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Abstract In this work, cellulose acetate–tin (IV) phosphate
nanocomposite (CA/TPNC) ion exchanger has been explored
for its photocatalytic degradation of methylene blue dye from
aqueous solution. The CA/TPNC was characterized using
Fourier transform infrared (FTIR) spectroscopy, transmission
electronmicroscopy (TEM) and X-ray diffraction (XRD). The
ion exchange capacity of nanocomposite ion exchanger was
observed to be high (1.48 meq g−1) for Na+ ion as compared to
their inorganic counterpart (0.56 meq g−1). The CA/TPNC
material was the photocatalytic degradation of methylene blue
dye onto CA/TPNC was investigated for 140 min of solar
irradiation at 662-nm wavelength. The 80 % the dye was
removed onto CA/TPNC after 60 min of irradiation. The rate
of photodegradation of MB dye onto CA/TPNC followed the
pseudo-first-order kinetic model.

Keywords Cellulose acetate . Nanocomposite . Ion exchange
property . Photocatalysis

Introduction

Environmental pollution caused by different toxic pollutants
from the domestic use and industrial activity has been of signif-
icant concern. Organic pollutants have been added into the water
system from industrial effluents, agriculture waste and chemical
stumble [1–3]. These pollutants due to toxic, mutagenic and
carcinogenic nature cause serious effects to human health.
Hence, the removal of the organic dyestuff from waste effluents
becomes the focus of important concern. The synthetic dyes have
adverse impact on the aquatic submerged plants and resulted in
slow photosynthesis process [4–6]. Many organic dyes have
complex structures and high resistance to biological oxidation;
therefore, it was a great challenge for the decolourization and
complete removal from the water system [7, 8]. Many methods
such as chemical oxidation, biological treatment, coagulation,
flocculation, adsorption, electrochemical, precipitation, adsorp-
tion and photocatalysis have been used for the removal of dyes
from wastewater [9–23]. However, most of these methods are
costly and cannot be effectively used for the treatment of a wide
range of organic dye [24]. Photocatalysis has been presently
considered as the most efficient method for the removal of the
organic dyes from wastewater due to its simplicity, financial
practicality, technical feasibility and social suitability [25].

Organic–inorganic nanocomposite ion exchanger has been
used in environmental remediation due to their good selectiv-
ity and specificity [26, 27]. The remediation of metal ions and
dyes from polluted water has been carried out by using several
biomaterial-based nanocomposite materials [28–30]. A num-
ber of bioadsorbents such as bacterial biomass and biopoly-
mers have been explored for the removal of toxic pollutants
from water systems [31, 32]. They are biodegradable, cost
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effective, harmless and richly available. Due to low stability,
difficulty in separation and low recovery after desorption are
the major limitations found in bioadsorbents [33].

Photosensitized degradation of coloured pollutants from
wastewater using nanocomposites has been of great signifi-
cance [34–36]. In recent years, advanced oxidation processes
(AOPs) have been suggested as an alternative to conventional
methods for the degradation of organic pollutants. AOPs
oxidize quickly and non-selectively a broad range of organic
pollutants [37, 38]. Heterogeneous photocatalysis via combi-
nation of semiconductor and UV light was considered to be
one of the promising advanced oxidation processes for the
destruction of water-soluble organic pollutants present in
wastewater.

In the recent years, our group has been extensively in-
volved for the photocatalytic degradation of dyes using nano-
composite ion exchangers [39, 40]. The outcomes from this
research provide great potential of nanocomposite ion ex-
changers for the treatment of organic pollutant. Until now,
no data is available regarding the use of cellulose acetate
based tin (IV) phosphate nanocomposite as photocatalyst for
the degradation of methylene blue dye from the water system
in presence of visible light.

