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Abstract A series of spherical LiNi0.8Co0.15Ti0.05O2 cathode
materials were synthesized through co-oxidation-controlled
crystallization method followed by solid-state reaction at differ-
ent calcination temperatures under oxygen flowing. The crystal
structure and particles morphology of the as-prepared powders
were characterized by X-ray diffraction (XRD) and scanning
electron microscopy (SEM), respectively. All samples corre-
spond to the layered α-NaFeO2 structure with R-3m space
group. The LiNi0.8Co0.15Ti0.05O2 prepared at 800 °C presents a
better hexagonal ordering structure and better spherical particles
and possesses a high tap density of 3.22 g cm−3. Meanwhile, the
NCT-2 sample exhibits an advanced electrochemical perfor-
mance with an initial discharge capacity of 174.2 mAh g−1 and
capacity retention of 86.7 % after 30 cycles at 0.2 C.
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Introduction

With the increasing development of the portable electronic
devices, electric vehicles (EVs) and hybrid electrical vehicles

(HEVs), it is necessary to break the bottleneck of high capac-
ity density, long cycle life, good security, and excellent rate
capability for lithium-ion batteries [1–3]. Nickel-rich layered
Li(NixM1-x)O2 cathode materials with high discharge specific
capacity, great rate capability and relatively low cost are be-
coming one of the most promising cathode materials for
lithium-ion battery. On the basis of Co-doped LiNiO2, it has
been proven that the addition of an extra element (such as Al,
Ti, Mn, Mg, Fe, Y, and Sr) may effectively improve the ther-
mostability and cycling stability of LiNi0.8Co0.2O2 electrode
material [4–7]. For example, as the isomorphous solid solu-
tion of LiNiO2, LiCoO2, and LiAlO2, LiNi0.8Co0.15Al0.05O2

with a high tap density, an excellent rate capability and cycling
stability is considered to be the next generation cathode mate-
rials for green lithium-ion battery [8].

Nickel-rich layered cathode materials have been developed
in the direction of high tap density with the increasing
requirements of high volume capacity density. Among
the doping elements, an appropriate amount of Ti dop-
ing in Nickel-rich layered materials can enhance struc-
tural integrity and thermostability because the Ti4+ ions
prevent impurity Ni2+ migration into the lithium sites
[9–11]. Hongwei Tang et al. [12] had successfully prepared
LiNi0.8Co0.15Ti0.05O2 powders with a high tap density of
3.17 g cm−3. However, the LiNi0.8Co0.15Ti0.05O2 powders
are smooth-edged polyhedrals and their average sizes are
3 ~ 5 μm. It is well known that the as-prepared particles with
spherical morphology are more conducive to enhancing the
dense packing of materials and improving the tap density. In
addition, spherical particles are advantageous to facilitate
the infiltration between the electrolyte and active mate-
rials and also can effectively shorten the lithium-ion
diffusion channels.

In this paper, the LiNi0.8Co0.15Ti0.05O2 cathode ma-
terials with a good spherical morphology and a high
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tap density have been prepared successfully by using
the spherical Ni0.8Co0.15(OH)1.9 as precursor which
was synthesized via a co-oxidation-controlled crystalli-
zation method. The effects of calcination temperature
on the crystalline structure, micromorphology, and elec-
trochemical performance of the titanium substitutive
LiNi0.8Co0.15Ti0.05O2 cathode materials were further
investigated.

Experimental section

Sample preparation

Characterization

Powder X-ray diffraction (XRD, Philips X’pert TRO MPD,
Germany) using Cu Kα radiation at 40 kV/25 mA and at
0.06° s−1 was employed to characterize the crystal phase of
the samples. The particle morphology and particle size of the
samples were observed by scanning electron microscopy
(SEM; JSM-5900LV, Japan).

Electrochemical measurements

The electrochemical characteristics of the synthesized cathode
materials were carried out using a two-electrode test cell with
lithium foil as the negative electrode. A positive electrode was
made by coating the slurry mixture composed of
LiNi0.8Co0.15Ti0.05O2 active material, Super P, and
polyvinylidene fluoride (PVDF) binder (in the weight ratio
of 86:7:7) on an aluminum-fo i l col lec tor, wi th
nmethylpyrrolidone (NMP) as the solvent. The positive film
was subjected to roll press and the electrodes of 14 mm diam-
eter were punched out. The positive electrodes were dried at
120 °C for 12 h in a vacuum oven. The coin-type cells
(CR2032) were assembled in a glove box filled Argon with
an electrolyte of 1 mol L−1 LiPF6 in EC-DMC-EMC (1:1:1,
volume ratio) solution. Charge/discharge performance of the
cells was investigated using a Neware BTS-610 Tester
(Neware BTS-610, China) between 2.5 and 4.5 V at different
rates (1 C = 170 mAh g−1) at 30 °C. Cyclic voltammogram
(CV) was measured on a LK9805 electrochemical interface at
a scanning rate of 0.1 mV s−1.

