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Abstract Fe2O3/reduced graphene oxide (RGO) nanocom-
posites were prepared by a hydrothermal reduction using
Fe(OH)3 and graphene oxide (GO) precursors, which were
assembled electrostatically by mixing a negatively charged
GO aqueous suspension with a positively charged Fe(OH)3
solution at room temperature. The resulting composites were
characterized using XRD, SEM, FTIR, and TGA, and then
were used to modify the glassy carbon electrode (GCE). The
electrochemical behavior of rutin on different types of elec-
trode was compared, and the Fe2O3/RGO composite en-
hanced electrochemical catalysis effect on rutin, and suitable
for rutin detection with high sensitivity and short response
time. After 90 s, under open circuit potential, the linear range
was increased from 1.5×10−8 to 1.8×10−5 M, and the detec-
tion limit was reduced to 9.8×10−9 M. This method of anal-
ysis has high recovery ratio of rutin up to 99.5 %.

Keywords Composite materials . Nanostructures . Chemical
synthesis . Electrochemical properties

Introduction

Rutin, 3′,4′,5,7-tetrahydroxyflavone-3β-D-rutinoside, is one
of the most abundant flavonoids which are a group of
antioxidizing active polyphenolic compounds [1, 2]. It shows
that rutin acts as a scavenger of various oxidizing species, i.e.,
superoxide anion, hydroxyl radical, and peroxyl radicals [3],
and has been widely used clinically as the therapeutical med-
icines [4]. Therefore, it is quite important and interesting to
develop simple and sensitive methods to determine rutin.
Recently, some techniques have been established for this
purpose, such as the high-performance liquid chromatography
(HPLC) [5] , sequen t i a l in jec t ion ana lys i s [6 ] ,
electrochemiluminescence [7], capillary zone electrophoresis
[8], reversed-phase liquid chromatography (RPLC) [9], flow
injection analysis [10], chemiluminescence [11], spectropho-
tometry [12], and electrochemistry methods [13]. Among
these techniques, the electroanalytical technique exhibits
many advantages, such as convenient handling, low cost,
short analysis time, and high sensitivity.

Graphene, a 2D monolayer of sp2 carbon in a honeycomb-
like network [14], has attracted infinite scientific interest due
to its outstanding optical, thermal, electrical, and mechanical
properties [15]. Graphene-based composites with the ad-
vanced properties of graphene, such as graphene-transition
metal oxide composites and graphene-conducting composites,
have large surface areas and good electrical conductivities,
and have been investigated for electrochemical sensors [16,
17], either as electrode materials [18, 19] or as platforms for
metal oxide nanoparticles to avoid their agglomeration [20].
Recently, graphene, a rising star in the carbon family, has been
proposed as an ideal matrix for various composites used in
detection of rutin because of its excellent electronic properties,
superior chemical stability, and high specific surface area
[21–25]. For instance, Yang et al. incorporated Ag nanoparti-
cles into poly(methylene blue) functionalized graphene to
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prepare a Ag nanoparticles/poly(methylene blue) functional-
ized graphene nanocomposite (AgNPs/PMB–GR) film mod-
ified electrode for sensitive determination of rutin. The results
demonstrated that the AgNPs/PMB–GR could remarkably
increase the redox currents of rutin, and the lowest detectable
concentration was 1×10−8 M [21]. A similar effect of MnO2

incorporation has also been demonstrated in MnO2–graphene
composites [22]. However, to the best of our knowledge,
electrochemical determination of rutin using electrode modi-
fied by the Fe2O3/RGO composite has not been reported. In
this study, we developed a facile electrostatic-assisted self-
assembly method for the preparation of Fe2O3/RGO nano-
composites from Fe(OH)3/graphene oxide (GO). The Fe2O3/
RGO nanocomposites will be used to modify different glassy
carbon electrodes (GCEs) for rutin detection.

Experimental

Synthesis of Fe2O3 nanoparticles, RGO, and Fe2O3/RGO
composites

In a typical procedure, a 100 mL of 0.1 M FeCl3 aqueous
solution in a beaker was boiled to form a stable Fe(OH)3
colloidal suspension of positively charged.

Fifty-milligram GO, synthesized by a modified Hum-
mer’s method [17], was ultrasonically dispersed in 50 mL
H2O for 1.5 h to acquire a stable GO suspension. The pH
of the suspension was adjusted close to 6.2 with a zeta
potential of −42 mV using 1 M NaOH and 1 M HCl
solutions [26]. At this pH, the GO nanosheets were neg-
atively charged. Then, the above GO suspension was
quickly mixed with the Fe(OH)3 solution under vigorous
stirring. Since the Fe(OH)3 molecules were positively
charged, they quickly assembled with the negatively
charged GO and formed a flocculent suspension within a
few minutes. Finally, the mixed flocculent suspension was
transferred to a 100-mL Teflon container. After sealing,
the Teflon-lined stainless steel pressure vessel was heated

at 180 °C for 12 h. With the same method, Fe2O3 nano-
particles [27] were also obtained without using the nega-
tively charged GO, and RGO [28] was obtained without
involving the Fe(OH)3 colloidal solution, for comparison.
After the reaction, the product was centrifuged and
washed with distilled water and acetone, for three times,
then dried at 60 °C. The synthetic process is shown in
Scheme 1.

