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Abstract Agar as a natural polymer is used to prepare
quasi-solid-state polymer electrolytes (QSPEs). Two
different iodide salts namely sodium iodide (Nal) and
potassium iodide (KI) are incorporated. To enhance the
ionic conductivity of the QSPE system, 1-methyl-3-
propylimidazolium iodide (MPII) ionic liquid is added.
The highest ionic conductivity of 1.48 x 107> S cm™"
was achieved after addition of 50 wt.% of KI and 3.0 g
of MPII ionic liquid. QSPEs are studied for
temperature-dependent ionic conductivity behavior.
QSPEs are studied for structural properties using
Fourier transform infrared spectroscopy (FTIR) and X-
ray diffraction (XRD). The structural studies revealed
that the complexation between agar polymer, iodide
salts, and MPII ionic liquid has occurred. QSPEs are
sandwiched between counter and working electrodes to
fabricated DSSC and analyzed under sun simulator. The
highest efficiency of 2.16% is achieved with incorpora-
tion of 3.0 g MPII ionic liquid.
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Introduction

Dye-sensitized solar cells (DSSCs) draw the researchers’
attention due to some advantages such as low cost, com-
petitive energy conversion efficiency, simple structure,
flexible, and low toxicity [1]. At the same time, the im-
provement of DSSC technology must balance with the
manufacturing cost to be cost-effective compared to oth-
er conventional energy resources [2]. Electrolyte is one
of the important parts in DSSC which normally can be in
form of liquid, solid, gel, or other forms like quasi-solid.
Liquid electrolytes may face several problems such as
leakages, shape inflexibility, and electrochemical instabil-
ity. Furthermore, there are several investigations on ap-
plications of polymer electrolytes in electrochemical de-
vices such as dye-sensitized solar cells [3—7], lithium-ion
batteries [8, 9], supercapacitors [10, 11], and fuel cells
[12, 13]. Moreover, due to excellent contacting, low va-
por pressure, and pore filling in the quasi-solid-state
polymer electrolytes, they can be good alternative to lig-
uid as electrolytes in DSSCs [14-16].

Bacteriological agar as the host polymer is mixture of
agaropectin and agarose polysaccharides in which agarose is
a neutral charge while agaropectine is heavily modified with
acidic groups of sulfates and pyruvates [17, 18].

One method to increase the ionic conductivity is by plasti-
cizing the polymer with organic solvents such as glycerol
which was used in the preparation of the quasi-solid-state
polymer electrolytes in this work.

In this work, ionic conductivity and structural properties of
QSPEs were performed using electrochemical impedance
spectroscopy (EIS), Fourier transform infrared spectroscopy
(FTIR), and X-ray diffraction (XRD). Dye-sensitized solar
cells (DSSCs) were fabricated by sandwiching QSPEs be-
tween counter and working electrodes.
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Table 1 Designation of QSPE

X (Wt.%) (X = Nal and KI) Conductivity, o (S cm ")

systems with the ionic Designation

conductivity values
Agar/Nal Agar/KI
ANa-1 AK-1
ANa-2 AK-2
ANa-3 AK-3
ANa-4 AK-4
ANa-5 AK-5

Agar/Nal Agar/KI
10 745 %107 479 x107°
20 5.96x 107 7.50 x 10°°
30 9.02x107° 1.02x107*
40 1.01 x107* 1.50 x 107*
50 136 x 1074 175 x 107

Experimental
Materials

Agar was purchased from BioLab. lodine pearl, sodium iodide
(Nal), and potassium iodide (KI) were purchased from
Friendemann Schmidt. 1-methyl-3-propylimidazolium iodide
(MPII) ionic liquid, glycerol (purity >99.5%), and Triton X-
100 were purchased from Sigma-Aldrich. TiO, P90 and P25
were purchased from Aeroxide. Carbowax were purchased
from Supelco Analytical.

