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Abstract Ethanol electro-oxidation reaction was investigated
considering conventional electrochemical experiments in alka-
line media, direct ethanol fuel cell (DEFC), and in situ ATR-
FTIR. The working electrode/anodes were composed of mono-
metallic Pt/C, Au/C, Ir/C, and trimetallic PtAuIr/C nanoparticles
with atomic Pt/Au/Ir ratios of 40:50:10, 50:40:10, 60:30:10,
70:20:10, and 80:10:10. X-ray diffraction (XRD) suggests
PtAuIr/C alloy formation, and according to transmission electron
micrographs, the mean particle sizes are from 4 to 6 nm for all
catalyst compositions. PtAuIr/C 40:50:10 showed the highest
catalytic activity for ethanol electro-oxidation in the electrochem-
ical experiments; using this material, the peak current density
from ethanol electro-oxidation on cyclic voltammetry experi-
ment was 50 mA per g of Pt, 3.5 times higher than that observed
with Pt/C. The fuel cell performance was superior using all
PtAuIr/C compositions than using Pt/C. Au/C and Ir/C presented
very poor catalytic activity toward ethanol electro-oxidation. The
improved results obtained using PtAuIr/C might be related to the
OHads species formed at low overpotential on Ir and to the de-
crease on adsorption energy of poisoning intermediates on Pt
sites, promoted by Au.

Keywords PtAuIr/C electrocatalysts . Ethanol
electro-oxidation . DEFC

Introduction

The use of fossil fuels has resulted in an increase of CO2

concentration in the atmosphere [1]. It is well known that
CO2 emission from fossil fuels is one of the principals respon-
sible for the greenhouse effect. Taking these aspects into ac-
count, fuel cells might be an excellent alternative to the current
energy generation as a clean and efficient power source [2]. In
this context, alkaline fuel cells have attracted worldwide at-
tention due to its promise to produce clean energy with high
efficiency [2, 3].

Among different fuels, ethanol has been pointed out as an
excellent alternative since it is carbon neutral, because it is
produced from biomass, presents low toxicity, and has high
energy density (8.0 kWh kg−1) [4, 5]. Thus, direct ethanol fuel
cell could offer an alternative for electrical energy generation.
The complete oxidation of ethanol to CO2 involves 12 elec-
trons [6]. However, the complete oxidation of ethanol to CO2

requires the C–C bond cleavage, which is difficult at low
temperature [7, 8]. Therefore, acetaldehyde and acetic acid
(acetate in alkaline media) are dominant products, which
involve only two and four electrons, respectively [9,
10].

Considering ethanol electro-oxidation, Pt has been identi-
fied as one of the best electrocatalysts for this process.
However, it suffers from deactivation by CO poisoning inter-
mediate [3, 11, 12]. In order to increase the catalytic activity of
Pt for ethanol electro-oxidation, different elements have been
added to Pt-based materials [4, 13–18]. Taking into account
the ethanol electro-oxidation in alkaline media, Au has been
pointed out as a good option to be combined with Pt (PtAu)
[3]. Au decreases the adsorption energy of the poisoning in-
termediates on Pt due to the upshift in the d-band energy of Pt
which may enhance the dissociation of the reaction products
from the catalyst surface [19]. PtAu alloy might also increase
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the C–C bond cleavage due to the extending lattice parameters
of Pt [3].

It is reported that iridium increases the platinum activity for
ethanol electro-oxidation which is associated to the hydroxyl
groups that are more easily formed on Ir at low potentials,
which assist in the oxidation of adsorbed intermediates from
ethanol electro-oxidation [4, 20, 21]. The incorporation of Ir to
Pd, producing PdIr/C, improved the catalytic activity of Pd
toward ethanol electro-oxidation in alkaline media [5].
Moreover, PtIr/C also shows higher catalytic activity for eth-
anol electro-oxidation in alkaline media than Pt/C [20].