Results and discussion

Structural analysis

Figure 1 shows the XRD patterns of NCT-1, NCT-2, and
NCT-3 samples. All diffraction peaks of three samples can
be indexed to single phase of hexagonal α-NaFeO2 structure
with a space group of R-3m, and no new peaks corresponding
to impurity phase TiO2 or other titanium oxides were detected.
The previous work has demonstrated that clear splitting of the
(006)/(102) and (108)/(110) peaks indicates a high degree of
ordered layered structure [14, 15]. The overlapped (006)/(102)

Fig. 1 The XRD patterns of NCT-1, NCT-2, and NCT-3 samples
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The Ni0.8Co0.15(OH)1.9 precursor was obtained by the
co-oxidation-controlled crystallization method described
in our previous report [13]. The mixing metal ion solu-
tion of Ni and Co according to the stoichiometric of
n(Ni):n(Co) = 0.8:0.15 was prepared by dissolving
NiSO4·6H2O and CoSO4·7H2O in deionized water. The me-
tallic ion solution was made into 2 mol/L, while the NaOH
solution was 4 mol/L. Commercial ammonia solution (28 wt
%, as the chelating agent) was added to the NaOH solution to
maintain a NH3/NH4OHmolar ratio (≈0.54). The metallic ion
solution and the NaOH solution were added into the four-neck
flask reactor through the charging ports, respectively, while
the other one was connected to a pH sensor/controller. The
as-prepared precursor of 0.8 g as a crystal nucleus was added
into 100 mL deionized water before the reaction. The
pumping rate of both the metallic ion solution and the
NaOH solution was automatically controlled by a peristaltic
pump (Leadfluid, China), and the injection rate was kept at
0.15 mL/min to maintain a constant pH of 11.0 ± 0.1. And
then, the reaction solution was stirred continuously with a
speed of 1000 rpm and the water bath temperature was con-
trolled at 60 °C. The product slurry was aged about 5 h,
washed, and then dried at 120 °C. The obtained precursor
was ground with an excess of LiOH•H2O (Li/(Ni + Co +
Ti) = 1.01) and a stoichiometry of TiO2. The mixture
was calcined at different temperatures (750, 800, and
850 °C) for 16 h in oxygen flowing atmosphere. Finally,
three LiNi0.8Co0.15Ti0.05O2 powders were obtained, which
were correspondently marked as NCT-1, NCT-2, and NCT-3
samples.

and (018)/(110) characteristic peaks were discovered in
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The lattice parameters were calculated according to XRD
data using Jade 6.0 as shown in Table 1. Higher values of c/a
ratios are acknowledged as a less degree of cation mixing
[17–20]. In addition, the I(003)/I(104) ratio also has been used
as a degree of cation mixing, that is, the values lower than 1.2
indicate a high degree of cation mixing, due to other metal
ions occupy the lithium site and the reversible capacity of the
cathode material tends to decrease when the I(003)/I(104) ra-
tio is less than 1.2 [21–24]. The presence of disorder on the Li
site is closely associated with the calcination temperatures
[25]. According to the XRD result, the NCT-2 sample shows
a higher value of c/a and I(003)/I(104) ratios, indicating the
lowest degree of cation mixing. On the contrary, that of the
NCT-1 and NCT-3 samples clearly shows a smaller value.
This demonstrates that temperatures below 800 °C are
insufficient to promote full site ordering, namely indica-
tion of severe cation mixing. However, if the tempera-
ture is too high, nonstoichiometry and disorder on the
Li site will also be introduced due to the part volatilization
of lithium [26, 27]. These results suggest that the calcination
temperature can effectively affect the crystalline structure of
LiNi0.8Co0.15Ti0.05O2 cathode materials during the synthesis
process.

Morphological characterization

Figure 2 shows SEM images of the Ni0.8Co0.15(OH)1.9 precur-
sor and all the LiNi0.8Co0.15Ti0.05O2 powders. As shown in
Fig. 2 (A and A′), the secondary particles consisted of the
dense agglomeration of needle-like shape primary parti-
cles. The precursor had spherical morphology and its
particle size and tap density were 2 ~ 3 μm in diameter
and 1.91 g cm−3, respectively. It can be discovered that all the
LiNi0.8Co0.15Ti0.05O2 samples inherited the spherical mor-
phology of the precursor, as shown in Fig. 2 (B and B′), (C
and C′), and (D and D’). The spherical particles were advan-
tageous to facilitate the infiltration between the electrolyte and

active materials and effectively shorten the lithium-ion diffu-
sion channels in the intercalation/deintercalation process.
Compared with the needle-shaped primary particles morphol-
ogy of precursor, the LiNi0.8Co0.15Ti0.05O2 particles size in-
creases with the increase of calcination temperature.
Moreover, the NCT-1, NCT-2, and NCT-3 samples show a
high tap density of 3.02, 3.22, and 3.23 g cm−3, respectively.
Because the spherical particles have fewer interspace in
particles interface. The LiNi0.8Co0.15Ti0.05O2 cathode
materials with a high tap density can enhance its volu-
metric energy and advance the applications in large scale
energy supplies.

