
ORIGINAL PAPER

Response of a new multi-walled carbon nanotubes modified
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Abstract 1-Hexyl-3-methylimidazolium tetraphenylborate
([C6mim]-TPB) was synthesized and explored as ion ex-
changer in carbon paste electrode (CPE) as an ion-selective
electrode (ISE). The electrode was found to be optimal with
the composition of 42 % graphite powder, 20 % paraffin oil,
30 % ion exchanger, 5 %MWCNTs, and 3 % nano-silica. The
as-prepared electrode exhibits a Nernstian response (59.2 mV
per decade) to 1-hexyl-3-methylimidazolium cation in the
concentration range from 1.0×10−5 to 1.0×10−2 mol kg−1.
The novel as-prepared MWCNTs/nano-silica/CPE was suc-
cessfully applied in the detection of [C6mim]+ in distilled wa-
ter, tap water, and river water with satisfactory results.
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Introduction

Ionic liquids (ILs) are considered as a class of promising and
Bgreen^ non-molecular solvents in many processes owing to
their unique chemical and physical properties, such as good
solvating, non-volatility, high ionic conductivity, low vapor
pressure, and low melting temperature [1]. All these

interesting properties open the road to a wide range of appli-
cations, including electrochemical sensors [2], separation [3],
extraction [4], inorganic synthesis [5], organic synthesis and
catalysis [6, 7], nanomaterial synthesis [8], and enzymatic
reactions [1, 9–14]. Because of their high ionic conductivity
properties, ILs have recently been used as components for the
construction of carbon paste ion-selective electrodes [15–18].

Scientists and engineers are working to delve deeply into
the fundamentals and industrial application of ILs, especially,
ionic liquids based on the 1-alkyl-3- methylimidazolium cat-
ion. In 1982, Wilkes et al. found that dialkylimidazolium
chloroaluminate melts have more negative electrochemical
reduction potential than N-alkyl pyridine salts [19]. Thereaf-
ter, many ILs containing a variety of cations and anions of
different sizes have been synthesized for specific applications.
Moreover, numerous properties, such as hydrophobicity, vis-
cosity, and density, of the ILs have been studied as well as
their dependence on the alkyl chain length [20–22].

The researches of ILs have become increasingly booming
and thriving. However, recently, it has been demonstrated that
many commonly used ionic liquids have a certain level of
toxicity [23]. Their large scale use would give rise to environ-
mental pollution through accidental spills or as effluents. The
toxicity of many ionic liquids can be similar to the industrial
solvents they may replace [24, 25]. While ILs pose little threat
of airborne toxicity, a growing body of evidence suggests that
they can be toxic to aquatic organisms, including bacteria,
plants, invertebrates, and fish [26, 25, 27–29]. Most of the
conventional methods for the determination of ILs reported
in the literature include chromatography and electrophoresis
[30, 31]. These methods are not only time consuming but also
too cost intensive for most analytical laboratories. Therefore,
it is desired to develop a simple, effective, and environment-
friendly method for the determination of these ILs in environ-
mental and biological samples. The interest in ion-selective
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electrodes (ISEs) has grown over recent years as they are easy-
to-use devices that allow rapid and accurate analytical deter-
mination of chemical species at relatively low concentration,
with a reasonable selectivity and low cost. However, to the
best of our knowledge, there are rarely reports in the literature
on the utilization of ISEs in the determination of ILs in solu-
tion [32, 33].

Carbon paste electrodes (CPEs) have attracted much atten-
tion, mainly because they have more advantages over mem-
brane electrodes such as renewability, low ohmic resistance,
stable response, and no-internal solution [34–38]. The carbon
paste as an ion-selective electrode usually consists of graphite
powder and ion exchanger dispersed in nonconductive paraf-
fin oil [39–41]. They also have gained a great deal of interest
owing to their additional components’ low cost, good electron
transfer kinetics, and biocompatibility [42].

In 1996, Britto et al. [43] demonstrated for the first time
that the use of carbon nanotubes (CNTs) in the study of dopa-
mine detection. Recently, a new family of nanoporous carbons
prepared by thermal conversion of metal organic frameworks
(MOFs) has been utilized as sensors and electrode materials
[44–46]. Multi-walled carbon nanotubes (MWCNTs) have al-
so been used in composition of carbon paste electrodes [16,
47, 48]. Due to their special physicochemical properties such
as metallic or semi-metallic behavior, ultra-light weight, ther-
mal conductivity, mechanical strength, surface area, and elec-
trical conductivity, the MWCNTs-based sensors generally
have higher sensitivities, lower limits of detection, and faster
electron transfer kinetics than traditional carbon electrodes
[49–53].

