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Abstract Novel mixed-matrix electrodialysis heterogeneous
ion exchange membranes were fabricated using polyaniline
(PANI)-co-graphene oxide (GO) functionalized composite
nanoplates. The PANI-co-GO functionalized composite
nanoplates were prepared by in situ chemical oxidative
polymerization of aniline in the presence of GO
nanoplates. The synthesized PANI/GO were characterized
by Fourier transform infrared spectroscopy, X-ray diffrac-
tion, and scanning electron microscopy. The SEM images
demonstrated that utilizing of PANI/GO in membrane ma-
trix led to formation of membranes with a compact struc-
ture. Also, more uniform distribution was observed for the
incorporated PANI/GO membrane compared to the embed-
ded GO nanoplates ones. The surface hydrophilicity, water
content, and ion exchange capacity were enhanced by uti-
lizing PANI/GO composite nanoplates. The membrane po-
tential, transport number, and selectivity were also en-
hanced in sodium and barium chloride ionic solutions in
presence of functionalized nanoplates. The newly prepared
membranes showed lower selectivity and transport number

for barium ions compared to sodium ions. The sodium and
barium flux were enhanced by using PANI/GO. Dialytic
rate results showed that modified membranes in this study
have good ability in lead ion removal from wastewater.
The enhancement in lead flux was more than 50% for the
modified membrane containing PANI/GO in comparison
with pristine ones.

Keywords Electrodialysis . Mixedmatrix . PANI-co-GO
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Structural property

Introduction

Electrodialysis (ED) is an electrically driven membrane
technology with many industrial applications including
desalination of seawater and brackish water [1, 2], acid/
base reclamation from industrial waste water [3, 4], oily
wastewater treatment [5], salt production [6, 7], and bro-
mide and bromate removal from natural water [8], as well
as manufacturing of chemical products [9]. The high water
recovery and low requirements for operating ED, along
with the long life time and strong chemical and mechanical
stability of typical ion exchange membranes, all make ED
a particularly appropriate alternative for application in wa-
ter recovery and treatment [1]. The electrochemical prop-
erties of ion exchange membranes (IEMs) are critical,
since they determine the applicability of ED or related
processes for a given separation [10–13]. So, preparing
IEMs with suitable physicochemical characteristics may
allow for further chemical and waste treatment applica-
tions [12, 14–17]. Besides, demands for superior electro-
dialysis membranes are enhanced for separation of danger-
ous soluble pollutants in water, especially heavy metals.
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Variation of the type and density of functional groups, the
selection of different polymeric matrices, polymer blend-
ing, alteration of crosslinking density, the use of various
additives such as nanoparticles, and surface modification
by plasma treatment are important methods to obtain IEMs
with special characteristics [18–24].

Reported studies reveal that composite IEMs may have
other enhanced physicochemical and separation properties
compared to fully organic polymeric membranes [25, 26].

Nowadays, the use of carbon-based nanomaterials is an
interesting option for the modification of polymeric mem-
branes. First of all, carbon-based nanomaterials contain a
high amount of functional groups. In addition, specific
functional groups may provide novel functions for the sub-
strate membrane. Among this, graphene and chemically
modified graphenes (CMGs) as carbon nanomaterials have
attracted great attention because of their high specific sur-
face area, compatibility, noticeable electron conductivity,
high mechanical strength, flexibility, and superior hydro-
philicity [27–30]. Graphene oxide (GO) nanoplates are a
chemically modified graphene type that has emerged as
one of the most attractive nanofillers in polymeric mem-
branes because of its potential in enhancing thermal, me-
chanical, electrical, and separation properties of membrane
in different conditions [29, 30]. Furthermore, the use of
conducting polymers in modification of nanomaterials
combines the electrochemical properties of conducting
polymers with superior properties of nanomaterials.
Polyaniline (PANI) is a technologically important
conducting polymer which has been shown a good affinity
with ion-exchange membranes [14, 31–33]. It is an effi-
cient approach for improving the stability and selectivity
of ion exchange membranes in metal ion removal from
wastewater [34–38].