This work deals with the synthesis of cellulose acetate–tin
(IV) phosphate nanocomposite (CA/TPNC) ion exchanger by
simple sol–gel method. CA/TPNC ion exchanger has been
subjected for different spectral analyses. Moreover, the CA/
TPNC ion exchanger was investigated for the photocatalytic
degradation of methylene blue dye from aqueous medium in
presence of sunlight.

Materials and methods

Materials

The reagents tin (IV) chloride and sodium dihydrogen phos-
phate were procured from Loba Chemia Pvt. Ltd., Mumbai,
India. Other chemicals such as formic acid (E. Merck Ltd.,
India) and cellulose acetate (CDH Pvt. Ltd., NewDelhi, India)
were used as received. Methylene blue dye was obtained from
S. D. Fine Ltd., India. The solutions of desired concentrations
were prepared by diluting the stock solution with double-
distilled water. The absorbance measurements were recorded
on a UV-visible spectrophotometer (Shimadzu UV-1601,
Japan).

Synthesis of cellulose acetate–tin (IV) phosphate
nanocomposite

Cellulose acetate–tin (IV) phosphate nanocomposite ion ex-
changer was synthesized using sol-gel method in two steps. In
the first step, 0.1 M sodium dihydrogen phosphate solution

and 0.1 M tin (IV) chloride solution were mixed with contin-
uous stirring at pH 0–1 as per method discussed earlier [40].
The mixture was stirred for 60 min to obtain tin (IV) phos-
phate (TP) precipitates. In next step, 4 % (v/v) cellulose acetate
(CA) gel was prepared in concentrated formic acid. The gel
was added to tin (IV) phosphate solution with continuous
stirring. The resultant mixture was allowed to stand overnight
with occasional shaking for digestion. Then, the supernatant
liquid was removed and precipitates were washed with
demineralized water several times to remove the excess of
reagents. The precipitates were converted into H+ by keeping
in 0.1 M HNO3 solution for 24 h. Then, the precipitates were
filtered and washedwith demineralized water and finally dried
in hot air oven at 50±2 °C.

Ion exchange capacity

The ion exchange capacity of CA/TPNC was determined as
per method discussed earlier [40]. In a typical procedure, 1 g
of the material in H+ form was placed in a glass column of 1-
cm internal diameter with glass wool support at the bottom.
The column was washed with double-distilled water to re-
move excess of the acid. The H+ ions from the column of CA/
TPNC were eluted with 1.0 M KCl solution. The flow rate
was maintained at 0.5 mL min−1. The collected effluent was
titrated against a standard alkali solution using phenolphtha-
lein indicator. The hydrogen ions released were calculated
using the formula as follows [41, 42]:

IEC ¼ N � V

W
mg=g ð1Þ

where IEC is ion exchange capacity, N and V (mL) are the
normality and the volume of NaOH, respectively, andW (mg)
is the weight of CA/TPNC.

Fourier transformer infrared spectra

Fourier transform infrared (FTIR) absorption spectrum of
nanocomposite ion exchanger was recorded in the wave num-
ber 400–4000 cm−1 using a Fourier transform infrared spec-
trophotometer (Perkin Spectrum-400) using KBr disc method.
In this, 10 mg of CA/TPNC in H+ formwas thoroughly mixed
with 100 mg of KBr and grounded to very fine powder. The
transparent disc was formed by applying the pressure.

Transmission electron microscopy

The particles size and morphology of CA/TPNC ion exchang-
er were analysed with high-resolution transmission electron
microscopy (Hitachi, H7500, Germany).

