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Abstract Al-doped Li2MnO3 (Li2Mn0.9Al0.1O3) lithium-
rich layered oxide is prepared and investigated as cath-
ode material for lithium-ion batteries (LIBs). X-ray dif-
fraction (XRD) and scanning electron microscopy-
energy dispersive spectrometer (SEM-EDS) analyses re-
veal that the Al element is distributed in the sample
homogenously. The Al-LMO sample exhibits a great
improvement on the rate capability and cycling stability
compared to the LMO sample. The differential capacity
versus voltage (dQ/dV) results reveal that Al doping
would be to prevent the first charge phase transforma-
tion from a layered phase to a cubic spinel-like phase
and also slowdown the rate of transformation upon cy-
cling. Electrochemical impedance spectroscopy (EIS) re-
sults confirm that Al doping decreases the charge-
transfer resistance and improves the electrochemical re-
action kinetics.
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Introduction

LIBs have been widely used in electric vehicles, energy
storage power stations, and portable electronic devices
(such as mobile phones, laptop computers, digital cam-
eras, etc.) [1–3]. The demands for the next-generation
LIBs with higher energy density have increased in terms
of capacity, voltage, safety, and cost [4–9]. Lithium inter-
calation compounds based on manganese oxides are
cheaper, safer, and less toxic than the layered compound
based on cobalt or nickel oxides and, therefore, offer a
particularly attractive replacement for the latter compound
as a cathode material in LIBs [10–13]. Among the lithium
manganese oxides cathode materials studied, spinel ox-
ides (LiMn2O4), layered oxides (LiMnO2), and Li-rich
Mn-based layered compounds (Li2MnO3·LiMO2

(M = Mn, Ni, Co)) cathodes have been proposed and
widely investigated [14–20]. The implementation of the
spinel oxide LiMn2O4 has been delayed because of rela-
tively low theoretical capacity (148 mAh g−1), limited
storage, and cycling performances at elevated tempera-
tures [21, 22]. Layered LiMnO2 compounds have come
to be of interest as cathode material because of their high
theoretical capacity (285 mAh g−1), but layered LiMnO2

is not thermodynamically stable, which is easily converted
to a spinel-like structure during electrochemical
extraction/insertion of Li ions [23]. Recently, Li-rich
Mn-based layered compounds have been considered as
one of the most promising cathode material for future
LIBs because of their advantage of high reversible capac-
ity (>200 mAh g−1) when charged above 4.5 V [24–27].

A common feature of Li-rich Mn-based layered com-
pound cathode is an irreversible high voltage plateau at
around 4.5 V vs Li/Li+ during the first charge. Li2MnO3

is the end member of these materials which exhibits the
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characteristic first-charge plateau around 4.5 V [28–30].
Initial discharge capacity values of this materials are gen-
erally high after activation of Li2MnO3 phase, but cycling
instability and intrinsically inferior rate capability are ob-
served in all reports [11, 31, 32]. Therefore, it would be
beneficial to reinvestigate the properties of Li2MnO3 ma-
terial to help further understanding of the properties of Li-
rich Mn-based layered compounds. In this manuscript, Al-
doped sample Li2Mn0.9Al0.1O3 (Al-LMO) and pristine
Li2MnO3 (LMO) materials are synthesized by a sol-gel
method. The structural and electrochemical properties of
the synthesized materials are investigated.

Experimental

The sol-gel method was adopted to prepare the Al-LMO and
LMO samples using citric acid as the chelating agent:
Stoichiometric amounts of LiCH3COO·2H2O, Mn(CH3COO)2·
4H2O, and Al(NO3)3·9H2O (Al-LMO) were dissolved in dis-
tilled water to achieve a mixture of 2.0 mol L−1 metal solution.
Then, an aqueous solution of citric acid (2.0 mol L−1) was added
to the above aqueous solution with constant magnetic stirring.
The resultant solution was evaporated at 80 °C under vigorous
stirring to get a viscous gel. Next, the resulting gel was dried at
120 °C for 12 h. Finally, the gathered precursor was heated to
450 °C for 6 h and calcined at 950 °C for 12 h under air atmo-
sphere to obtain the target material.