Fabrication of a novel heterogeneous cation-exchange
membrane with suitable physicochemical and separation
properties for the application in electrodialysis process related
to water recovery and treatment was the primary target of the
current research. For the purpose, mixed-matrix electrodialy-
sis heterogeneous ion exchange membranes were fabricated
using PANI/GO functionalized composite nanoplates by solu-
tion casting techniques. The PANI/GO functionalized com-
posite nanoplates were prepared by in situ chemical oxidative
polymerization of aniline in the presence of GO nanoplates.
No research was found by our literature survey pn the appli-
cation of PANI/GO functionalized nanoplates into electrodi-
alysis heterogeneous cation-exchange membranes, and the lit-
erature is silent on the characteristics and functionality of elec-
trodialysis IEMs prepared using PANI/GO composite
nanoplates.

The effect of PANI/GO functionalized nanoplates in the
casting solution on the physicochemical and separation
characteristics of homemade heterogeneous cation-exchange

membranes was investigated. Also, sodium chloride
(NaCl) and barium chloride (BaCl2) were used for mem-
brane characterization. During the ion removal from solu-
tions, scale formation on the membrane surface is a serious
problem which affects the formation of bivalent hydrox-
ide. So, it is beneficial to predict the behavior of the pre-
pared membranes in mono and bivalent ionic solutions.
Finally, electrodialysis experiments in a laboratory scale
unit were also carried out to evaluate the electrodialytic
performance of modified membranes in lead removal from
waste water.

Materials and methods

Materials

Polyvinylchloride (PVC, grade S-7054, density 490 g/L,
viscosity number 105 Cm3/g) supplied by Bandar Imam
Petrochemical company (BIPC), Iran, was employed as a
membrane base binder. Tetrahydrofuran (THF, molar mass
72.11 g/mol, density 0.89 g/cm3) was used as the solvent.
Graphene oxide nanoplates (GO, nanoplates, 99.5 + %, 2–
18 nm with 32 layers) were provided by US Research
Nanomaterials, Inc., Houston, USA. A cation-exchange
resin (ion exchanger Amberlyst15, strongly acidic cation
exchanger, H+ from more than 1.7 meq/l) by Merck Inc.,
Darmstadt, Germany, was also employed in membrane
preparation. Aniline (from Merck, MW = 93.13 g mol−1)
and HCl (MW = 36.46 g mol−1 and density = 1.19 kg L−1)
manufactured by MOJALLALI, Inc., Iran, and ammonium
persulfate (MW = 228.2 g mol−1) from Merck Inc.,
Darmstadt, Germany, were used for the preparation of
polyaniline. All other chemicals were supplied by Merck.
Throughout the experiments, distilled water was used. The
chemical structure of all employed materials is shown in
Table 1.

Preparation and characterization of PANI/GO nanoplates

The PANI/GO nanoplates were prepared by in situ chemical
oxidative polymerization of aniline in the presence of GO
nanoplates. According to this method, a certain amount of
GO nanoplates (mass ratio of GO to aniline monomer was
1:2) was added to 50 ml of 0.1 M HCl solution containing
3 ml of distilled aniline monomer and sonicated for 15 min.
For an efficient dispersion of the mixture, it was mechanically
stirred. The reaction initiator, ammonium persulfate (APS)
(6 g of APS in 50 ml of 0.1 M HCl solution), was added
dropwise to the suspension to initiate the polymerization
of aniline under constant stirring in an ice bath. After
60 min, the color of the suspension was turned to dark
green, indicating the completion of the polymerization
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reaction. The product was obtained by filtering the solution,
followed bywashing in deionized water and drying in a vacuum
oven for 48 h at 40 °C [36].