In our previous work [33], a type of PVC membrane elec-
trodes were made for determination of the 1-alkyl-3-
methylimidazolium bromide ionic liquids ([Cnmim]Br, n=3–
8). However, the main problem of PVC membrane ion-
selective electrode is their low physical and mechanical sta-
bility after a series of experiments. In order to improve the
performance and low physical and mechanical stability of
the electrode, a novel MWCNTs/nano-silica/CPE was pre-
pared. The electrode could be used for a long term and
renewed easily by mechanical polishing whenever needed.
The paste electrode works based on the ion exchanger
([C6mim]-TPB) which was made from the reaction between
[C6mim]Br and NaTPB (sodium tetraphenylborate).

Experimental

Materials and reagents

Sodium tetraphenylborate (A.R.; Aladdin), graphite powder
with a small particle size (<30 μm; Shanghai Colloid Chem-
ical Plant, China), nano-silica (Sigma), and high-purity paraf-
fin oil (Sigma) were used. Ionic liquids [C6mim]Cl,

[Cnmim]Br (n=2–8) (>99 %), and [CnPy]Br (n=2, 4)
(>99 %) were purchased from Lanzhou Greenchem. Co.,
LICP, China. MWCNTs with 10–20 nm diameter, 10–
30 μm length, 5–10 nm core diameter, >200 m2 g−1 SSA,
0.22 g cm−3 tap density, 2.1 g cm−3 true density, and with
95 % purity were purchased from Boyu Gaoke Co., Beijing,
China. All these materials (except paraffin oil) were dried
under vacuum for 3 days before use. De-ionized water with
a conductivity of 1.0×10−4–1.2×10−4 S m−1 was used
throughout all experiments.

Preparation of sensing element (ion exchanger) [33]

The ion exchanger, [C6mim]-TPB (Scheme 1), was prepared
from the reaction of [C6mim]Cl and NaTPB: 150 mL of 1.0×
10−2 mol kg−1 NaTPB solution was dropwise added into
120 mL of aqueous [C6mim]Cl solution with the same molal-
ity under stirring at 323.15 K. After the mixture stood for 24 h
at room temperature, white sediment (C6mim-TPB) generat-
ed. Then the sediment was washed by ethanol and redistilled
water in sequence, and was dried under vacuum for 6 h at
338.15 K.

Preparation of the carbon paste electrode (CPE)

The modified CPE was prepared as follows [16, 54–57]: the
paraffin oil along with an appropriate amount of ion exchang-
er ([C6mim]-TPB), graphite powder, MWCNTs, and nano-
silica were thoroughly mixed. After homogenization of the
mixture, the resulting carbon paste was carefully transferred
into a plastic tube with 2.5 mm inner diameter and a height of
5 cm. The paste piled into the tube must avoid possible air
gaps, which often enhance the electrode resistant. A copper
wire was inserted into the opposite end of the CPE to establish
electrical contact. External surface of the carbon paste elec-
trode was smoothed with soft paper. A new surface can be
renewed by scraping out the old surface and replaced by the
new carbon paste. The CPE was finally conditioned for 48 h
by soaking it into a solution of 1.0×10−3 mol kg−1 [C6mim]Br.

Standard 1-hexyl-3-methylimidazoliumbromine solutions

A stock solution of 1.0 mol kg−1 [C6mim]Br was prepared.
The working standard solutions (1.0 × 10−7–5.0 ×
10−2 mol kg−1) were prepared by appropriately dilution of
the stock solution with de-ionized water. The working

Scheme 1 Chemical structure of ion exchanger [C6mim]-TPB (TPB=
BPh4

−)
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standard solutions of pH=6.5 was used throughout all
experiments.

Experimental measurements

The as-prepared imidazolium cation selective electrode (CPE)
and Ag/AgCl reference electrode (Jiangsu Electronical Instru-
ment Co.) were used in the experiments. Cell potentials were
measured by a PH/ISE meter (model 920A+; Orion) with a
resolution of 0.1 mV. The test solution was continuously
stirred with a magnetic stirrer. The CPE and the reference
electrode were immersed in test solutions. The temperature
of all test solutions in cell was controlled at T=298.15±
0.05 K with a low-temperature thermostat (model DC-2006;
Shanghai Hengping Instrument Factory, China). The follow-
ing electrochemical cells were set up tomeasure cell potentials
for the sample systems.