Considering the efforts to enhance the catalytic activity of
the materials for ethanol electro-oxidation, trimetallic
electrocatalysts have been proposed [4, 22–24]. Dutta et al.
[22] reported that trimetallic PtPdAu/C materials show higher
catalytic activity toward ethanol electro-oxidation than bime-
tallic PtAu/C and PtPd/C, while Wang et al. [23] affirm that
the addition of Pt to PdSn/C material improves the catalytic
activity for ethanol electro-oxidation. As can be seen, the ad-
dition of a third metal may enhance the catalytic activity of the
bimetallic material. However, an important aspect to be con-
sidered in the trimetallic materials is the molar ratio between
the elements in the catalyst composition [4, 23].

Au and Ir improve the catalytic activity of the platinum-
based materials for ethanol electro-oxidation; thus, in the pres-
ent work, trimetallic PtAuIr/C electrocatalysts in different
atomic rations were synthesized using sodium borohydride
method and applied for ethanol electro-oxidation in alkaline
medium. This work contemplates not only electrochemical
studies but also fuel cell and ATR-FTIR experiments in order
to obtain real conditions and also information about the prod-
ucts from ethanol electro-oxidation.

Experimental

PtAuIr/C electrocatalysts in different atomic ratios Pt/Au/Ir
(80:10:10, 70:20:10, 60:30:10, 50:40:10, 40:50:10), Pt/C,
Au/C, and Ir/C (20 wt.% of metal loading) were prepared by
the sodium borohydride reduction process [3, 25] using
H2PtCl6·6H2O (Aldrich), HAuCl4·3H2O (Aldrich), and
IrCl3·H2O (Sigma-Aldrich), as metal sources. In this process,
Carbon Vulcan XC72 was firstly dispersed in an isopropyl
alcohol/water solution (50/50, v/v). Then, the metal precursor
was added and placed in an ultrasonic bath for 5 min. After
that, a solution of NaBH4 in 0.1 mol L−1 NaOH was added in
one step under stirring at room temperature, and the resulting
solution was then maintained under stirring for an additional
30 min. The final mixture was filtered and the solids washed
with water and then dried at 70 °C for 2 h.

The electrocatalysts were characterized by X-ray diffrac-
tion (XRD) using a Rigaku diffractometer model MiniFlex II
using Cu Kα radiation source (0.154 nm). The X-ray

diffraction patterns were recorded in the 2θ range of 20° to
90° with a step size of 0.05° and an acquisition time of 2 s per
step. Transmission electron microscopy (TEM) analysis has
been carried out by a JEOL transmission electron microscope
model JEM-2100 operated at 200 kV.

The electrochemical experiments were done by using a
three-electrode conventional cell, using as reference electrode
Ag/AgCl (KCl 3 mol L−1) and Pt wire as a counter electrode.
The work electrode was prepared using the thin porous coat-
ing technique as previously reported [3, 20]. The electrochem-
ical experiments were done by cyclic voltammetry at a scan
rate of 10 mV s−1 in 1 mol L−1 KOH in the presence and
absence of 1 mol L−1 ethanol, while chronoamperometry
was recorded in the same electrolyte containing 1 mol L−1

ethanol at −0.35 V for 30 min. All measurements were con-
ducted at room temperature.

The fuel cell experiments were conducted using a single
cell with 5 cm2 of area. The temperature was set to 75 °C for
the fuel cell and 85 °C for the oxygen humidifier. All the
electrodes were constructed with 1 mg of Pt per square centi-
meter in the anode and in the cathode except for Au/C and Ir/C
which contained 1 mg of Au or 1 mg of Ir per square centi-
meter. For all experiments, a commercial Pt/C (BASF) was
used as cathode. Nafion® 117 membrane, previously exposed
to 6 mol L−1 KOH for 24 h [26–29], was also used.

The spectro-electrochemical ATR-FTIR in situ measure-
ments were performed by a Nicolet 6700 FT-IR spectrometer
equipped with an MCT detector cooled with a liquid N2, ATR
accessory (PIKE® MIRacle with a diamond/ZnSe crystal
plate); the experimental setup can be found in the literature
[13, 30, 31].