The FTIR spectroscopy (Galaxy series 5000, KBr disc,
ambient temperature), X-ray diffraction (XRD, model X’Pert
Pw 3373, kα = 1.54 A°, Philips, Holland), and scanning elec-
tron microscopy (SEM, Philips-X130 and Cambridge SEM)
were used to characterize the synthesized PANI/GO function-
alized nanoplates.

Fabrication of homemade membranes

Heterogeneous cation-exchange membranes were prepared by
solution casting. The steps for membrane preparation and the
composition of casting solution are given in Tables 2 and 3,
respectively. As mentioned in Table 2 (Step 4), for better dis-
persion of the particles and breaking up of their aggregates
during membrane fabrication, the solution was sonicated for

1 h using an ultrasonic instrument. This improves the relaxa-
tion of polymer chains as well as their conformation with
particle surfaces and promotes the compatibility of particles
and polymer binder [18].

Experimental test cell

A test cell was applied in order to assess the membranes’
electrochemical properties. The cell consists of two cylindrical
compartments (each 180 cm3) made of Pyrex glass; the sam-
ple membrane disk is fixed between two rubber rings and
separates two cylindrical compartments. The ends of each
compartment were equipped with Pt electrodes supported by
pieces of Teflon. In order to minimize the boundary layer
effect and concentration polarization in the vicinity of the
membrane during the experiments, both sections were stirred
vigorously by magnetic stirrers.

Table 1 Chemical structure of materials used in membrane fabrication.
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Membrane characterization

Scanning electron microscopy

Because the behavior of the prepared membranes is closely
related to their structure, especially the spatial distribution of
particles in the membrane matrix [19, 25], the structures of the
prepared membranes were examined by scanning electron mi-
croscopy (SEM, Philips-X130 and Cambridge SEM).

Fourier transform infrared spectra of prepared membrane

For obtaining information about the chemical structure of the
prepared membranes, dried membrane samples were analyzed
by utilizing a single-beam Fourier transform infrared spec-
trometer (Galaxy series 5000). Scans were obtained in the
spectral range of 4000–200 cm−1.

Membrane surface hydrophilicity/water contact angle

The hydrophobic or hydrophilic nature of a membrane is a
determining factor for the interaction between membrane
and solutes and between membrane and solvents [39]. In this
work, the effect of PANI/GO nanoplates on the surface hydro-
philicity of the prepared membranes was determined by

contact angle measurements. The measurements were accom-
plished at ambient temperature using the water drop method
on a dry membrane. To minimize the experimental error, the
contact angle was measured in five random locations for each
sample and then their average was reported.

Water uptake

In the first step, the surface moisture of membrane samples
(equilibrated in water at ambient temperature) was mopped
using filter papers, then the wet membranes were weighed
(OHAUS, Pioneer™, readability 10−4 g, OHAUS Crop.,
USA). In the second step, the wet membranes were dried in
an oven at 70 °C (Behdad Co., Model: O5, Iran) until a con-
stant weight was obtained. Water uptake is calculated by the
following eq. [20, 25, 40]:

Watercontent% ¼ Wwet−Wdry

Wdry

� �
� 100 ð1Þ

where Wwet and Wdry represent the weight of the wet and dry
membrane, respectively. Measurements were carried out three
times for each membrane; the average value was reported in
order to minimize the experimental error.

Ion exchange capacity (IEC)

The IEC determination was performed using titration method
[40]. For this purpose, the membrane washed with
demineralized water is equilibrated in 1.0 M NaCl solution
for 24 h at ambient temperature to liberate H+ ions. After that,
the concentration of liberated H+ ionic groups was estimated
by titration with 0.01 M NaOH using phenolphthalein
as indicator. The IEC was calculated from the following
eq. [41, 42]:

IEC ¼ a
Wdry

� �
ð2Þ

where a is the milli-equivalent of the ion exchange group in
the membrane andWdry is the weight of the dry membrane (g).

Table 2 Summary of membrane preparation procedure

Flow sheet of membrane preparation procedure.

