) and TiO2/GCE
(1080 mV) with TiO2/MWCNT/GCE (750 mV). A negative
shift of 250 mV of TiO2/MWCNT/GCE compared to GCE
was deduced. However, the background corrected currents
also improved, compare TiO2/MWCNT/GCE (ipa =
18.8 μA) with GCE (ipa = 7.8 μA), TiO2/GCE (ipa =

Fig. 4 Effect of solution pH on the ipa of 87 μM NO2
− at the TiO2/

MWCNT/GCE in 0.1 M PBS
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Fig. 6 Continuous cyclic voltammograms for TiO2/MWCNT/GCE in
87 μM NO2

− in 0.1 M PBS (pH 7.0) at 100 mV s−1
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4.9 μA), and MWCNT/GCE (ipa = 12.0 μA) (Table 1 and Fig.
5a, b inset). The enhancement in ipa of TiO2/MWCNT/GCE is
due to good conductivity of nanotubes. The behavior of nitrite
on TiO2/MWCNT/GCE was checked through successive
scans (Fig. 6). The electrode was characterized by a very small
reduction in ipa showing more stability and suggesting more
usability.

Kinetic studies for nitrite detection

The detection of nitrite at different scan rates on the modified
electrode was investigated (Fig. 7). Epa shifted to more posi-
tive values with increasing scan rate (v) showing that the re-
action is irreversible [14]. Further, a linear dependence of ipa
on v1/2 from 10 to 175 mV s−1 (Fig. 7 inset) [36] suggests a
diffusion-controlled process on the electrode.

The electrons involved in oxidation process were calculat-
ed using information form CV. Using Epa = 750 mV, Ep/2 =
693 mVand substituting into Eq. 1, αna = 0.84 which finally
gives Bn^ 1.67 (ca. 2) by assuming electron transfer coeffi-
cient (α) of 0.5 [37].

Ep−Ep=2 ¼ 47:7=αna mV at 25°C ð1Þ

Linear sweep voltammetry detection of nitrite was investi-
gated from 1.0 to 18 μM at the modified electrode (Fig. 8).
The ipa increased with a slight negative shift in Epa upon each
successive addition of nitrite. A plot of ipa vs. [NO2

−] gave a

Fig. 7 CVs of TiO2/MWCNT/GCE in 0.1 M PBS (pH 7.0) containing
87 μM nitrite, (a–h) correspond to 10, 25, 50, 75, 100, 125, 150, and
175 mV s−1. Inset: ipa vs. v

1/2, error bar = ± S.D., and n = 3

Fig. 8 LSVs obtained for nitrite in the concentrations ranging from 1.0 to
18 μM (a–g), when nitrite was added in steps of 3 μM each in 0.1M PBS
(pH 7). InsetA, shows calibration plot and B shows plot of log ipa vs. log
[NO2

−]; error bar = ± S.D. and n = 3
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linear relationship (Fig. 8 inset A). Furthermore, the linear
relationship from a plot of log ipa vs. log [NO2

−] (Fig. 8
inset B) implies first-order kinetics with respect to the analyte.

Chronoamperometry

The diffusion coefficient (D) was calculated using information
from chronoamperometry (Fig. 9). A plot of i vs. t−1/2 (Fig. 9a,

inset) with the best fits for different concentrations of nitrite is
shown. Additional, plot of slopes vs. [NO2

−], is also given
(Fig. 9b, inset). From the resulting slope and Cottrell equation
[36], an average value of D (= 2.15 × 10−6 cm2 s−1) was de-
duced and is close to those reported [1, 2].

Differential pulse voltammetry

To demonstrate the ability of TiO2/MWCNTcomposite as good
sensor candidate for voltammetric traces is one of the important
characteristics. In this work, differential pulse voltammograms
(Fig. 10) gave a detection limit (LOD) of 0.011 μM calculated
using 3 s/b, where s is the standard deviation of the ipa of blank
(n = 10) and b is the slope of the calibration plot. It can also be
seen that current increased linearly with nitrite concentration in
the range of 0.02 to 600 μM (Fig. 10, inset) and a sensitivity of
0.289 μA μM−1 is reported. The results are much improvement
to literature values (Table 2) as shown by good stability of
composite on the electrode.