X-ray diffraction (XRD) measurement of material was
recorded on a Rigaku 2500 X-ray diffractometer using Cu-
Kα radiation. The diffraction data was collected over the
range of 10° < 2θ < 80°. The morphology of the powder
was investigated by scanning electron microscopy (SEM,
TESCAN, MAIA3). For the electrochemical characteriza-
tion, the positive electrodes for the cells were prepared by
mixing active material with polyvinylidene difluoride
(PVDF) binder and carbon black in a weight ratio of 8:1:1
in N-methyl-2pyrrolidone (NMP) solvent. Then, the slurry
was cast onto an Al foil current collector and subsequently
dried at 105 °C for 10 h in air. The laminates were cut into
disks (14 mm) and dried under vacuum at 65 °C for 6 h.
The electrochemical tests were carried out using coin-type
cells which consisted of a cathode and a lithium metal anode
separated by a polyethylene/polypropylene film (Celgard
2400). Cells were assembled in an argon-filled glove box
with the electrolyte of 1 mol/L LiPF6-EC/DMC/DEC
(1:1:1 by volume). The charge-discharge tests were operated
on a LAND-CT2001A battery test equipment (Jinnuo
Wuhan Co. Ltd., P.R. China) at room temperature.
Electrochemical impedance spectroscopy (EIS) was carried
out on an electrochemical workstation (CHI660E, Shanghai
Chenhua) in the frequency range from 0.1 MHz to 0.01 Hz.

Results and discussion

The XRD patterns of the LMO and Al-LMO samples are
shown in Fig. 1. All the major peaks in each pattern can be
indexed to the layered structure with a C2/m space group [33,
34]. The superlattice peaks between 20° and 30° in the XRD
profiles, which are characteristic of Li-rich Mn-based layered
compounds, are due to Li/Mn cation arrangement in the tran-
sitional metal (TM) layers [35]. No impurity peak is detected
in XRD patterns of Al-LMO sample due to the low quantity of
the doping. In addition, the intensity of superlattice peak be-
tween 20° and 30° is reduced by Al-doping, indicating that the
Li/Mn ordering in the TM layer is disrupted by Al-doping.

SEM micrographs of the LMO and Al-LMO samples are
presented in Fig. 2a. The morphology of samples has not
changed clearly with Al doping. As can be seen, the primary
particles (300–400 nm) of the LMO and Al-LMO samples
agglomerate with each other and form secondary particles.
The EDS images of Al-LMO sample (Fig. 2b) confirm that
the Al element is uniformly distributed in the sample.

The Li2MnO3 phase is originally considered to be elec-
trochemically inactive because the oxidation state of Mn
ion is +4 and it is not expected to be oxidized to higher
oxidation state. However, it is now well established that
Li can be electrochemically extracted and reinserted.
Many researchers attributed the electrochemical activity
of Li2MnO3 phase to the removal of Li2O from the active
material [30, 36], and another researchers found that pro-
ton exchange (exchange Li+ by H+) might have contrib-
uted to such an anomalous phenomenon [37]. Figure 3
shows the first charge/discharge curves of the LMO and
Al-LMO cathodes. The charge/discharge process is

Fig. 1 X-ray diffraction patterns of the pristine Li2MnO3 (LMO) and Al-
doped Li2MnO3 (Al-LMO) samples
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operated in the voltage range from 2.0 to 4.8 V at 0.05 C
(12.5 mA g−1), which is low enough to ensure a
quasistatic process. A classic platform feature of Li-rich
Mn-based cathode materials at 4.5 V is observed for all
samples’ initial charge curves. The initial discharge ca-
pacities of LMO and Al-LMO samples are 122 and
99 mAh g−1, and the first cycle efficiency (FCE) is 50
and 58.9% for LMO and Al-LMO samples, respectively.
It can be obviously observed that the Al-LMO sample
delivered a lower charge/discharge capacity but a higher

FCE than the LMO sample. The decrease of capacities
can be attributed to the stronger Al-O bond (comparing
to Li-O bond) which can suppress the exaction of Li2O
from Li2MnO3 component during the first activation [38].

The differential capacity versus voltage (dQ/dV) plots
corresponding to the 1st, 2nd, 3rd, and 10th cycles of
samples are collected and shown in Fig. 4. The oxidation
reaction of LMO and Al-LMO cathodes can be character-
ized by two main peaks around 4.6 and 4.7 V, which are
related with the removal of Li2O from the active material
Li2MnO3 component or proton exchange [28, 30]. It can
be found from Fig. 4a that there are two oxidation peaks
at 3.3 and 3.7 V in the initial charge process for the LMO
sample. These phenomena indicate that the layered phase
transformed to the cubic spinel-like phase with the LMO
sample in the initial charge process [39]. Compared to the
LMO sample, these two oxidation peaks at 3.3 and 3.7 V
are not observed in the initial charge process for the Al-
LMO sample, which implied that Al doping would pre-
vent the first charge phase transformation. A main broad
reduction peak at 3.4 V, which can be attributed to the
lithiation of the layered active MnO2 into layered
LiMnO2 [40], is observed in the initial discharge process
for LMO and Al-LMO samples. During subsequent dis-
charges (Fig. 4b, c), the reduction of Mn4+ in the layered
active MnO2 component that occurs initially at ∼3.4 V
also shifts to lower potentials but increases in magnitude
toward ∼2.8 V, characteristic of a lithium manganese ox-
ide spinel-like phase [40]. Additionally, the oxidation