The procedure for IEMs preparation

Step 1 Resin particles pulverizing (− 300 + 400 mesh)

Step 2 Polymer dissolving into solvent (for 4 h)

Step 3 Resin particles and additive dispersing in polymeric solution

Step 4 Sonication of polymeric solution (for 1 h)

Step 5 Mixing of polymeric solution (for another 30 min)

Step 6 Solution casting (at ambient temperature)

Step 7 Film drying at ambient temperature and immersing in water and NaCl solution

Table 3 Composition of the casting solution used in the preparation of
mixed-matrix ion exchange membranes

Membranea (sample) GO/PANI (GO/PANI: (PVC + Resin)), (w/w)

Sample 1 0.0:100

Sample 2 0.5:100

Sample 3 1.0:100

Sample 4 2.0:100

Sample 5 4.0:100

Sample 6 8.0:100

Sample 7 16:100

a Solvent (THF/PVC)(v/w), (20:1), resin particles (resin: PVC) (w/w),
(1:1)

1792 Ionics (2018) 24:1789–1801



Membrane potential, transport number and permselectivity

The membrane potential is the algebraic sum of Donnan and
diffusion potentials determined by the partition of ions into the
pores as well as the mobilities of ions within the membrane
phase compared with the external phase [20, 42–44]. This
parameter was evaluated for the equilibrated membrane with
unequal concentrations of electrolyte solution (C1 = 0.1 M,
C2 = 0.01 M at ambient temperature) on either side of the
membrane. During the experiment, vigorous stirring of two
sections minimized the effect of boundary layers on the mea-
surement. The diffusion potential across the membrane was
measured with two calomel reference electrodes and a volt-
meter. The membrane potential (EMeasure) is expressed using
the Nernst eq. [41, 43–47] as follows:

EMeasure ¼ 2tmi −1
� � RT

nF

� �
ln

a1
a2

� �
ð3Þ

where ti
m is the transport number of counter ions in membrane

phase, R is the universal gas constant, T is the temperature (K),
n is electrovalence of counter-ion, and a1 and a2 are the solu-
tion electrolyte activities in contact with surfaces determined
by Debye-Hückel limiting law [48].

The ionic permselectivity of membranes (Ps) is also quan-
titatively expressed based on the migration of counter-ions
through the IEMs [15, 20, 43, 45–47].

Ps ¼ tmi −t0
1−t0

ð4Þ

where t0 is the transport number of counter ions in
solution [49].

Ion permeability and flux

The ionic permeability and flux of ion measurements were
carried out using the test cell. A 0.1 M (NaCl/BaCl2) solution
was placed on one side of the cell (Anodic section) and a
0.01 M solution on the other side. A DC electrical potential
(Dazheng, Dc power supply, Model: PS-302D) with an
optimal constant voltage was applied across the cell with
stable platinum electrodes. The migration of cations
through the membrane to the cathodic section occurs dur-
ing this experiment. The number of produced hydroxide
ions in the cathodic section can be used to estimate the
transported cations through the membrane. The permeation
of ions through the membrane phase can be calculated
based on the pH changes in the cathodic region.

2H2Oþ 2e−⇒H2↑þ 2OH− Cathodic reactionð Þ ðR� 1Þ
2Cl−⇒Cl2↑þ 2e− Anodic reactionð Þ ðR� 2Þ

According to Fick’s law, the flux of ions through the mem-
brane can be expressed as follows [41, 46]:

N ¼ D
c1−c2
d

ð5Þ

where D is the diffusion coefficient of a given ion, d is the
membrane thickness, N is the ionic flux, and C is the cation
concentration in the compartments.

