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Abstract In the present work, the effect of glycerol and 1-
butyl-3-methylimidazolium chloride (BmImCl) on the con-
ductivity and dielectric properties of potato starch doped with
magnesium acetate, Mg(C2H3O2)2-based electrolytes is stud-
ied. The electrolytes are prepared via solution cast technique.
The interaction between the materials is proven by Fourier
transform infrared (FTIR) analysis. Electrolyte with 20 wt.%
Mg(C2H3O2)2 exhibits a room temperature conductivity of
(2.44 ± 0.37) × 10−8 S cm−1. The addition of 30 wt.% glycerol
to the best polymer-salt composition has further enhanced the
conductivity to (2.60 ± 0.42) × 10−6 S cm−1. A conductivity of
(1.12 ± 0.08) × 10−5 S cm−1 has been achieved when 18 wt.%
BmImCl is added to the best polymer-salt-plasticizer compo-
sition. From the loss tangent (tan δ) plot, the relaxation time
(tr) for selected electrolytes is determined. From transference
number measurements, ions are found to be the dominant
charge carriers.
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Introduction

Solid polymer electrolytes based on natural polymers are ex-
citing prospects for use in electrochemical devices [1–3].

Natural polymers possess advantageous properties such as
non-toxic, naturally degrade, and low production cost [4, 5].
Several natural polymers have been used as electrolyte’s host,
e.g., chitosan [3], agar [6], and starch [7]. Starch is a mixture
of linear amylose (poly-α-1,4-D-glucopyranoside) and
branched amylopectin (poly-α-1,4-D-glucopyranoside and
α-1,6-D-glucopyranoside) [8]. A lot of solvents have been
used to dissolve starch such as water [7, 9, 10],
dimethylsulfoxide (DMSO) [11], and N-methylmorpholine-
N-oxide (NMMO) [12, 13]. However, both DMSO and
NMMO are poisonous and unrecyclable [14]. Thus, in this
work, we used a water-based solvent to dissolve starch since
water is the most abundant and greenest solvent on earth [14].
Starch is a hydrophilic material and can form a mechanically
poor film [15, 16]. The mechanical strength and hydrophobic-
ity of starch film can be improved by using acetic acid as the
solvent [17, 18]. It is reported that when starch reacts with an
acid, the water solubility of the starch granules is enhanced
[19]. Tiwari et al. [10, 20] and Kumar et al. [21] have studied
different types of starches as polymer hosts in electrolyte.
According to Kumar et al. [21], morphology of potato starch
is better in comparison with other starches.

Incorporation of salt to the polymer is an important feature
to provide ions as the charge carriers. Lithium salts such as
lithium hexafluorophosphate (LiPF6) [22], lithium perchlorate
(LiClO4) [2], and lithium triflate (LiCF3SO3) [23] are com-
monly preferred in the studies on polymer electrolyte since
lithium is the lightest of all metals and could provide the larg-
est possible potential window [24]. However, electrochemical
devices that use lithium-salt-based electrolyte have several
disadvantages, such as high cost, difficulty in handling lithium
electrodes, and safety hazard [25]. Magnesium salt appears to
be a potential alternative to lithium salt. Magnesium is non-
toxic, less reactive toward oxygen and water, may be handled
safely in open air, and hazards are minimized [26].
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Various ways have been employed to improve the conduc-
tivity of solid polymer electrolytes which are incomparable to
those of liquid electrolytes. The addition of plasticizers such
as ethylene carbonate (EC) [27, 28], dimethylacetamide
(DMA) [29], and dibutyl phthalate (DBP) [30] has been re-
ported to enhance the conductivity. The most common plasti-
cizers for starch-based films are polyols, such as glycerol [31].
The addition of glycerol to the starch-based electrolyte is re-
ported to enhance the cation mobility which in turn increases
the ionic conductivity [32]. Based on our previous work [33],
the addition of glycerol in a starch-based electrolyte can assist
the dissociation of salt by weakening the Coulombic force
between anion and cation. The increase in the degree of salt
dissociation increases the number density of ions which can
lead to conductivity enhancement [28].