CPE sample solutionj jAg=AgCl−KCl satd:ð Þ

The micrographs of the surface of as-prepared elec-
trode were obtained at 30.0 kV on a JSM-5610LV scan-
ning electron microscope (SEM; JEOL, Japan). The
electrochemical impedance spectroscopy (EIS) was per-
formed using an Autolab Potentiostat/Galvanostat (Mod-
el 600 D; CH Instruments, Inc.). A conventional three-
electrode system was used with a carbon paste working
electrode, a saturated calomel electrode (SCE; Jiangsu
Electronical Instrument Co.) as the reference electrode,
and a Pt wire as the counter electrode.

Results and discussion

Carbon paste composition selection

For potentiometric sensors or ion selective electrodes, the ion-
ophore impeded in the sensing composition of the electrode
largely determines sensitivity and selectivity of the electrode.
The ionophore (or ion exchanger) is the most important sens-
ing component in an ion-selective electrode. It binds selective-
ly the target ion while discriminating against interfering ions
[58–61]. The ion exchanger ([C6mim]-TPB) was used to fab-
ricate different CPEs with a variety of compositions. The re-
sults for these CPEs are given in Table 1. Obviously, the CPE
no-containing ion exchanger showed almost no Nernst re-
sponse (electrode No. 1, in Table 1). At the use of the ion
exchanger as a modifier but the absence of MWCNTs and
nano-silica in the composition of paste, the response slope first
increased and then decreased. With the increase of the amount
of the ion exchanger, the efficient exchange between cations
in the electrode and solution increased. But over some thresh-
old, the conductivity decreased due to the decrease in the

amount of graphite, and consequently the response slope de-
creased. It can be clearly seen from the comparison among the
electrodes (Nos. 2–4). The CPE (No. 3) showed a sub-
Nernstian slope of 24.8 mV per decade. Along with the in-
crease of paraffin, the impedance of the electrode increased,
and thus the response of the electrode decreased (Nos. 3, 5, 6).

The MWCNTs can improve the conductivity and convert
the chemical signal to an electrical signal. Moreover, their
unique dimensions and unusual current conduction mecha-
nism make the carbon nanotubes, especially multi-walled car-
bon nanotubes, become an ideal component in electrical cir-
cuits. The influence of the MWCNTs to the response of the
electrode was similar to the ion exchanger (Nos. 7–9). Higher
amounts of MWCNTs in the matrix of the modified electrode
did not show an expected change in the Nernstian slope. The
CPE (No. 8) showed a sub-Nernstian slope of 46.2 mV per
decade. Rechanging the amount of the ion exchanger (Nos. 8,
10, 11), we observed that No. 11 was the best modified CPE
and showed a Nernstian slope 57.6mV per decade. So the best
ratio of the ion exchanger in carbon nanotube paste composi-
tion was fixed at 30 % (w/w).

Nano-silica-based materials are robust inorganic
solids displaying both high specific surface area and a
three-dimensional structure made of highly open spaces
interconnected to each other. This would impart high
diffusion rates of selected targets to a large number of
accessible binding sites, which constitutes a definite key
factor in designing sensor devices with high sensitivity
[62]. The research about electroanalysis with pure,
chemically modified, and sol–gel-derived silica-based
materials has been reported by Walcarius in 2001 [63].
Also, nano-silica in the composition of the carbon paste
can improve the response of the electrode. In addition,
the use of nano-silica in carbon paste enhances the me-
chanical properties of the electrode. Generally, the nano-
silica had a similar influence trend with MWCNTs
(Nos. 11–14).

Ultimately, the electrode was found to be optimal with the
composition of 42% graphite powder, 20% paraffin oil, 30%
ion exchanger, 5 % MWCNTs, and 3 % nano-silica. There-
fore, this electrode (No. 13) was chosen for further
examination.

Scanning electron microscope (SEM) characterization

Figure 1 shows the SEM images for CPE andMWCNTs/CPE.
As can be seen from Fig. 1a, the layer of irregular flakes of
graphite powder was present and isolated from each other in
the surface of CPE. By addition of MWCNTs to the carbon
paste (Fig. 1b), it can be seen that most of the MWCNTs were
in the form of small bundles or single tubes and were distrib-
uted on the surface of the electrode.
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Calibration graph and statistical data

As shown in Fig. 2, MWCNTs/nano-silica/CPE with the op-
timum composition (No. 13) exhibited Nernstian response to
[C6mim]+ in aqueous solution in the range from 1.0×10−5 to
1.0×10−2 mol kg−1 and the slope was 59.2 mV per decade. To
calculate the detection limit of the CPE, the extrapolation of
the linear portion of the electrode’s calibration curve was used
and the detection limit was obtained to be 1×10−5 mol kg−1.

Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is always used
to further study the characterization of the electrodes, which
can reflect the surface properties of the modified electrodes.
The curve of the EIS can be regarded as two parts: one is a
semicircular part at higher frequencies and the other is a linear
part at lower frequencies. The semicircular part corresponds to

an electron-transfer limited process, which controls the elec-
tron transfer kinetics of the redox probe at the electrode inter-
face. Usually, the diameter of semicircular is equal to the elec-
tron transfer resistance (Ret). Meanwhile, the linear part at
lower frequencies represents diffusion limited process
[64–66]. Figure 3 shows the Nyquist diagrams of different
electrodes (Nos. 3, 8, 13 and PVC membrane electrode [33])
in 2.5 mmol dm−3 K3[Fe(CN)6]

+ 100 mmol dm−3 KCl
solution in the frequency ranging from 1 Hz to
100 kHz. The PVC membrane electrode showed a larger
semicircle in the high frequencies range and had a larg-
er resistance of electron transference than the CPE, in-
dicating a sluggish electrochemical performance of the
PVC membrane electrode. Meanwhile, the carbon paste
electrode decreased the resistance of the Fe(CN)6

3−/4−

redox couple. However, the MWCNTs/nano-silica/CPE
(No. 13) suggested a much smaller diameter in the high
frequencies range and can be used for the further study.

Table 1 Optimization of carbon paste electrode compositiona

Number Composition (%) Slope (mV per decade) Line range (mol kg−1) R2

Graphite Paraffin [C6mim]-TPB MWCNTs Nano-silica

1 80 20 – – – 9.0±0.1 – –

2 70 20 10 – – 15.0±0.1 1.0×10−5–1.0×10−2 0.989

3 60 20 20 – – 24.8±0.3 1.0×10−4–1.0×10−2 0.980

4 55 20 25 – – 12.0±0.2 1.0×10−5–5.0×10−2 0.892

5 55 25 20 – – 22.3±0.3 1.0×10−5–1.0×10−2 0.967

6 50 30 20 – – 9.6±0.1 1.0×10−5–1.0×10−2 0.899

7 57 20 20 3 – 38.6±0.1 1.0×10−5–1.0×10−2 0.988

8 55 20 20 5 – 46.2±0.2 1.0×10−5–1.0×10−2 0.982

9 53 20 20 7 – 36.7±0.3 1.0×10−4–1.0×10−2 0.991

10 50 20 25 5 – 54.9±0.3 1.0×10−5–1.0×10−2 0.963

11 45 20 30 5 – 57.6±0.2 1.0×10−5–1.0×10−2 0.992

12 44 20 30 5 1 57.2±0.2 1.0×10−5–1.0×10−2 0.997

13 42 20 30 5 3 59.2±0.2 1.0×10−5–1.0×10−2 0.998

14 40 20 30 5 5 56.1±0.1 1.0×10−5–1.0×10−2 0.987

aAverage of three replicate measurements for every electrode

a b Graphite layer 

MWCNTs 

Fig. 1 SEM images of CPE (a)
and MWCNTs/CPE (b)
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Selectivity of the CPE

Selectivity, the most important characteristic of ion-selective
electrodes, describes an electrode’s specificity toward the tar-
get ion in the presence of interfering ions. In this work, the
selectivity coefficient of the new MWCNTs/nano-silica/CPE
was determined by the separate solution method (SSM) [50,
67, 68]. The values of the selectivity coefficient were calcu-
lated by the following equation:

logKpot
i j ¼ E2−E1

2:303RT=Zi F
þ 1−

Zi

Z j

� �
logai

where E1, E2, Zi, and Zj are the measured potentials and
charges on the ions i and j, respectively. ai is the activity of
ion i of interest (but no j) and j is the interfering ion at the same

activity aj=ai (but no i). The resulting values of selectivity
c o e f f i c i e n t s a r e g i v e n i n Ta b l e 2 . F o r t h e
alkylmethylimidazolium cations, the extent of interference is
lower, when the number of carbon atoms of alkyl side chain of
the interfering ions is less than six ([Cnmim]+, n<6). However,
it is higher when n >6. The alkylmethylimidazolium cation
with a longer alkyl side chain (n=7, 8) as an interfering ion
would interfere badly with the selectivity of the electrode to
the target ion ([C6mim]+). For the pyridinium cations, the
extent of interference with a shorter alkyl side chain is also
lower ([C2Py]