EDS analysis

Electrochemical properties

Figure 4 presents the rate and cycling performance curves of
NCT-1, NCT-2, and NCT-3 samples at different rates from
0.05 to 5 C. As shown in Fig. 4a, the NCT-2 sample shows
a better electrochemical performance at low rate (from
0.05 to 1.0 C). With the rate increase from 1 to 5 C,
electrochemical properties of all the samples suddenly
reduced. Figure 4b displays the cycling performance
curves of all LiNi0.8Co0.15Ti0.05O2 cathode materials at
0.2 C. The initial discharge specific capacity of NCT-1,
NCT-2, and NCT-3 samples were 161.2, 174.2, and
166.3 mAh g−1, respectively. And the NCT-1, NCT-2, and
NCT-3 samples reveal the capacity retentions of 80.0, 86.7,
and 86.5 % after 30 cycles, respectively. Figure 4c shows the
coulomb efficiencies of all samples at different rate from 0.05
to 5 C, while their initial coulomb efficiencies are about 85 %
at lower 0.05 C. Afterwards, all samples show an excellent
coulomb efficiency of approximate 99 %. The typical initial
charge/discharge curves of NCT-1, NCT-2, and NCT-3
samples in the voltage range of 2.5–4.5 V at 0.2 C
are shown in Fig. 4d. A clear and constant potential
plateau near 3.8 V was very similar to the three samples.
However, the NCT-2 obviously exhibits a longer discharge
plateau and releases a higher initial discharge specific
capacity of 174.2 mAh g−1 than NCT-1 and NCT-3.
These results indicated that calcination temperature has

Table 1 The cell parameters of NCT-1, NCT-2, and NCT-3 samples

Sample a c c/a I(003)/I(104)
(±0.0001 Å) (±0.0008 Å)

NCT-1 2.868 14.148 4.93 1.05

NCT-2 2.861 14.143 4.94 1.43

NCT-3 2.864 14.145 4.94 0.98
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NCT-1 and NCT-3 samples; however, the (018)/(110)
peaks were well separated in NCT-2 sample. This result
suggests that the NCT-2 sample possesses a better hex-
agonal ordering structure [16]. Compared with NCT-1
and NCT-3 samples, the NCT-2 sample shows more
sharp diffraction peaks and stronger peaks intensity, in-
dicating an improved crystallinity.

Figure 3 presents the SEM (A) and EDS images (B) of the
NCT-2 sample. The composition of NCT-2 sample was exam-
ined by EDS and the element percentage was presented in
Table 2. The result shows that the atomic percentage of Ni:
Co:Ti approximates the ratio of 80:15:4.5, which indicates the
effective incorporation of titanium in the particles and the
co-oxidation-controlled crystallization combine with
solid-state reaction can synthesis spherical and stoichiometric
LiNi0.8Co0.15Ti0.05O2 cathode materials with homogeneous Ti
element distribution.



an important influence on the electrochemical perfor-
mance of LiNi0.8Co0.15Ti0.05O2 cathode materials. The
LiNi0.8Co0.15Ti0.05O2 material prepared at a lower calcination

temperature (750 °C) shows a poor electrochemical per-
formance due to a lower degree of ordered layered
structure hinders lithium-ion intercalation in charge/

Fig. 2 SEM images of the
Ni0.8Co0.15(OH)1.9 precursor (A
and A′) and LiNi0.8Co0.15Ti0.05O2

cathode materials prepared at
different calcination temperature.
(B and B′), (C andC′), and (D and
D′) corresponded to NCT-1, NCT-
2, and NCT-3 samples,
respectively

Fig. 3 SEM (a) and EDS (b)
images of NCT-2 material
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the valence electrons in this structure, the incorporated Ti4+

generated the same amount of Ni2+ by the principal of
electroneutrality, resulting in the electrochemical inactiv-
ity of titanium should have a negligible contribution on
the diminished capacities of LiNi0.8Co0.15Ti0.05O2 samples
[29].