The absorbance spectra were collected using the ratio R/R0,
where R represents a spectrum at a given potential and R0 is
the spectrum collected at −0.85 V. Positive and negative di-
rectional bands represent gain and loss of species at the
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sampling potential, respectively. The spectra were computed
from 128 interferograms averaged from 3000 to 850 cm−1

with the spectral resolution set to 8 cm−1. Initially, a reference
spectrum (R0) was measured at −0.85 V, and the sample spec-
tra were collected after applying successive potential steps
from −0.85 to 0.05 V.

Results and discussion

X-ray diffraction patterns of the synthesized Pt/C, Au/C, Ir/C,
and PtAuIr/C (40:50:10, 50:40:10, 60:30:10, 70:20:10, and
80:10:10) electrocatalysts are shown in Fig. 1. For all samples,
it is possible to observe a broad peak of Vulcan Carbon
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centered at ~2θ of 25°, which correspond to the hexagonal
structure of Vulcan carbon reflection (002) [3, 20]. The Au/C
electrocatalyst shows the diffraction peaks at about 2θ = 38°,
45°, 65°, 78°, and 82°, attributed to the (111), (200), (220),
(311), and (222) crystalline planes, respectively, indicating a

typical face-centered cubic (fcc) crystalline structure of Au
[32, 33]. The peaks at around 2θ = 39°, 46°, 67°, and 81°
observed on the Pt/C patterns are attributed to the fcc structure
of Pt that corresponds to (111), (200), (220), and (311) crystal
planes, respectively [28, 34]. While the diffraction peaks at
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around 2θ = 40°, 47°, 68°, and 82° on Ir/C are ascribed to Ir
(111), (200), (220), and (311) crystalline planes, respectively,
representing the characteristic diffraction of the fcc crystalline
structure of Ir [35, 36]. For all PtAuIr/C patterns, it is possible
to observe a shift in the position peaks to lower values at 2θ
when compared to Pt/C, suggesting the formation of alloy [3,
37].

Figure 2 shows representative TEM micrographs and his-
tograms of the particle mean diameter distribution for PtAuIr/
C and Pt/C catalysts. In all cases, the particles were well dis-
persed on the carbon support. The mean diameters of the
nanoparticles are 4.6 nm for PtAuIr/C 40:50:10, 5.3 nm for
PtAuIr/C 50:40:10, 5.9 nm for PtAuIr/C 60:30:10, 5.7 nm for
PtAuIr/C 70:20:10, 5.8 nm for PtAuIr/C 80:10:10, and 3.9 nm
for Pt/C. The particle sizes agree to those synthesized by the
sodium borohydride method in our recent publication [6, 20].

The cyclic voltammetry results in 1 mol L−1 KOH on Pt/C,
Au/C, Ir/C, and PtAuIr/C electrocatalysts in the potential
range from −0.85 to 0.05 V are shown in Fig. 3. The voltam-
mogram of Pt/C displays a well-defined hydrogen oxidation
region from −0.85 to −0.6 V [3, 20]. The region from −0.20 to
0.05 V is associated to the formation of an oxide layer on the
platinum surface [38]. Ir/C and Au/C showed a similar shape
to that previously reported in the literature [3, 20, 33, 35]. It is
evident that as the Au content increases in the PtAuIr/C
electrocatalysts, the voltammetric charge increases. This
might be related to the large amount of gold oxides in the
materials with higher amount of gold [3, 33]. In the PtAuIr/
C materials, the two peaks related to the hydrogen adsorption/
desorption process were suppressed due to the presence of
gold and iridium; a similar comportment was also observed
in the literature for PtAu/C and PtIr/C [3, 20].

Figure 4a shows the CVs of Pt/C, Au/C, Ir/C, and PtAuIr/C
electrocatalysts in 1 mol L−1 KOH + 1 mol L−1 ethanol.
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Shown in Fig. 4b are the forward curves from CV experi-
ments, in order to make easier the observation of the details
about these results.