The incorporation of ionic liquids (ILs) to the polymer
electrolytes is another alternative to enhance the ionic conduc-
tivity [34, 35]. Generally, ionic liquid consists of a large asym-
metrical cation and a weakly coordinating inorganic or organ-
ic anion [35]. Ionic liquids have attracted attention due to their
good chemical and electrochemical stability, non-flammabili-
ty, and high ionic conductivity [36]. Ramesh et al. [9] reported
that the incorporation of 1-butyl-3-methylimidazolium
hexafluorophosphate (BmImPF6) into starch-lithium
hexafluorophosphate (LiPF6)-based electrolyte increased the
ambient temperature conductivity from ∼10−7 S cm−1 to
(1.47 ± 0.02) × 10−4 S cm−1. In this work, starch-based elec-
trolytes were doped with magnesium acetate, Mg(C2H3O2)2.
The aim of this work is to investigate the effect of glycerol and
1-butyl-3-methylimidazolium chloride (BmImCl) on the con-
ductivity and dielectric properties of the electrolytes.

Experimental

Electrolyte preparation

For the preparation of salted system, 2 g of potato starch
(Sigma-Aldrich) was dissolved in 50 mL of 1 % acetic acid
solvent (SYSTERM) at 80 °C for 20 min. After the solutions
cooled to room temperature, different amounts of
Mg(C2H3O2)2 (R&M Chemicals) were added and stirred at
room temperature until complete dissolution. For the prepara-
tion of plasticized system, different amounts of glycerol
(SYSTERM) were added to the highest conducting salted
electrolyte solution and stirred at room temperature until com-
plete dissolution. For the preparation of IL-based system, dif-
ferent amounts of BmImCl (Sigma-Aldrich) were added to the
highest conducting plasticized electrolyte solutions and stirred
at room temperature until complete dissolution. All solutions
were then poured into different plastic Petri dishes and left to
dry at room temperature to form films. The dried films were
stored in a desiccator filled with silica gel desiccants for

further drying process. The compositions of all electrolytes
in salted, plasticized, and IL-based systems are tabulated in
Tables 1, 2, and 3, respectively.

Electrolyte characterization

The interactions of polymer-salt, polymer-salt-plasticizer, and
polymer-salt-plasticizer-IL were determined by Fourier trans-
form infrared (FTIR) spectroscopy using the Spotlight 400
Perkin-Elmer spectrometer in the wavenumber range of
450–4000 cm−1 at a resolution of 1 cm−1. The measurements
were carried out at room temperature.

Electrochemical impedance spectroscopy (EIS) measure-
ments were conducted using HIOKI 3532-50 LCR
HiTESTER in the frequency range of 50 Hz to 1MHz at room
temperature. The electrolytes were placed between two stain-
less steel blocking disc electrodes under spring pressure. The
values of bulk resistance (Rb) were determined from the Cole-
Cole plots obtained from the EIS measurements. Conductivity
(σ) was calculated using the following equation:

σ ¼ d

RbA
ð1Þ

where d is the electrolyte’s thickness and A is the contact area
of electrode and electrolyte.

The transference number of ion (tion) was measured using
DC polarization method [37]. A cell consisting of the highest
conducting electrolyte sandwiched by two stainless steel
blocking electrodes was polarized using V&A Instrument
DP3003 digital DC power supply at 0.50 V. The DC current
was monitored as a function of time. The measurement was
done at room temperature.