Fig. 1 FTIR spectrum analysis of a GO and PANI/GO nanoplates and b unmodified and modified membranes containing PANI/GO functionalized
nanoplates
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N ¼ −
V
A
� dC1

dt
¼ D

C1−C2

d
ð6Þ

C1
0 ¼ 0:1M ; C2

0 ¼ 0:01M ; C1 þ C2 ¼ C1
0 þ C2

0

¼ 0:11M ð7Þ

where A is the membrane surface area and V0 is the volume of
each compartment in the used test cell.

ln

�
C0

1 þ C0
2−2C2

C0
1−C

0
2

� � ¼ −
2DAt
Vd

ð8Þ

The diffusion coefficient of cations in the membrane phase
is calculated from Eq. (8) considering pH changes (Digital
pH-meter, Jenway, Model 3510, UK) in the cathodic region.

Electrodialysis experiments for lead removal from water

To investigate the performance of the prepared membranes
in Pb2+ ion separation from water, electrodialysis experi-
ments were carried out in a laboratory-scale unit containing
a lab-made cation-exchange membrane and a commercial

anion-exchange membrane. A commercial heterogeneous
anion-exchange membrane (RALEX® AMH-PES), made
by MEGA a.s., Czech Republic, was used in this study.
The treated solution was analyzed by atomic emission
spectroscopy (ICP-OES simultaneous, VISTA-PRO).

Results and discussion

Characterization of PANI/GO functionalized composite
nanoplates

FTIR analysis, X-ray diffraction, and SEM were utilized to
prove the formation of PANI on GO nanoplates. The FTIR
analysis of GO and PANI/GO composite nanoplates are
shown in Fig. 1a. The FTIR spectrum analysis indicates that
the PANI polymerization occurred decisively in composite
nanoplate science strong peaks at 1494 (N-B-N), 1580 (N-
Q-N), 1300 (QBB, QBQ), and 1145, 1260 cm−1 (C-N) were
presented which are assigned to PANI formation. This is not
visible for GO nanoplates. Moreover, the FTIR results for
unmodified membrane and modified ones containing PANI/

Fig. 2 XRD pattern of prepared
PANI/GO functionalized com-
posite nanoplates

Fig. 3 SEM images of PANI/GO
composite nanoplates: formation
of PANI on GO surface
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GO (Fig. 1b) confirms the incorporation of PANI/GO in the
matrix of homemade membrane decisively [36].

The XRD patterns of PANI/GO functionalized composite
nanoplates are given in Fig. 2. In this diffraction pattern, the
sharp peaks at 2 = 20.43 and 2 = 22.82 are shown which are
assigned to PANI. Also, the peak at 2 = 10.16 is referred to as
GO nanoplates [50]. The results indicate a crystalline structure
for the prepared composite nanoparticles.

The SEM images of the synthesized PANI/GO functional-
ized composite nanoplates are exhibited in Fig. 3. The PANI
and GO nanoplates are clearly seen in the images. Also,
images show a uniform distribution of PANI on the surface
of GO nanoplates relatively. The homogeneity and uniform
distribution of PANI on the surface of GO provide more
conducting regions for the composite nanoparticles which
improves the electrochemical properties of them.

Characterization of homemade membranes

Morphological study

The SEM images of the unmodified/pristine membrane and
modified membrane containing PANI/GO composite
nanoplates are shown in Fig. 4. The polymer binder, resin
particles, and PANI/GO composite nanoplates are seen in
the images. As shown in SEM images, the use of PANI/GO
in the membrane matrix caused the formation of a more
compact structure for the modified membrane. In addition,
the distribution pattern of the mixed-matrix membrane
containing GO nanoplates and the modified membrane
containing the PANI/GO composite nanoplates were com-
pared using surface SEM and scanning optical microscopy
images; Fig. 5 shows that the membrane containing PANI/

Fig. 4 Surface SEM images of
homemade membranes. a
Unmodified membrane. b PANI/
GO embedded membrane

a

b

Fig. 5 Surface SEM images and
SOM images of prepared
membranes. a GO embedded
membrane. b PANI/GO mixed-
matrix membrane

Ionics (2018) 24:1789–1801 1795



GO composite nanoplates has a more uniform distribution
compared to the GO-embedded ones. This is assigned to
PANI formation on the surface of GO nanoplates which
decrease the possibility of agglomeration of nanoplates
by their exclusion.