As can be observed, PtAuIr/C 40:50:10 showed the highest
catalytic activity toward ethanol electro-oxidation; using this
material, the lowest onset potential (~−0.66 V) and the highest
peak current density (50 mA per g of Pt) were obtained. It is
important to point out that as the gold content in the materials
increases, the catalytic activity increases. All the ternary
electrocatalysts showed higher catalytic activity than Pt/C
(peak current density ~ 14 mA per g of Pt). Au/C and Ir/C
showed very low catalytic activity as already observed in the
literature [3, 20]. The beneficial effect of gold in these ternary
electrocatalysts which improves the catalytic activity toward
ethanol electro-oxidation is evident. According to the litera-
ture, Au decreases the adsorption energy of poisoning inter-
mediates on Pt sites [3, 37]. In a previous study considering
PtAu/C binary electrocatalysts for ethanol electro-oxidation,
we also found that the material with 50% of gold showed
higher catalytic activity than the other materials with lower
gold content [3].

The chronoamperometry curves for ethanol electro-
oxidation reaction on Pt/C, Au/C, Ir/C, and PtAuIr/C at po-
tential of −0.35 V for 30 min are shown in Fig. 5. These
experiments were done at −0.35 V because it is in a region
where the potential is higher than the onset potential, appar-
ently around the middle of the curve [3, 6, 20]. Additionally,
this potential corresponds to 0.5 V vs RHE which is a typical
potential for fuel cell operation [39]. As can be seen, the cur-
rent density measured at 30 min of the experiment using the
PtAuIr/C 40:50:10 electrocatalyst was the highest one in this
study. The current density on PtAuIr/C 40:50:10 is about 18
times higher than that obtained for the Pt/C electrocatalyst. It
is important to stress that the current density obtained using
PtAuIr/C 40:50:10 at the end of the CA experiment is about
30% higher than that reported previously using PtAu/C 50:50
[3]. Thus, iridium also contributes to the improvement of the

catalytic activity of PtAu/C. In a previous publication, we
have shown that iridium promotes an improvement in the
catalytic activity of platinum toward ethanol electro-
oxidation [20]. The improvement in the catalytic activity of
platinum toward ethanol caused by iridiummight be related to
the OHads species formed at low overpotential on Ir and by the
disturbance at platinum orbital by Ir atoms that might decrease
the poisoning on the catalyst surface [4, 5, 20, 40].
Additionally, gold can extend the platinum lattice parameter
by alloying, which is beneficial to the ethanol C−C bond
cleavage [3, 37].

Figure 6 shows the polarization and power density curves
obtained in a single DEFC using Pt/C, Au/C, Ir/C, and PtAuIr/
C as anode electrocatalysts. The results from the DEFC ex-
periments are summarized in Table 1.

From Fig. 6 and Table 1, it is possible to observe that the
best performance of the DEFC was obtained using PtAuIr/C
60:30:10. This result is not in agreement with that obtained
using CV and CA experiments, in which PtAuIr/C 40:50:10
was the best electrocatalyst. The disagreement of electrochem-
ical experiments with DEFC results were also observed in
other works [6, 41, 42]. It is important to point out that the
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Table 1 Main results obtained using a direct ethanol fuel cell: open
circuit potential (OCV) and maximum power density (MPD) at 75 °C

Electrocatalyst compositions OCV/V MPD/mW cm−2

PtAuIr/C 40:50:10 0.64 7.10

PtAuIr/C 50:40:10 0.65 6.69

PtAuIr/C 60:30:10 0.71 7.58

PtAuIr/C 70:20:10 0.61 5.98

PtAuIr/C 80:10:10 0.68 5.57

Pt/C 0.52 3.08

Au/C 0.38 1.66

Ir/C 0.54 2.78
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conditions of fuel cell experiments are quite different from
conventional VC and CA electrochemical experiments, e.g.,
the diffusion of the fuel through the catalytic layer, the con-
tinuous and constant flux, and the temperature. Additionally,
ethanol energy activation changes with the temperature; this
change might result in a different interaction of ethanol mol-
ecule with the catalyst materials [6, 27]. However, as in CV
and CA experiments, better results were obtained using terna-
ry PtAuIr/C compositions than on monometallic Pt/C, Ir/C,
and Au/C, showing the synergetic effect between Pt, Au,
and Ir toward ethanol electro-oxidation. Furthermore, in fuel
cell experiments, it was also observed that higher amounts of
Au increase the ethanol electro-oxidation.