Preparation of quasi-solid-state polymer electrolytes

Quasi-solid-state polymer electrolytes were prepared by stir-
ring 1 g of agar, 5 ml of glycerol as a solvent, and appropriate
amounts of iodine (10 M percentage of Nal and KI), sodium
iodide (Nal), and potassium iodide (KI), according to Table 1,
were added and stirred at 100 °C to homogenously dissolve
the chemicals and become gelatinized. For the system incor-
porated with ionic liquid, 1-methyl-3-propylimidazolium io-
dide (MPII) ionic liquid was added. Then, the prepared sam-
ples were left to cool down to room temperature.
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Fig. 1 Variation of ionic conductivity with Nal and KI salt content
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Dye-sensitized solar cell fabrication

In this work, by coating two layers of TiO,, the photo-anode
electrode was prepared. For the first layer, a uniform thin layer
of TiO, (P90) was spin-coated on FTO where 0.5 g of TiO,
(P90) was first grounded for about 30 min in an agate mortar
followed by addition of 2 ml of HNO; (pH = 1). The solution
was spin-coated at 1000 rpm for 2 s and then spin-coated at
2350 rpm for 60 s in order to get a more uniform thin layer
with better adhesion. The first coated layer was sintered in the
oven at 450 °C for 30 min.

In second layer, 0.5 g of TiO, (P25) was grounded for
about 30 min with 2 ml of the HNO; (pH = 1) in an agate
mortar. Afterwards, 0.1 g of carbowax and one drop of Triton
X-100 were added. Doctor blade method was used to prepare
the second layer and sintered in the oven at 450 °C for 30 min.
The photo-anode electrode was immersed in N719 dye for
24 h. Moreover, the Pt solution was coated on the FTO glass
to prepare the counter electrode. The quasi-solid-state polymer
electrolytes were sandwiched between two photo-anode and
counter electrodes to fabricate DSSCs and characterized under
1 sun simulator.

Characterization methods
Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) was studied
using HIOKI 3532-50 LCR Hi-Tester (frequency ~ 50 Hz to

Table 2  Designation of Agar/KI/MPII system with ionic conductivity
values

Designation MPII (g) Conductivity, o (S cm Y
AKP-1 0.1 259 %107
AKP-2 0.5 223 x107*
AKP-3 1.0 3.12x10°*
AKP-4 2.0 733x10°*
AKP-5 3.0 148 x 107
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Fig. 2 Variation of ionic conductivity with MPII content

1 MHz) to measure the ionic conductivity of the quasi-solid-
state polymer electrolyte systems. The ionic conductivity
values were calculated using the equation bellow

c=— (1)

where o is the ionic conductivity (S cm ), L is the thickness
of the sample (cm), A is the surface area of the stainless-steel
blocking electrodes (cm?), and Ry, is the bulk resistance (£2)
which can be obtained from Cole-Cole plot.

Temperature-dependent ionic conductivity study was car-
ried out with temperature range from 30 to 100 °C.

Structural studies

The interaction in chemical complexes and structural proper-
ties were analyzed using Fourier transform infrared spectros-
copy (FTIR), Thermo Scientific Nicolet iSIO Smart ITR with
wavenumbers between 4000 and 600 cm™'. X-ray patterns
were recorded using XRD-Siemens D 5000 diffractometer
under 40 kV and 40 mA with Cu K« radiation at a wavelength
of 1.5406 A with 26 ranging from 5 to 80°.
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Fig. 3 Temperature-dependent ionic conductivity of AKP-1, AKP-2,
AKP-3, AKP-4, and AKP-5
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Fig. 4 FTIR spectra for pure agar, AK-5, AKP-3, AKP-4, and AKP-5
QSPEs

Dye-sensitized solar cell

The DSSCs were fabricated by sandwiching the QSPEs be-
tween counter and working electrodes (FTO/TiO,/Dye/QSPE/
Pt/FTO). J-V characteristics of DSSCs were obtained using
Metrohm Autolab potentiostat (PGSTAT128N) with Newport
LCS-100 Series Sun simulator under the illumination of 100
(mW cm?).