Physicochemical and electrochemical properties

The obtained results (Table 4) showed that increase of PANI/
GO concentration in the membrane matrix caused to decrease
the water contact angle for the prepared membranes. This may
be attributed to the hydrophilic nature of PANI/GO nanoplates
which produces a more hydrophilic surface for the modified
membranes. Moreover, migration of PANI/GO composite
nanoplates to the surface of the membrane due to their low
density during the fabrication process could be another reason
for the decrease of contact angle by declining in surface
roughness.

The increase of PANI/GO composite nanoplate loading
ratio up to 4 wt% in the membrane matrix initially led to the
increase of water content for the homemade membranes
(Fig. 6). This may be due to the hydrophilic property of

functionalized nanoplates which enhances the amount of wa-
ter absorption in the prepared membrane. Furthermore, the
increase of membrane heterogeneity by increase of PANI/
GO concentration causes the creation of more voids and cav-
ities in the membrane matrix which enhance the possibility of
water molecule accommodation in the membrane body. The
membrane water content was declined again by more increase
of additive concentration from 4 to 16 wt%. This may be
assigned to the pore-filling phenomenon at high additive con-
centration which produces a compact structure for the mem-
brane and decreases the amount of water content.

The obtained results (Fig. 6) also revealed that increase of
PANI/GO composite nanoplate concentration up to 4 wt% in
the membrane matrix caused the improvement of the mem-
brane ion exchange capacity from 1.2 to 1.35 meq/g. This is
assigned to the adsorption property of PANI/GO functional-
ized nanoplates; the presence of a partial negative charge of N
in polyaniline due to the lone pair of electrons and unreacted
carboxylic groups of GO nanoplates which strengthen the ion
exchange possibility between the solution and the membrane
phase. The pore-filling phenomenon and the compact struc-
ture created by PANI/GO nanoplates at high additive loading
ratios restrict the resin particles and cause the decrease of the
membrane IEC again.

The membrane potential, transport number, and membrane
permselectivity (Fig. 7a–c) all were improved initially by
utilizing PANI/GO up to 4 wt% in the casting solution in
sodium chloride and barium chloride ionic solutions. This
may be affected by a variety of factors including (i) the
presence of partial negative charge of nitrogen in
polyaniline due to the lone pair of electrons and (ii) the
high surface area to volume ratio of composite nanoplates,
which is favorable for the diffusion of counter-ions from
the solution onto the active sites on the surface of compos-
ite nanoplates in the membrane matrix, with superior

Table 4 Effect of PANI/GO nanoplate concentration on the membrane
water contact angle

Membranes’ sample Contact angle (°)

Sample 1 (Base membrane) 110°

Sample 2 (0.5 wt% PANI/GO) 99°

Sample 3 (1.0 wt% PANI/GO) 91°

Sample 4 (2.0 wt% PANI/GO) 83°

Sample 5 (4.0 wt% PANI/GO) 75°

Sample 6 (8.0 wt% PANI/GO) 69°

Sample 7 (16 wt% PANI/GO) 58°

Fig. 6 The effect of PANI/GO
composite nanoplate concentra-
tion on water content and ion ex-
change capacity of homemade
membranes
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interaction between the ions and the membrane surface.
The membrane potent ia l , t ransport number, and
permselectivity were declined again by a further increase
of the additive concentration. Some parts of the produced
polymer are probably protonated; this positive charge of
the charged polymer units (Q = NH+-B or B-NH+-B) and
resin particle isolation by additive nanoplates results in a
decrease of membrane potential, transport number, and
permselectivity.

Also, the prepared membranes exhibited lower potential,
selectivity, and transport number for the bivalent ions in

comparison with the monovalent ones. These lower electro-
chemical properties of membranes for bivalent ions compared
to monovalent type can be explained by the stronger bonds of
bivalent cations with ionic functional groups which decrease
the functional group activity [19].