+<[C4Py]
+). For the inorganic cations, the ex-

tent of divalent cation (Ca2+) is lower than the univalent inor-
ganic cations (Na+, K+, NH4

+). Overall, it can be clearly seen
that the electrode has a relatively good selectivity except for
[C7mim]+ and [C8mim]+.

pH effect on the electrode response

To investigate the pH effect on the potential response of the
electrode, the potentials were measured for a given concentra-
tion of [C6mim]Br solution at different pH values and the pH
of solution was adjusted by the addition of NaOH or HCl
solution. The potential variation as a function of pH was plot-
ted (Fig. 4). The results indicated that the potential remains
approximately constant when the pH values change in the
range of 5 to 8.

Response time and lifetime of the CPE

The response time of an ion-selective electrode is an important
factor for any analytical application. The response time is
defined in this work by measuring the average time required
to achieve values within ±1 mV of the final equilibrium po-
tential (steady-state potential) [69, 70]. The resulting response
time for the electrode (No. 13) was obtained upon changing
the concentration of [C6mim]Br solution from 1.0×10−7 to
5.0×10−2 mol kg−1. The response time of the electrode was
less than 20 s.

1 2 3 4 5 6 7
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350

E
/m

V

−logm/(mol⋅kg−1)

R2=0.998 

Fig. 2 The calibration curve of the MWCNTs/nano-silica/CPE based on
[C6mim]-TPB (No. 13)

0 5 10 15 20 25 30
0

3

6

9

12

15

Z
′′×

10
4 /o

hm

Z′×104/ohm

3
 8
13
 PVC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.3

0.6

0.9

1.2

1.5

Z
′′×

10
4 /o

hm

Z′×104/ohm

3
8
13

0 5 10 15 20 25 30
0

3

6

9

12

15

Z
′′×

10
4 /o

hm

Z′×104/ohm

3
 8
13
 PVC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.3

0.6

0.9

1.2

1.5

Z
′′×

10
4 /o

hm

Z′×104/ohm

3
8
13

Fig. 3 Electrochemical impedance spectroscopy (EIS) for the CPE [Nos.
3 (filled squares), 8 (filled circles), 13 (filled triangles)] and PVC mem-
b r a n e e l e c t r o d e ( f i l l e d d own - p o i n t i n g t r i a n g l e s ) i n
2.5 mmol dm−3 K3[Fe(CN)6]

+, 100 mmol dm−3 KCl. Frequency range:
1–105 Hz

Table 2 Selective coefficients (KSSM) of the electrode (No. 13) to 1-
hexyl-3-methylimidazolium cation ([C6mim]+) for various interfering
cationsa

Interfering cation logKSSM Interfering cation logKSSM

[C2mim]+ −1.2 [C2Py]
+ −1.3

[C3mim]+ −1.5 [C4Py]
+ −0.8

[C4mim]+ −1.1 Na+ −1.1
[C5mim]+ −1.1 K+ −1.3
[C6mim]+ 0 Ca2+ −2.1
[C7mim]+ 0.2 NH4

+ −1.4
[C8mim]+ 0.3

a Average of three replicate measurements
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Lifetime is another important issue for the ion-selective
electrode. The average lifetime for most sensors ranges from
3 to 10 weeks. After this time, the slope of the sensor de-
creases and the detection limit increases. In this work, the
as-prepared CPE can be renewed by scraping the surface of
the used electrode, and the obtained results indicated that the
as-prepared CPE can be used for at least 5 months.

Analytical application

The as-prepared MWCNTs/nano-silica/CPE was successfully
applied to obtain recoveries of [C6mim]Br in distilled water,
tap water, and river water, respectively. The analysis was per-
formed by the standard addition technique. The results are
given in Table 3. Satisfactory results were observed in all the

cases. Therefore, the potentiometric sensor provides a good
alternative for the determination of [C6mim]+ in real samples.

Conclusions

The MWCNTs/nano-silica/CPE, a new potentiometric
sensor, was constructed for the determination of 1-
hexyl-3-methylimidazolium cation. The as-prepared
CPE exhibited excellent performances especially in life-
time and response time. The [C6mim]-TPB as the ion
exchanger was used in construction of CPE and thus its
response is based on ion-exchange mechanism. The
CPE was also used for the determination of [C6mim]Br
in three real water samples with good recoveries. It can
be expected that the CPE would be applied widely to
the detection of ILs and the determination of properties
of ILs in aqueous solutions.
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