Results and discussion

FTIR analysis

FTIR spectra of electrolytes in the salted system in the hydrox-
yl band region are shown in Fig. 1a. The hydroxyl band peak

Table 1 Composition
and designation of
electrolytes in the salted
system

Starch/Mg(C2H3O2)2
composition (wt.%)

Designation

100:0 S0

95:5 S5

90:10 S10

85:15 S15

80:20 S20

75:25 S25

70:30 S30
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in the spectrum of S0 appears at 3312 cm−1. The hydroxyl
band peak appears at 3298 cm−1 in the spectrum of S5. The
hydroxyl band peak is observed to appear at a lower wave-
number as the salt content increases up to 30 wt.%. From the
literature [20, 38, 39], the band shift indicates the interaction
between the polymer and salt. Thus, the shifting of hydroxyl
band peak with increasing salt content proves that the cation
(Mg2+) of salt interacts with the oxygen atom of the hydroxyl
group. The oxygen atoms in polymer have negatively charged
electron pairs so that the positively charged cations can coor-
dinate at such atoms [40]. This kind of interaction is called
dative bond. According to Stygar et al. [41], although interac-
tion between polymer and salt mainly occurs at the oxygen
atom, other bands can also be affected. The FTIR spectra of
electrolytes in the salted system in the region of 2800–
2980 cm−1 are shown in Fig. 1b. A peak which is assigned
to C–H stretching mode of starch appears at 2925 cm−1 in the
spectrum of S0. The peak is observed to shift with the addition
of salt. From our previous work [33], C–H stretching mode of
corn starch has been shifted on addition of ammonium bro-
mide (NH4Br) which is comparable with the present result.

Figure 2 depicts the FTIR spectra of electrolytes in the
salted system in the region of 955–1055 cm−1. This region
represents the anhydroglucose ring of O–C stretch [42]. In
the spectrum of S0, the peak is located at 993 cm−1. The peak
is observed to shift with the addition of salt indicating the
interaction between cation of salt and oxygen atom in
anhydroglucose ring of starch.

FTIR spectra of electrolytes in the plasticized system in the
hydroxyl band region are shown in Fig. 3. The hydroxyl band

peak in the spectrum of P5 appears at 3276 cm−1, which is
lower than the hydroxyl band peak position of S20. As the
glycerol content increases up to 30 wt.%, the hydroxyl band
peak is observed to shift to a lower wavenumber. From a
report by Yusof et al. [43], the hydroxyl band peak of starch-
chitosan-ammonium iodide (NH4I) has shifted to the lower
wavenumber on addition of glycerol. The addition of glycerol
promotes ion dissociation so that more ions interact with the
polymer host at the hydroxyl band. Besides, glycerol is able to
form hydrogen bonding with the polymer host [44]. These
phenomena have been evidenced by the shifting of FTIR spec-
tra in Fig. 3. The hydroxyl band peak has shifted back to the
higher wavenumber in the spectra of P35 and P40. High con-
centration of plasticizer can lead to the decrease in amor-
phousness of electrolyte; thus, less ions interact with the poly-
mer host [1]. It can be noted that the intensity of the hydroxyl
band peak increases as the glycerol content increases. This
result has further proven the interaction between Mg2+ cations
and oxygen atoms in the hydroxyl band.

Another evidence of starch-Mg(C2H3O2)2-glycerol interac-
tion can be observed in the region of 955–1055 cm−1 as shown
in Fig. 4. The peak of anhydroglucose ring of O–C stretch in
the spectrum of S20 is located at 997 cm−1. The peak is ob-
served to shift with the addition of glycerol. It can be inferred

Table 2 Composition
and designation of
electrolytes in the
plasticized system

S20/glycerol composition
(wt.%)

Designation

95:5 P5

90:10 P10

85:15 P15

80:20 P20

75:25 P25

70:30 P30

65:35 P35

60:40 P40

Table 3 Composition
and designation of
electrolytes in the IL-
based system

P30/BmImCl composition
(wt.%)

Designation

95:5 B5

91:9 B9

88:12 B12

85:15 B15

82:18 B18

300033003600

S0 

S5 

S10 

S15 

S20 

S25 

S30 

Wavenumber (cm-1) 

T
ra

ns
m

it
ta

nc
e 

(a
.u

.)
 