According to the observations, the increase of the PANI/
GO nanoplate loading ratio up to 4%wt in the membrane
matrix is associated with a higher sodium permeability and
flux (Fig. 8a) in the prepared membranes. The enhanced so-
dium flux in the presence of PANI/GO may be ascribed to
various factors including sodium adsorption on PANI/GO
composite nanoplates, increase of membrane water content,
and enhancement of IEC in the modified membranes. The
abundance of functional groups of PANI/GO nanoplates rein-
forces the interaction of cations with the membrane surface
and increment the ion transportation. In addition, the facilita-
tion of ion transport between the solution and the membrane
phase occurs as a result of the change in the hydrophilicity/
wettability of the membrane surface in the presence of PANI/
GO nanoplates, reducing the distance between the solution
bulk and membrane surface. Moreover, the use of polyaniline
as a conducting polymer in the prepared membranes leads to
an enhancement of conducting regions in membranes, which
in turn facilitates the ion transport. The pore-filling

a

b

c
Fig. 7 aMembrane potential. b, c Transport number and permselectivity
of the prepared cation-exchange membrane with various ratios of PANI/
GO composite nanoplates in sodium chloride (monovalent) and barium
chloride (bivalent) ionic solutions

a

b
Fig. 8 a Sodium flux/permeability and barium flux/permeability of
mixed-matrix cation-exchange membranes with various ratios of PANI/
GO composite nanoplates
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phenomenon and the compact structure created by the PANI/
GO functionalized composite nanoplates at 8 wt% loading
ratio cause a decrease of the sodium permeability/flux. The
evident increase of sodium permeability/flux at high PANI/
GO concentration (16 wt%) is assigned to the superior adsorp-
tive behavior of the membrane at high PANI/GO content ratio
which can be prevailed upon the negative effect of pore filling
and the compact structure of the membrane and enhances the
sodium flux/permeability.

Also, Fig. 8b shows that utilizing of PANI/GO composite
nanoplates in the membrane matrix increases the barium
permeability/flux, which is assigned to the unique adsorp-
tion capacity of PANI/GO functionalized composite
nanoplates in bivalent ion adsorption. The electrostatic
interaction of barium ions with PANI chains also enhances
the ionic flux. This behavior indicates more affinity of
PANI/GO functionalized composite nanoplates for barium
ions (bivalent type) compared to sodium ions (monovalent
type), which leads to an improvement of the barium
permeability/flux compared to sodium ions.

Table 5 compares the electrochemical properties of the
modified membrane containing 4%wt PANI/GO (superior
membrane) with that of modified membrane containing
4%wt GO, pristine membrane, and some earlier reported stud-
ies. Results showed appropriate performance for the modified
sample in this study containing 4%wt PANI/GO compared to
others.

Table 6 also shows a comparison between the electrochem-
ical properties of the prepared membranes in this study and
some commercial membranes. The IEC, transport number,
and selectivity results indicate that membranes in this study
are comparable with commercial types.

The electrodialysis experiment was also utilized to study
the ability of modified membranes in Pb2+ ion removal from
waste water. The dialytic rate for the prepared membranes
(sample 1: unmodified membrane and sample 5, sample 7:
modified membranes) was investigated. The obtained results
(Table 7) show that utilizing PANI/GO functionalized com-
posite nanoplates in the membrane matrix causes an increase
of dialytic rate for lead ion separation from the solution. This

Table 5 Comparison the electrochemical properties of modified membrane containing 4 wt% PANI/GO with that of the modified membrane
containing 4 wt% GO, pristine ones, and some earlier reported studies

Membrane IEC (meq/g) Transport number (%) Permselectivity (%) Sodium flux (mol/m2 S) × 106