0

20

40

60

80

0 200 400 600

I/
µ

A

[NO2
-]/ µM

Fig. 10 DPV as a function of different nitrite concentrations (a) blank
(PBS pH 7.0), (b) 0.02 μM, (c) 5 μM, (d) 10 μM, (e) 15 μM, (f) 100 μM,
(g) 200 μM, (h) 300 μM, (i) 400 μM, (j) 500 μM, and (k) 600 μM. Inset:
corresponding calibration plot of ipa vs. [NO2

−, error bar = ± S.D., and
n = 3

Fig. 9 Chronoamperograms obtained at TiO2/MWCNT/GCE in 0.1 M
PBS (pH 7.0) containing different concentration of NO2

−. Curves of 1–5
correspond to 0.02, 0.05, 0.15, 0.25, and 0.35 mM NO2

− for a potential
step of 0.95 V. Inset: a Plots of i vs. t−1/2. b Slope vs. [NO2

−]/mM
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Interference study

Interference measurements were performed using the mixed-
solution method (mixing the interferents at different concen-
trations with 200 μM nitrite in 0.1 M PBS pH 7.0) using
differential pulse voltammetry. The peak current change was
less than 10% after 100-fold concentration of Mg2+, Ca2+,
Zn2+, Cu2+, and Na+ and 20-fold concentration of ascorbic
acid and urea. It was observed that metal ions have minimal
effect on the detection of nitrite at the sensor surface. This was
attributed to excellent solubility of the metals nitrites in aque-
ous media (see Table 3). The obtained results and proposed
sensor have a good selectivity during electrochemical
analysis.

Analytical applications

The practical applicability of the proposed method using the
TiO2/MWCNT/GCE sensor was investigated by analysis of

nitrite in samples from a dam receiving waste from treatment
plant. The samples were collected from three different loca-
tions in the dam and analyzed without any treatment. The
standard addition method was used for determination. A
1.0-mL water sample was added into each of the series of
the 10-mL volumetric flasks. Nitrite standard solutions of dif-
ferent concentrations were added to the flask, which were
made up to volume with 0.1 M PBS (pH 7.0). An aliquot of
3.0 mL of the solution was placed in a cell for determination
and the results are shown in Table 3. The recoveries were in
the range of 96.9–98.9%, which confirmed better analysis of
nitrite in aqueous solution. For validation, a UV-Vis was used,
and relative error values of less than 10% were obtained
(Table 4).

Conclusion

A stable sensor for nitrite was fabricated by drop dry method
using TiO2/ MWCNTcomposite and showed appreciably low
detection limits. Good recoveries were obtained and ranged
from 96.9–98.9%. The constructed electrode offers a decrease

Table 4 Results for determination of nitrite in water samples (n = 3)

Samples Added
(μM)

Expected
(μM)

Found
(μM)

Recovery
(%)

UV-Vis
(μM)

Ea

(%)

1 0
5.0

–
9.2

4.1
9.1

98.9
± 2.1

4.0 ± 0.1 7.9

2 0
5.0

–
9.5

4.5
9.3

97.9
± 1.5

4.3
± 0.02

4.7

3 0
5.00

–
9.6

4.6
9.3

96.9
± 1.8

4.5
± 0.01

2.2

Relative error (Ea ): (TiO2/MWCNT sensor−UV-Vis method/UV-Vis
method) × 100%

Table 2 Comparison of different
chemically modified electrodes
for the determination of nitrite
with the present fabricated sensor

Modified electrode Detection
technique

Linear range Detection limit
(μM)

Reference

GNPs/MWCPE SWV 0.05–250.0 μM 0.01 [2]

GO-PANI Amperometry 0.1–200 μM 0.01 [5]

Zirconium dioxide
nanoparticles

Amperometry 0.5–1100 0.3 [15]

Cobalt oxide nanoparticles Amperometry 0.5–249 μM 0.3 [22]

Fe2O3 DPV 0.05–780 μM 0.015 [24]

Ag-PAMAM/GCE Amperometry 4–1440 μM 0.40 [34]

GCE Amperometry 2.5–10 μM 0.40 [38]

POA 2.0–5.0 1.05 [39]

Hb/Au-modified electrode 0.4–14.8 0.065 [40]

TiO2/MWCNT DPV 0.02 to 600 μM 0.011 μM Present
work

GNPs/MWCPE gold-nanoparticles/multiwalled carbon nanotube/carbon paste, Ag-PAMAM/GCE-silver nanopar-
ticles-polyamidoamine, POA poly (o-anisidine)

Table 3 Effect of interferents

Interferent Itheoretical/μA Iobserved/μA % current change

aMg2+ 27.00 26.81 − 0.7 ± 0.01
aCa2+ 27.00 26.98 − 0.07 ± 0.01
aZn2+ 27.00 26.05 − 3.52 ± 0.02
aCu2+ 27.00 26.16 − 3.11 ± 0.01
aNa+ 27.00 26.57 − 1.59 ± 0.02
bAscorbic acid 27.00 28.03 + 3.81 ± 0.01
bUrea 27.00 29.53 + 9.37 ± 0.02

a 100-fold concentration
b 20-fold concentration
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on overvoltage of nitrite oxidation. The interference study
showed no significant changes in the detection of nitrite.
The results obtained demonstrate that the sensor could be used
as a management tool for assessing the quality of wastewater.
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