Figure 7 shows the spectra obtained by the ATR-FTIR in
situ spectroscopy technique measured during ethanol electro-
oxidation [4, 13, 41]. The bands related to the asymmetric
stretching of carbon dioxide (~2343 cm−1), the stretching of
the CO bond of carbonate ion (~1376 cm−1), the symmetric
stretching of acetate (~1407 cm−1), and the rocking of acetal-
dehyde (~928 cm−1) were measured. The region between
1640 and 1750 cm−1 was attributed to the vibrations of differ-
ent species including the interfacial water and carbonyl groups
[4, 43].

Figure 8 shows the results of integrated bands decon-
voluted using Lorentzian line forms [4, 41, 43, 44]. As can
be observed in Fig. 8a, b, the intensity of CO2 and carbonate is

higher using PtAuIr/C 40:50:10 than using Pt/C as
electrocatalyst. It is important to stress that the intensity of
carbonate decreases in potentials higher than −0.35 V; this
could be related to the extension of OH− near the electrode
surface [45]. Using PtAuIr/C, the intensity of acetate and ac-
etaldehyde are also higher than on Pt/C (Fig. 8c, d); this sug-
gests that the kinetic of the overall reaction on PtAuIr/C
40:50:10 was faster than on Pt/C.

In order to assess the comparative relation between the
electrocatalysts, the integrated band intensity ratios of ace-
tate/CO2 are shown in Fig. 8e. The intensity of acetate/CO2

is lower for PtAuIr/C 40:50:10 in the potential range from
−0.75 to ~−0.25 V, indicating a preferential oxidation of eth-
anol to CO2 (reaction proceeds toward 12 electron paths) [13,
46]. On the other hand, the intensity of acetate/CO2 on Pt/C is
higher indicating low selectivity to CO2 as also observed in
our previous publication [43]. It is important to point out that
at high potentials (higher than ~−0.25 V) the intensity of ac-
etate/CO2 is higher on Pt/C which totally makes sense, be-
cause Pt/C is not able to oxidize CO at low potential; thus,
all the CO blocking the Pt nanoparticle surface is oxidized to
CO2 at high potential. Furthermore, it is well known that the
addition of Au and Ir to Pt promotes the CO electro-oxidation
at lower potential than only Pt [47, 48].

Based on the ATR-FTIR results, it is possible to observe
that the C−C cleavage is favored on PtAuIr/C 40:50:10.
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Conclusion

The results of this work show that Au and Ir improve the
catalytic activity of Pt toward ethanol electro-oxidation as
shown by electrochemical and fuel cell experiments. The

XRD results suggest that PtAuIr alloy was formed. TEM anal-
ysis revealed that the particle sizes are from 2 to 11 nm for all
PtAuIr/C electrocatalysts. PtAuIr/C 40:50:10 shows the best
catalytic activity toward ethanol electro-oxidation in CV and
CA experiments. The current density at the end of CA
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experiments using PtAuIr/C 40:50:10 was 18 times higher
than using Pt/C. However, the best fuel cell performance
was obtained using PtAuIr/C 60:30:10 as anode. The im-
provement in the catalytic activity of platinum toward ethanol
is attributed to Au that decreases the adsorption energy of
poisoning intermediates on Pt sites and by Ir that provides
OHads species at low overpotential and also promotes a dis-
turbance at platinum orbital that might decrease the poisoning
on the catalyst surface.
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