CV measurements were carried out in the voltage
range of 2.5–4.5 V at a scan rate of 0.1 mV s−1 to
further investigate the electrochemical reversibility of
the LiNi0.8Co0.15Ti0.05O2 cathode materials. The CV
curves of the first three cycles of NCT-1, NCT-2, and
NCT-3 samples are shown in Fig. 5. Each of the three
curves correspond to the first three charge/discharge
process of the cathode material. There exist obvious
differences about the CV curves of three samples, in-
cluding the shape, current, and potential of peaks.
Especially, the oxidation peak and the reduction peak
of the NCT-2 sample shift toward low and high poten-
tial, respectively, resulting in a well-symmetry redox
peak showed at approximate 3.8 V. In addition, the
NCT-2 sample exhibits a sharper peak and a higher
redox peak current than NCT-1 and NCT-3 samples.
The results indicate that the NCT-2 sample reveals an
advanced electrochemical reversibility and discharge

Table 2 The EDS analysis chart of the NCT-2 sample

Element O Ni Co Ti

Weight percentage (%) 44.07 45.19 8.65 2.08

Atomic percentage (%) 76.14 20.72 3.95 1.17

Fig. 4 The rate capability (a), cycling performance (b), Coulomb efficiency (c), and initial charge/discharge curves (d) of NCT-1, NCT-2, and NCT-3
samples, respectively
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discharge process, which is consistent with XRD analy-
sis results. This result shows that the lower temperature
is insufficient to promote full lithium site ordering for
nickel-rich-layered LiNi0.8Co0.15Ti0.05O2 cathode materials.
Especially, the NCT-2 sample shows an excellent electro-
chemical performance attribute to higher degree of ordered
layered structure and the least cation mixing [28]. The second
crystallization phenomenon could be generated at a higher
calcination temperature, which will also reduce the electro-
chemical performance. In addition, nonstoichiometry and dis-
order on the Li site will also be introduced due to the part
volatilization of lithium at a higher temperature. The optimum
temperature is required to synthesize the material with good
crystallinity and stable layered structure. On the whole, all
as-prepared LiNi0.8Co0.15Ti0.05O2 samples deliver smaller
discharge specific capacity than typical values for com-
mercial LiNi0.8Co0.15Al0.05O2 (190 mAh g−1). To balance



capacities. This conclusion is consistent with the previ-
ous analysis results from Fig. 4. The simplified CV
curves and the peak shift are associated with the sup-
pression of phase transitions due to superior mainte-
nance of the layered structure after Ti addition. The
improved stability of the layered structure is achieved
by the presence of electrochemically inactive Ti4+ in
the 3a site, which results better capacity retention dur-
ing charge-discharge cycling [30].

In order to further understand the kinetic behavior of
all as-prepared electrodes, EIS measurement was carried
out using the half cells consisting of NCT-1, NCT-2,
and NCT-3 samples as working electrode at the discharge
state of 2.5 V after 30 cycles at 0.2 C. Figure 5d shows the

obviously observed that the ohmic electrolyte resistances
are similar among the all electrodes. Especially, the Rct

(about 215 Ω cm2) of NCT-2 sample is distinctly de-
creased compared with that of the NCT-1 (about
350 Ω cm2) and NCT-3 (about 258 Ω cm2) samples.
This result indicates that Li ion migration at the surface
of the NCT-2 cathode is significantly facilitated, ulti-
mately resulting in an improved rate and cycle perfor-
mance. This result is consistent with the rate and cy-
cling performance in Fig. 4.

Conclusions

The spherical LiNi0.8Co0.15Ti0.05O2 cathode materials with a
high tap density of 3.22 g cm−3 have been successfully
prepared by using Ni0.8Co0.15(OH)1.9 precursor. The
electrochemical properties of LiNi0.8Co0.15Ti0.05O2 are
greatly associated with the calcination temperature. The
LiNi0.8Co0.15Ti0.05O2 sample prepared at 800 °C exhibits a
higher degree of ordering hexagonal structure and the least
cation mixing and reveals excellent electrochemical perfor-
mance with the discharge capacity of 174.2 mAh g−1 and
the capacity retention of 86.7 % after 30 cycles at 0.2 C.

Fig. 5 Cyclic voltammograms of LiNi0.8Co0.15Ti0.05O2 cathodematerials prepared at different calcination temperature. aNCT-1, bNCT-2, and cNCT-3
samples, respectively. d Nyquist plots of NCT-1, NCT-2, and NCT-3 samples
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Nyquist plots, which consist of two semicircles in
high-to-medium frequency region and an inclined line
in low frequency region for all samples [31]. Another
semicircle at medium frequencies could be attributed to
the charge-transfer resistance (Rct). An intercept at the
Zreal axis in the high-frequency region corresponds to
the ohmic electrolyte resistance (Re). The inclined line
in the low-frequency region represents the Warburg im-
pedance (Zw), which is ascribed to the diffusion of the
lithium ions in the bulk of electrode material. It is
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