(a) 

3312 

3298 

3281 

3269 

3274 

3289 

3295 

280028902980

S0 

S5 

S10 

S15 

S20 

S25 

S30 

Wavenumber (cm-1) 

T
ra

ns
m

it
ta

nc
e 

(a
.u

.)
 

(b) 

2926 

2925 

2924 

2925 

2922 

2918 

2927 

Fig. 1 FTIR spectra for electrolytes in the salted system in the
wavenumber region of a 3000–3600 cm−1 and b 2800–2980 cm−1
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that more ions interact with the oxygen atom in
anhydroglucose ring of starch. There is also possible hydrogen
bonding between glycerol and starch in this region.

FTIR spectra of electrolytes in the IL-based system in the
hydroxyl band region are shown in Fig. 5a. On addition of
5 wt.% BmImCl, the hydroxyl band peak shifts from 3255 to
3272 cm−1. The hydroxyl band peak is observed to shift up to
3292 cm−1 as the BmImCl content increases to 18 wt.%.
Another proof can be observed by the shifting of the peak of
anhydroglucose ring of O–C stretch as shown in Fig. 5b. From
a report by Sim et al. [35], the addition of ionic liquid into
polymer-salt complex increases the amount of free ions.
According to the authors, the cations from ionic liquid can
coordinate at the polar atoms of polymer host. Thus, from
Fig. 5, it can be indicated that the cation (BmIm+) of
BmImCl interacts with the oxygen atom of polymer. This
result shows that ionic liquid can provide ions which can lead
to the increase in conductivity as has been reported in the
literature [35, 45, 46].

Room temperature conductivity

In the salted system, the incorporation of 20wt.%Mg(C2H3O2)2
has maximized the room temperature conductivity to
(2.44 ± 0.37) × 10−8 S cm−1 as shown in Fig. 6a. The increase

in conductivity as the salt content increases to 20 wt.% is
attributed to the increase in the number of mobile charge
carriers [23]. On addition of 25 wt.% Mg(C2H3O2)2, the
conductivity decreases to (7.82 ± 1.30) × 10−9 S cm−1 and
further decreases to (4.01 ± 0.65) × 10−9 S cm−1 with ad-
dition of 30 wt.% Mg(C2H3O2)2. This phenomenon is at-
tributed to the aggregation of the ions, leading to the for-
mation of ion clusters, thus decreasing the number of mo-
bile charge carriers [47]. Different amounts of glycerol were
added to the highest conducting electrolyte in the salted sys-
tem in order to enhance the conductivity. From Fig. 6b, as the
glycerol content increases to 30 wt.%, the room temperature
conductivity is enhanced to (2.60 ± 0.42) × 10−6 S cm−1.
Plasticization using glycerol has created alternative path-
ways for ion conduction leading to conductivity enhance-
ment [48]. Besides, the addition of glycerol promotes ion
dissociation which decreases the formation of ion aggre-
gates and increases the number of mobile charge carriers.
This phenomenon enhances the conductivity. On addition
of more than 30 wt.% glycerol, the decrease in conduc-
tivity may be caused by the formation of linkages be-
tween the molecules of plasticizer causing the salt to
recrystallize, resulting in a conductivity decrement [49,
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Fig. 2 FTIR spectra for
electrolytes in the salted system in
the wavenumber region of
955–1055 cm−1
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50]. When too many plasticizer molecules exist within
the electrolyte, the cations hardly coordinated at the po-
lar atoms. This is because there is competition between
the cations and the plasticizer molecules to interact with
the polar atoms of polymer host or plasticizer molecules,
thus increases the possibility of ion association which
can decrease the conductivity.