Results and discussion
Electrochemical impedance spectroscopy
lonic conductivity

Quasi-solid-state polymer electrolytes were prepared using
Nal, KI, and MPII to find a sample with the highest ionic
conductivity for the application in DSSC. In the first two
systems, the agar is incorporated with only Nal and KI salt.
Table 1 shows the designations and ionic conductivity values
for systems with Nal and KI iodide salts. It was observed that
with the increment of Nal and K1, the ionic conductivity of the
QSPEs is increased which can be spotted in Fig. 1. The
highest achieved ionic conductivity in the first system
(agar/Nal) was 1.36 x 10*S cm ™! at room temperature with
designation of ANa-5 (50 wt.% Nal). In first system
(agar/Nal), there is a drop in ionic conductivity value after
addition of 20 wt.% of Nal which can be due to aggregation
and accumulation in the mixture. In second system, the sam-
ple AK-5 (50 wt.% KI) had the highest ionic conductivity of
1.75x 10* S cm ! at room temperature. After addition of Nal
and KI, it is revealed that the ion transport mechanism is
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Table 3 Band assignments and

wavenumbers for QSPEs Wavenumbers (cm ')

Band assignments

Pure agar AK-5 AKP-3 AKP-4 AKP-5
3336 3301 3310 3323 3331 O-H (stretching) hydrogen bonded
2895 2937 2933 2932 2934 C-H (stretching)

2880 2879 2878
1653 1651 1653 1653 C=0 (stretching)

1571 C=C (stretching) aromatic
1153 1108 1107 1166 1168 C-O—C (stretching)
1108 1108
992 992 991 992 R-CH=CH,

relatively influenced by the salts with ion carriers of Na* and
K* [19-22]. The difference of ionic conductivity between Nal
system and KI system is due to lattice energy. The higher ionic
conductivity achievement in KI system is due to lower lattice
energy of KI (649 KJ/mol) compared with Nal (704 KJ/mol)
[23]. Moreover, lower lattice energy in KI results in easier
solvation of K™ in polymer matrix which results in higher
number of K* ionic carriers and higher mobility as well as
ionic conductivity.

In the first two systems without ionic liquid, AK-5 shows
the highest ionic conductivity which is used for third system
incorporated with MPII ionic liquid (Agar/KI/MPII). MPII
ionic liquid was added with amounts of 0.1 up to 3.0 g. The
designation and ionic conductivity values for third system are
demonstrated in Table 2. The EIS results show the ionic con-
ductivity in third system increases with the increase of the
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Fig. 5 XRD patterns of a pure agar, b AK-5, ¢ AKP-3, d AKP-4, and e
AKP-5
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MPII ionic liquid. The highest ionic conductivity of
1.48 x 10> S cm ! was achieved after the addition of 3.0 g
of MPII ionic liquid (AKP-5). Figure 2 exhibits the variation
of ionic conductivity with the addition of MPII ionic liquid.
The figure shows the increment of ionic liquid with the addi-
tion of the MPII content.

Temperature-dependent ionic conductivity

The temperature-dependent ionic conductivity was studied
with the temperature range of 30 to 100 °C. Figure 3 shows
the temperature-dependent ionic conductivity results for sam-
ples AKP-1, AKP-2, AKP-3, AKP-4, and AKP-5 in third
system. Figure exhibits that the ionic conductivity of QSPEs
was increased with the increment of the temperature due to ion
hopping to the neighboring vacancies.

Fourier transform infrared spectroscopy (FTIR)

Figure 4 exhibits the FTIR spectra of pure agar, AK-5, AKP-3,
AKP-4, and AKP-5 at wavenumbers between 4000 and
600 cm ™. The band assignments are listed in Table 3.