The modification of GCEs

Fe2O3 nanoparticles, RGOs, and Fe2O3/RGO composites
(10.0 mg each) were respectively added into 10 mL of
cyclohexanol, and sonically treated using a KQ3200DE
ultrasonicator for 1 h. Before modification, the GCEs with
a diameter of 3 mm were polished with 0.05-mm alumina
paste, and then sonicated in double-distilled water for
2 min. The GCEs were then coated with 10 μL Fe2O3,
RGO, and Fe2O3/RGO suspension. After the evaporation
of the cyclohexanol under an infrared lamp in air, the
modified GCEs (Fe2O3/GCEs, RGO/GCEs and Fe2O3/
RGO/GCEs) were obtained.

Scheme 1 The preparation
course of the Fe2O3/RGO
nanocomposites

Fig. 1 XRD patterns of RGO and Fe2O3/RGO
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Characterization

The morphology of the materials was tested by using a SEM
(JSM-6510LV, Japan). The structure of products was charac-
terized by X-ray diffraction (XRD) (Shimadzu XRD-7000,
Japan) using Cu-Ka radiation (γ for Kα=1.54Å) at 40 kVand
40 mA. Infrared spectra of products were recorded on a
Nicolet 360 Fourier transform infrared (FTIR) instrument
using KBr pellet in the 400∼4000 cm−1 range. Thermogravi-
metric analysis (TGA) was conducted on a DSCQ1000

instrument from 50 to 1000 °C at a heating rate of
10 °C min−1 in air.

All the electrochemical measurements were carried out
using a 660D electrochemical analyzer (CH Instruments,
USA). A conventional three-electrode system, consisting of
Fe2O3/RGO composite modified working GCE, a saturated
calomel reference electrode (SCE), and a platinum wire aux-
iliary electrode, was employed. A 0.1 M and pH 5.7
phosphate-buffered saline (PBS) solution was used as the
supporting electrolyte for the detection of rutin. The cyclic
voltammetry (CV) tests were conducted at a scan rate of
0.1 V s−1 from 0 to 0.8 V. Differential pulse voltammetry

Fig. 2 SEM images of RGO,
Fe2O3/RGO, and Fe2O3

Fig. 3 FTIR spectra of GO and Fe2O3/RGO composites Fig. 4 TGA curves of Fe2O3 and Fe2O3/RGO
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(DPV) was used to study the electrochemical behavior in low
rutin concentrations from 0.1 to 0.8 V.

Results and discussion

Morphology and structures

Figure 1 shows the XRD patterns of the RGO and Fe2O3/
RGO composites. The dominant diffraction peaks can be
attributed to Fe2O3 for Fe2O3/RGO (JCPDS No. 33-0664).
Awide peak of RGO appears in the range of 24°–26°, which is
consistent with Shin et al. [29]. Compared with the peaks of
the Fe2O3/RGO nanocomposites, the small diffraction peaks
of the RGO indicate that the RGO nanosheets were sufficient-
ly exfoliated by the attached Fe2O3 nanoparticles [30]. These
results show that the as-acquired composites consist of disor-
deredly stacked graphene and well-crystallized Fe2O3

nanoparticles.

The SEM observation results of the materials are presented
in Fig. 2. As shown in Fig. 2a, the RGO film demonstrated a
curly and corrugated appearance consisting of a wrinkled
paper-like structure. Figure 2b clearly shows that the Fe2O3

nanoparticles are uniformly confined between the RGO nano-
sheets. Even though undergone strong sonications, the nano-
particles were still firmly attached onto the RGO nanosheets,
which implies a vigorous interaction between the Fe2O3 and
the RGO. Without such confinements by the RGO, Fe2O3

nanoparticles tend to be collective as shown in Fig. 2c.
Figure 2b, c reveals that the average diameter of the Fe2O3

nanoparticles is about 110 nm.
FTIR spectroscopy was employed to measure the structural

change in bonding related to the GO and Fe2O3/RGO com-
posites, and the results are shown in Fig. 3. The broad absorp-
tions at about 3428 and 1635 cm−1 are assigned to the hy-
droxyl groups. The absorption band at 1045 cm−1 can be
assigned to the stretching vibration of C–O. The C=O vibra-
tion band at 1724 cm−1 (for Fe2O3/RGO) is much weaker after
the hydrothermal reaction, due to the transition of GO to RGO
[31, 32]. In addition, the strong absorption bands at 559 and
463 cm−1 are attributed to the vibration of the Fe–O bond [33].