To further enhance the conductivity, different amounts
of BmImCl were added to the highest conducting electro-
lyte in the plasticized system. From Fig. 7, as the BmImCl
content increases to 18 wt.%, the room temperature con-
ductivity is enhanced to (1.12 ± 0.08) × 10−5 S cm−1.
According to Kumar et al. [51], the addition of ionic liq-
uid affects the properties of the polymer electrolytes in
different ways. Generally, the conductivity enhancement
can be related to the increase in free ions after the incor-
poration of ionic liquid. From the FTIR results, cations
from the ionic liquid have interacted with the polar atoms
of polymer. Thus, in the present electrolyte system, four
ions, i.e., Mg2+ ion, the cation of the ionic liquid and the
anions from both the salt and ionic liquid contribute to the
ionic conductivity [52, 53]. The low viscosity of ionic liq-
uid enhances the flexibility of the polymer backbone, thus

increases the segmental motion [51]. Besides, the high di-
electric constant of ionic liquid assists ion dissociation
[54]. All these phenomena favour the ionic conductivity
enhancement.

Dielectric analysis

The conductivity trend can be further verified by dielectric
studies. Dielectric constant (εr) represents charge stored in a
material [55]. The values of εr were calculated from the fol-
lowing equation:

εr ¼ Zi

ωCo Zr
2 þ Z i

2
� � ð2Þ

where ω is angular frequency, Co is vacuum capacitance,
while Zr and Zi are real and imaginary parts of impedance,
respectively. From Fig. 8, it is observed that higher
conducting electrolyte has the higher value of εr at all fre-
quencies. The increasing charge stored in the electrolyte
means that the number density of mobile ions has in-
creased [55]. This phenomenon increases the conductivity.
Reports from the literature showed that the dielectric
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Fig. 4 FTIR spectra for selected
electrolytes in the plasticized
system in the wavenumber region
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Fig. 5 FTIR spectra for electrolytes in the IL-based system in the
wavenumber region of a 3000–3600 cm−1 and b 955–1055 cm−1
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constant result is in good agreement with the conductivity
result [56–59]. The decrease in εr values with the increase
in frequency is attributed to the electrode polarization

effect [60]. As frequency increases, the periodic reversal
of the electric field occurs so rapidly which disables the
charge carriers from orienting themselves in the field di-
rection, resulting in the decrease of εr [61].

The information of the relaxation phenomena of the highest
conducting electrolyte in salted, plasticized, and IL-based sys-
tems is obtained from the plot of loss tangent (tan δ) as a
function of frequency in Fig. 9. The value of tan δ was calcu-
lated using the following equation:

tan δ ¼ εi
εr

ð3Þ

The maximum of tan δ (tan δmax), which represents
the relaxation peak, is located at a higher frequency for
the higher conducting electrolyte. The relaxation time
(tr) for each electrolyte was obtained from the relation
as follows:

trωpeak ¼ 1 ð4Þ
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where ωpeak is the angular frequency of the relaxation peak.
The occurrence of relaxation time is the result of the efforts
carried out by ionic charge carriers to follow the change of the
direction of the applied field [62]. The values of tr for the
electrolytes are presented in Table 4. The highest conducting
electrolyte (B18) possesses the lowest tr value of 9.36 × 10

−6 s.
Other reports also show that the higher conducting electrolytes
have the lower values of tr [44, 62, 63].

The distribution of relaxation times can be described by
Kohlrausch-Williams-Watts law [64]:

ϕ tð Þ ¼ exp −
t

tr

� �β
" #

ð5Þ

where ϕ(t) describes the time evolution of the electric field
within a material and β is the Kohlrausch exponent. In the
present work, the values of β for S20, P30, and B18 elec-
trolytes at room temperature are determined from the full
width at half maximum (FWHM) of the normalized plot of
tan δ/(tan δ)max against f/fmax in Fig. 10 using the following
equation:

β ¼ 1:14

FWHM
ð6Þ

For a typical Debye peak, the value of FWHM is 1.14
decades, which gives β = 1 for Debye relaxation [65, 66].
For a practical solid electrolyte, the value of β is less than
1 [67]. It is found that the values of β for S20, P30, and
B18 electrolytes at room temperature are 0.58, 0.85, and
0.83, respectively. Since the values of β are lower than 1,
it can be inferred that the relaxation deviates from Debye
relaxation.
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Fig. 9 The dependence of tan δ on frequency for a S20 and b P30 and
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Table 4 Relaxation time
of the highest conducting
electrolyte in each
system at room
temperature