1788 Ionics (2015) 21:1787–1793



Photocatalytic activity of cellulose acetate–tin (IV) phosphate
nanocomposite

The photocatalytic experiment was carried out in a batch
reactor at 30±0.5 °C. In this method, 2×10−5 M solution of
methylene blue (MB) dye was prepared in double-distilled
water, and 100 mg of nanocomposite ion exchanger in H+

form was added with continuous stirring. In adsorption exper-
iments, slurry composed of dye solution and nanocomposite
ion exchanger suspension was stirred magnetically and placed
in the dark to establish adsorption–desorption equilibrium. In
case of photocatalytic studies, the suspension composed of
dye and catalyst was stirred for 15 min and exposed to natural
solar light radiations. The 5 mL of solution was withdrawn at
different intervals of time and centrifuged. The absorbance
was recorded in the range of 300 to 750 nm and kinetics of
MB degradation was studied. The percentage degradation of
methylene blue dye was calculated using the following for-
mula:

%Degradation ¼ Ce−Ct

Ce
� 100 ð2Þ

where Ce and Ct are the concentration of dye at equilibrium
and at time t. The structure on MB is shown below:

Results and discussion

FTIR analysis

The observed ion exchange capacity for potassium ions was
found to be 1.28 meq/g. FTIR spectra of CA/TPNC and CA
are shown in Fig. 1a–c. A broad peak observed at 3434 cm−1

may be due to presence of external water molecule [43].
Absorption band at 1741 cm−1 corresponds to carbonyl group
of cellulose acetate in Fig. 1a. The absorption peak at
1633 cm−1 was due to free water molecule and strongly
bonded –OH group in the matrix. It is observed that peaks
3434, 1741 and 1378 cm−1 for CA spectra are shifted to 3432,
1744 and 1376 cm−1 spectra of CA/TPNC (Fig. 1b). This shift
in the absorption bands confirmed the formation of composite
material. The sharp peak at 1039 cm−1 may be due to PO4

3−,
HPO4

2− and H2PO4
− [25]. The absorption peak at 1376 cm−1

may be due to vibration of hydroxyl groups. Further, the
absorption band at 490 cm−1 may be due to superposition of
metal-oxygen stretching vibrations confirming the binding

between cellulose acetate and tin (IV) phosphate [44]. The
marked shift in peak positions from 3432 to 3433 cm−1, 1744
to 1742 cm−1, 1051 to 1053 cm−1 and 1633 to 1647 cm−1 in
the spectra of CA/TPNC and MB dye adsorbed CA/TPNC
(Fig. 1c) suggest the interaction of dye molecules with func-
tional groups of nanocomposite.

Transmission electron microscopy analysis

The transmission electron micrographs of CA/TPNC ion ex-
changer at different magnifications are shown in Fig. 2. The
result revealed the wrapping of TP with CA to form the
composite material. The TEM images confirmed the forma-
tion of particles size in the range of 3–15 nm [45].

Photocatalytic activity of CA/TPNC

The photocatalytic activity of tin (IV) phosphate (TP), cellu-
lose acetate (CA) and cellulose acetate–tin (IV) phosphate
nanocomposite (CA/TPNC) were determined for the degra-
dation of methylene blue dye at various parameters as [MB]=
2×10−5 M, pH=4.2, catalyst dose=100 mg, time=150 min,
wavelength=662 nm. It has been revealed that the decrease in
MB absorbance was more in CA/TPNC as compared to TP
and CA, which confirmed the more degradation of MB onto
composite as shown in Fig. 3.

The high degradation percentage of MB onto CA/TPNC
was due to the presence of both the CA and TP in a nano-
composite ion exchanger. Moreover, high photocatalytic ac-
tivity of CA/TPNC ion exchanger may be due to simultaneous
adsorption and photocatalytic activity of composite material
[46]. The mechanism of photocatalytic degradation of meth-
ylene blue (MB) onto CA/TPNC was shown below.