Pristine membrane (PVC/resin) 1.20 > 92 > 87 6.80

HCEMa (4 wt% PANI/GO) 1.35 > 99 > 98 9.20

HCEM (4 wt% GO) [51] 1.37 > 93 > 90 8.10

HCEM *(4.0 wt% TiO2 NPs) [19] 1.25 > 93 > 90 6.59

HCEM (4.0 wt% Al2O3 NPs) [18] 2.55 > 88 > 80 7.10

HCEM (4.0 wt% AMAH) [52] – > 96 > 94 8.91

HCEM (4.0 wt% SiO2 NPs) [53] 2.1 > 89 > 88 10.58

HCEM (4.0 wt% Fe3O4/PAA NPs) [54] – > 92 > 87 5.91

HCEM (4.0 wt% Zeolite NPs) [55] – > 92 > 87 12.15

HCEM (4.0 wt% Clay NPs) [56] 2.01 > 95 > 92 9.75

a Heterogeneous cation-exchange membrane

Table 6 Comparison between the electrochemical properties of the prepared membrane in this study and some commercial membranes [57–59]

Membrane IEC (meq/g) Transport number (%) Permselectivitya (%)

Unmodified membrane (S1) (HCEM) 1.20 > 92 > 87

Modified membrane(S5) (HCEM) 1.35 > 99 > 98

Modified membrane (S7) (HCEM) 1.29 > 96 > 94

CSMCRI, India(HCEM) 0.67–0.77 – 87

Ralex® CMH-PES(HCEM) – – > 92

Fumasep® FKD > 1 – > 95

RAI Research Corp., USA (R-1010) 1.2 – 86

Tokuyama Soda Co. Ltd., Japan 1.5–1.8 – 97

aMeasured in 0.1/0.01 M NaCl solution
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confirms that modified membranes have a high capacity for
lead removal from water. This can be explained by the strong
affinity of functionalized nanoplates for Pb2+ ions. Also, the
current efficiency (C.E.) in lead ion removal from water was
calculated using the following eq. [23, 24]:

C:E: ¼ F � Zi �Δn

∫
t¼t

t¼0
Idt

ð9Þ

where F is Faraday constant, Zi is the valance of ion,Δn is the
transferred ion, I is the current intensity, and t is the time of
experiment. Obtained results (Table 7) revealed that utilizing
of PANI/GO composite nanoplates in membrane matrix
caused to increase current efficiency.

Moreover, in order to study the reproducibility of the per-
formance of mixed-matrix membranes, the used membranes
were removed from the cell and washed by ultrasonic cleaner
and kept in distilled water for 5 h. Consequently, their perfor-
mance was estimated to evaluate the membrane reusability.
Obtained results showed small decrease of the performance
for the modified membranes containing PANI/GO (less than
4%). However, this slight decrease in flux shows the potential
and strong adsorptive affinity of composite nanoplates toward
bivalent ion attractionwhichmakes difficult the release of lead
ions presumably. Also, Table 8 shows the enhancement of flux
(%) in Pb removal from water for the modified membranes in
this study and some reported modified ones.

Conclusion

SEM images revealed that utilizing PANI/GO composite
nanoplates in modification of membranes caused a more

compact structure for the lab-made membranes. Moreover,
PANI/GO nanoplates showed a more uniform distribution in
comparison to GO nanoplates in the membrane matrix. The
membrane IEC and membrane surface hydrophilicity were
improved by using PANI/GO functionalized composite
nanoplates in the membrane matrix. The increase of the con-
centration of PANI/GO nanoplates in the casting solution led
to an increase of the water content in the membrane. In addi-
tion, in the presence of PANI/GO nanoplates, the membrane
potential, transport number, and selectivity showed an increas-
ing trend in sodium chloride and barium chloride solutions,
while the membrane had a lower potential, selectivity, and
transport number for bivalent ions in comparison with mono-
valent ions. Generally, the sodium and barium permeability/
flux were improved by using PANI/GO composite nanoplates.
Obtained results also show that utilizing of PANI/GO func-
tionalized composite nanoplates in membrane matrix causes
to increase of dialytic rate. The modified membranes contain-
ing PANI/GO functionalized composite nanoplates showed a
good ability in removal of lead ions from wastewater.
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