Fig. 2 a The SEM images of the pristine Li2MnO3 (LMO) and Al-doped Li2MnO3 (Al-LMO) samples. b The EDS images of the Al-LMO sample

Fig. 3 Charge/discharge profiles of the pristine Li2MnO3 (LMO) andAl-
doped Li2MnO3 (Al-LMO) samples
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peaks around 3.3 V appeared slowly upon cycling by the
Al-LMO sample from Fig. 4c, which indicates that Al
doping would slowdown the rate of cubic spinel-like
phase transformation of layered phase and thus implies
excellent cycle stability.

To further investigate the Al-doped effects on the elec-
trochemical properties of the sample, the electrodes are
cycled at different rates (0.05, 0.1, 0.2, 0.5, 1.0, 2.0 C)
between 2 and 4.8 V. Figure 5 shows the rate capabilities
of the LMO and Al-LMO samples. When the electrodes
are cycled at high rates up to 2.0 C and then returned to
0.1 C, the low rate capacities are returned to the initial
value, which revealed that cycling at high rates (0.2, 0.5,
1.0, 2.0 C) did not have any adverse effect on the low
rate (0.1 C) capacity. It can be obviously observed that
the rate capacities of Al-LMO sample are higher than
LMO sample. The electrode of Al-LMO sample cycled
at 2.0 C rate exhibited about 31.2% capacity retention as
compared to 1.8% for LMO sample with regard to the
capacity obtained at 0.05 C rate, which indicates that Al-
LMO sample has perfect electrical conductivity than
LMO sample.

Figure 6 shows the cycle performances of the LMO andAl-
LMO samples at 0.1 C between 2.0 and 4.8 V at room tem-
perature. It can be obviously observed that Al-LMO sample
behaves better than LMO sample: an initial discharge capacity
of 99.4 mAh g−1 with capacity retention of 97.1% after 40 cy-
cles for the former but only 84 mAh g−1 with 84.8% for the
latter.

It is expected that the conducting Li ions can move to
the neighboring positions more easily when the Mn4+ ions
are replaced by low-valence cations [29]. To verify the
improvement in electrochemical performances of the Al-
LMO sample shown above, EIS of LMO and Al-LMO

Fig. 4 Differential capacity versus voltage (dQ/dV) for cells of the
pristine Li2MnO3 (LMO) and Al-doped Li2MnO3 (Al-LMO) samples in
the voltage range of 2.0–4.8 V. a The initial dQ/dV curves for LMO and
Al-LMO samples. b The dQ/dV curves for LMO sample. c The dQ/dV
curves for Al-LMO sample

Fig. 5 Rate capability of the pristine Li2MnO3 (LMO) and Al-doped
Li2MnO3 (Al-LMO) samples at 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 C rate
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samples are collected after 40 cycles. Figure 7 shows the
Nyquist plots and the corresponding equivalent circuit.
The plots of the two electrodes are well fitted with the
equivalent circuit. In the equivalent circuit, Re, Rf, Rct,
and W1 represent the resistance of liquid electrolyte, the
resistance of the SEI film, the charge-transfer resistance,
and the Warburg impedance of lithium ion diffusion, re-
spectively [41–43]. It is found that Al-LMO sample has a
relatively lower Rct (5185 Ω) compared with LMO sample
(10,037 Ω). The decrease in Rct demonstrated that Al-
doping can improve both the electronic conductivity and
the Li+ diffusion during insertion/extraction [44, 45],
which is also supported by the rate capability and
charge/discharge cycling data.

Conclusions

The pristine LMO and Al-LMO cathode materials for lithium-
ion battery are synthesized through the conventional sol-gel
method. Its structure, morphology, and electrochemical prop-
erties are investigated in this work. All the major peaks in each
XRD pattern can be indexed to the layered structure with a
C2/m space group. SEM-EDS (SEM-EDS) analyses revealed
that the Al element is distributed in the sample homogenously.
The electrochemical behavior of cycled LMO and Al-LMO
samples indicates the phase transformation from a layered to a
spinel. The Al-LMO sample exhibited a great improvement
on cycle and rate performances compared to the LMO sample.
The dQ/dV results show that Al doping would prevent the
phase transformation in the first charge process and slowdown
the rate of spinel phase transformation of layered phase in the
following cycles. EIS results confirm that Al doping decreases
the charge-transfer resistance and improves the electrochemi-
cal reaction kinetics.
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