On irradiation, the conduction band electrons were trans-
ferred to the surface of catalyst, producing electron–hole pair
(hvb

+/e−CB). At the conduction band, electrons reduced the O2

to hydroxyl radicals (OH·). The valance band holes react with
OH−/H2O and form OH− radicals [47]. The highly oxidizing
OH− radicals were responsible for the degradation of MB dye.
The probable mechanism is as follows:

CA=TPNCþMB �����→ CA=TPNC‐MBads

CA=TPNC‐MBads þ hv �����→ CA=TPNC‐MB�
ads

CA=TPNC‐MB�
ads �����→ e−CBþhþVB

hþ þ H2O �����→ ȮHþ Hþ

O2 þ e− �����→ O−
2

O−
2 þ Hþ �����→ HO2

2HO2 �����→ H2O2 þ O2

H2O2 þ O−
2 �����→ 2OHþ O2

OHþMethylene blue �����→ Degraded product

As evident from Fig. 5a, about 60 % of the dye was
removed in 20 min of radiation time onto CA/TPNC
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compared to 18 and 5 % degradation of MB onto TP and CA
under the same conditions. The photodegradation of dye was
elucidated on the basis of decrease in dye concentration both in
bulk solution and catalyst surface [48]. The photocatalytic
degradation depends on dye concentration in bulk and on the
surface of catalyst. It was observed that about 80 % theMB dye
was degraded onto CA/TPNC after 60 min of irradiation.

The photodegradation of MB dye was studied under dif-
ferent conditions—equilibrium adsorption in the dark, simul-
taneous adsorption and degradation, and equilibrium adsorp-
tion followed by photodegradation onto TP, CA and CA/
TPNC in presence of solar radiation. For the equilibrium
adsorption in the dark, only 8, 3 and 45 % degradation was
recorded within 20 min of irradiation for TP, CA and CA/

Fig. 1 FTIR spectra. a CA, b
CA/TPNC and c CA/TPNC after
adsorption of MB
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TPNC (Fig. 4a). In simultaneous adsorption and degradation
(Fig. 3), the MB dye degradation onto different catalysts was
18, 5 and 60% for TP, CA and CA/TPNC, respectively. In case
of simultaneous adsorption followed by photodegradation pro-
cess (Fig. 5), the instant amount of dye adsorbed onto the
surface of catalysts was not very high due to screening effect
of sunlight and provided sufficient active sites to generate
valance band holes and conduction band electrons [49].

The photocatalytic degradation of dyes obeyed pseudo-
first-order kinetic model and the rate of degradation was
calculated as follows [50]:

r ¼ −
dc

dt
¼ kappt ð3Þ

Fig. 2 TEM micrograph of CA/TPNC ion exchanger at different magnifications

Fig. 3 Photocatalytic degradation of methylene blue dye onto CA, TP
and CA/TPNC in presence of solar light at different experimental condi-
tions: initial dye concentration = 2×10−5 M, pH=4.2, catalyst dose=
100 mg, time=150 min and wavelength=662 nm

Fig. 4 Equilibrium adsorption followed by photocatalytic degradation
onto TP, CA and CA/TPNC in the presence of solar light at different
experimental conditions: [MB] = 2 × 10−5 M, pH = 4.2, catalyst
dose = 100 mg, time = 150 min and wavelength = 662 nm
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On integrating the above equation, we get

lnCo=Ct ¼ Kappt ð4Þ

where Kapp is the apparent rate constant, C0 is the concentra-
tions of dye before radiation and Ct is the concentration of dye
at time t. The plot of InCo/Ct versus irradiation time resulted in
linear correlation with good precision as shown in Fig. 5.
Thus, the photodegradation of MB dye using nanocomposite
ion exchanger was fitted well in pseudo-first-order kinetics.
The value of rate constant K = 0.0126 min−1 was calculated
from the slope of the plot with R2 = 0.9998.

Conclusion

In the present study, the synthesized cellulose acetate–tin (IV)
phosphate nanocomposite (CA/TPNC) ion exchanger has
been successfully explored for the photocatalytic degradation
of methylene blue from wastewater. The different spectral
analyses confirmed the formation of nanocomposite material.
CA/TPNC exhibited high ion exchange capacity with signif-
icant photocatalytic activity compared to their counterparts.
The simultaneous adsorption and photocatalytic processes
proved to be highly efficient for the degradation of methylene
blue dye.
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