FTIR spectra in Fig. 4 indicate that the peak in quasi-solid-
state polymer electrolyte (AK-5) with 3301 cm ™ shifts to
higher wavenumbers of 3310, 3323, and 3331 cm ! in
AKP-3, AKP-4, and AKP-5, respectively, after addition of
MPII ionic liquid. The shifts show that the complexation

Table 4 Dye-sensitized solar cell parameters for agar/KI/MPII system

Electrolyte  Jg. (mA cmﬁz) Vo (V) FF (%)  Efficiency, (%)
AKP-1 - - - -

AKP-2 4.23 0.413 50.7 0.89

AKP-3 4.53 0.423 494 0.95

AKP-4 5.93 0.438 41.9 1.09

AKP-5 9.28 0.463 50.3 2.16
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Fig. 6 J-V results for agar/KI/MPII system

between pure agar, KI, and MPII ionic liquid has occurred
indicating that the shift is attributed to O—H deformation and
miscibility of polymer, KI, and MPII ionic liquid [24].
Furthermore, this can be explained as a result of hydrogen
bonding interaction between K* cations in KI and anions
(I") in MPII ionic liquid [25]. The FTIR results further indicate
that the QSPEs become more amorphous after incorporation
of MPII ionic liquid.

X-ray diffraction

Figure 5 demonstrates the XRD patterns of pure agar, AK-5,
AKP-3, AKP-4, and AKP-5. The XRD results in pure agar
show a peak at 260 = 13° and a broad hunch of 20 = 11-17°.
The existence of KI salt in the QSPEs resulted in appearance
of a new peak that shifts to a higher degree at 20 = 23°. The
shifts in XRD results can further confirm that the complexa-
tion between agar and potassium iodide has occurred. After
addition of the MPII ionic liquid, the broad peaks of the
QSPEs appeared slightly at higher ranges with broader
hunches of 20 = 18-37°, 20 = 18-38°, and 20 = 18-38° for
samples AKP-3, AKP-4, and AKP-5, respectively. The XRD
results show that the broadening is increased resulting in more
amorphous nature of QSPEs. This can be an evidence of mis-
cibility of agar polymer, KI, and MPII ionic liquid.

Dye-sensitized solar cell

The energy conversion efficiency can be calculated using
equation

_ Jse X Voo X FF

Pin (2)

where 7 is the energy conversion efficiency, Py, is the incident
light power, Jg., Vo, and FF are the short circuit current den-
sity (mA cm ), the open circuit potential (V), and fill factor
(%), respectively.

DSSC parameters are listed in the Table 4. The results show
that the energy conversion efficiency of the DSSC is increas-
ing with the addition of MPII ionic liquid. The efficiency
values for AKP-1, AKP-2, AKP-3, AKP-4, and AKP-5 are
0.89, 0.95, 1.09, and 2.16%, respectively, which obtained
from J-V results. Figure 6 shows the J-V graph for the highest
achieved efficiency (2.16%) with AKP-5 sample. In this work,
the results show the highest energy conversion efficiency of
2.16% among DSSCs which demonstrates improvement of
the efficiency after using agar as natural polymer with the
incorporation of MPII ionic liquid. Moreover, this work is
showing significant enhancement of efficiency compared with
some recent works on DSSCs using natural polymers:
Khanmirzaei et al. (2015), using pure rice starch as the natural
polymer, achieved efficiencies of 0.78 and 2.09% [5, 14];
Yang et al. (2015), achieved efficiency of 1.73% using agarose
[26]; and Buraidah et al. (2016), with the highest efficiency of
1.13% with incorporation of chitosan natural polymer [27].

Conclusion

The quasi-solid-state polymer electrolytes were prepared. Two
iodide salts of Nal and KI were used for two first systems. The
QSPE with 50 wt.% potassium iodide was incorporated with
MPII ionic liquid for the third system. The highest ionic con-
ductivity of 1.48 x 10> Scm™ ' was achieved with the addition
of 3.0 g MPII (AKP-5). DSSCs were fabricated with
sandwiching QSPEs between counter and working electrodes.
AKP-5 sample with 3.0 g MPII ionic liquid showed the
highest energy conversion efficiency of 2.16%.
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