Sample tr (s)

S20 1.87 × 10−4

P30 1.06 × 10−5

B18 9.36 × 10−6
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The real part and imaginary part of electrical modulus were
calculated using

M r ¼ εr
εr2 þ εi2ð Þ ð7Þ

M i ¼ εi
εr2 þ εi2ð Þ ð8Þ

where Mr and Mi are real and imaginary parts of electrical
modulus, respectively. Figure 11a shows the variation of
Mr with frequency for the highest conducting electrolyte in
each system at room temperature. The values of Mr in-
crease as the frequency increases, but no definitive peaks
appear in the Mr plots. The same result has been reported
by Shukur et al. [68] for chitosan-polyethylene oxide
(PEO)-ammonium nitrate (NH4NO3) system. Figure 11b
shows the variation of Mi with frequency for the highest
conducting electrolyte in each system at room temperature.
A peak is observed in the Mi plot of S20 electrolyte indi-
cating that the electrolyte is an ionic conductor [69]. The
long tail of small values at lower frequencies in the Mi

plots of P30 and B18 electrolytes is mainly due to high

capacitance values which associated with the electrode,
as a result of accumulation of charge carriers at the
electrode-electrolyte interfaces [7, 70, 71].

Transference number analysis

To detect the type of charge carriers in the polymer electro-
lytes, the transference number measurements were carried out.
By sandwiching the electrolyte with charge carrier transparent
electrodes, transference number of the charge carrier can be
known from the ratio of steady-state current (Iss) to the initial
current (Ii). According to Kufian et al. [72], electrons are
transparent to the ion blocking stainless steel electrodes.
Thus, in the present work, stainless steels were used as the
electrodes for the determination of transference number of
electron (te). By knowing te, the value of tion of the electrolytes
was calculated using

tion ¼ 1−te ð9Þ

Or

tion ¼ I i−I ss
I i

ð10Þ

If ions are the dominant charge carriers, the current
flows through the electrode will decrease rapidly with
time, while if electrons are dominant, the current would
not decrease with time [1, 33, 73]. The plots of polarization
current against time for B18 electrolyte is shown in
Fig. 12. The current is observed to decrease rapidly initial-
ly, before being saturated at 2.3 μΑ. This result shows that
the electrolyte is an ionic conductor. The value of tion for
B18 electrolyte is 0.92, further evidences that ions are the
dominant charge carriers. The tion values for other magne-
sium ion conducting solid polymer electrolytes [74–76]
have been reported to be >0.90, which is comparable with
the present result.
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Conclusions

Potato starch doped with Mg(C2H3O2)2-based electrolytes
was successfully prepared via solution cast technique. FTIR
analysis proved the interaction between the electrolyte mate-
r ia ls . In the sal ted system, the elect rolyte wi th
20 wt.% Mg(C2H3O2)2 (S20) has a conductivity of
(2.44 ± 0.37) × 10−8 S cm−1. In the plasticized system, the
addition of 30 wt.% glycerol (P30) has increased the conduc-
tivity to (2.60 ± 0.42) × 10−6 S cm−1. In the ionic liquid-based
system, the addition of 18 wt.% BmImCl (B18) has further
enhanced the conductivity to (1.12 ± 0.08) × 10−5 S cm−1.
Dielectric analysis verified the conductivity result. The relax-
ation time (tr) of electrolytes was determined from the loss
tangent (tan δ) plot where higher conducting electrolyte has
lower tr value. Scaling of tan δ showed that the ionic relaxation
was non-Debye type. From transference number measurement
of B18 electrolyte, ions were found to be the dominant charge
carriers with tion of 0.92.
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