Figure 4 shows the TGA profiles of both the Fe2O3/RGO
and the bare Fe2O3 nanoparticles, from room temperature to
1000 °C in air. The small weight loss of Fe2O3 below 350 °C
is due to the evaporation of moisture or gaseous absorbed in
the nanocomposites [34]. For the Fe2O3/RGO, there is a small
stage of weight loss below 350 °C, which could be ascribed to
the reduced hydroxyl groups in the RGO and possible water
absorbed during the IR measurements [35]. However, the
weight loss from 350–430 °C is due to the combustion of
carbon in air. This is confirmed by the TGA curve of the bare
RGO in the same temperature range. Thus, according to the
above analysis, the carbon content in the Fe2O3/RGO nano-
composites is ∼67.57 wt%.

Fig. 5 CV curves of 2μM rutin onGCE (a), Fe2O3/GCE (b), RGO/GCE
(c), and Fe2O3/RGO/GCE (d) in pH 5.7 PBS solution

Fig. 6 aCyclic voltammograms of 2 μM rutin with different scan rate (υ) for Fe2O3/RGO/GCE in pH 5.7 PBS (c–g 0.05, 0.1, 0.15, 0.2, and 0.25 V s−1,
respectively); b linear relationship between peak potentials (Ep) and lgυ
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Rutin detection

The electrochemical responses of rutin on the surface of
GCE, Fe2O3, RGO, and Fe2O3/RGO modified GCEs were
studied by using a CV. Figure 5 shows the CV curves of
2 μM rutin in a pH 5.7 PBS solution. No redox peak was
noticed for the GCE, Fe2O3/GCE, RGO/GCE, and Fe2O3/
RGO/GCE in a blank PBS solution, indicating that all the
modified materials were electrochemically inactive in the
selected potential range. As can be seen in Fig. 5, a pair
of small redox peaks were found at the bare GCE in the
potential scan from 0 to 0.8 V when rutin was added into
the buffer solution (curve a), which can be attributed to
the redox behavior of rutin at the GCE surface. The small
redox peak showed a weak oxidation process, resulting
from the weak adsorption and the slow electron transfer
rates at the GCE surface. For Fe2O3/GCE (curve b), the
redox peak current of rutin increased and the background
current of Fe2O3/GCE increased obviously, due to that the
presence of the Fe2O3 increased the capacitance currents.

The redox peak current of rutin increased further at RGO/
GCE (curve d). This should be attributed to the effective
accumulation and promotion effect of the RGO, as de-
scribed in previous reports [36, 37]. The accumulation
made more rutin involved the electrochemical reaction
and increased the electron-transfer rates between rutin
and the electrode. Furthermore, the electrochemical be-
havior of rutin showed a great difference on the surface of
Fe2O3/RGO/GCE (curve e). First, the redox peak currents
were much higher than that of above electrodes and the
ratio of the redox peak current (Ipa/Ipc) was 1.32. Second,
the peak potential separation decreased to 39 mV, which
is lower than that of a single material modified GCEs.
According to Nicholson’s theory [38, 39], a smaller peak
potential separation reveals a better reversibility and a
higher heterogeneous electron exchange rate. The im-
proved performance of the Fe2O3/RGO composite should
be attributed to the synergistic effect of Fe2O3 and RGO:
(i) In the composite, RGO sheets act as a conductive
support, on which Fe2O3 nanoparticles are uniformly

Fig. 7 a Cyclic voltammograms of 2 μM rutin on Fe2O3/RGO/GCE with different pH PBS (c–j 5.5, 5.7, 6.0, 6.5, 6.8, 7.2, 7.6, and 8.0, respectively),
scan rate 0.1 V s−1; b the relationship between the formal potential (Epa) and pH

Fig. 8 Electrochemical reaction
mechanism of rutin
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anchored, and this ensures the electrochemical activity of
the Fe2O3 nanoparticles because of good electron transfer;
(ii) RGO sheets serve as 2D conductively connecting the
Fe2O3 nanoparticles decorated RGO sheets, forming a 3D
conductive network. The excellent conductivity and the
large specific surface areas of the Fe2O3/RGO composite
exhibited a strong adsorptive ability and provided numer-
ous active sites for rutin. The synergistic effect between
the Fe2O3 nanoparticles and the RGO nanosheets can
effectively promote the electron transmission. Hence, to
achieve high sensitivity and good reproducibility, the
Fe2O3/RGO/GCE was chosen for the analysis of rutin,
and the oxidation peak was considered as standard be-
cause it is higher than the reduction peak (Ipa/Ipc=1.32).

Effects of scan rate and pH value

In order to further investigate the characteristics of rutin at the
Fe2O3/RGO/GCE surface, the effect of scan rate on the redox
behavior of 2 μM rutin was investigated in the 0.1 M pH 5.7
PBS solution using a CV. The redox peak current increased
gradually with the increase of scan rates in the range from 0.05
to 0.25 V s−1, along with the changes of the redox peak
potentials (Fig. 6). This phenomenon suggests a quasi-
reversible electrochemical process. The redox peak potential
and lgυ exhibited a good linear relationship with the

regression equations, Epa=0.55538+0.04969lgυ (R=0.9903)
and Epc=0.42359−0.03929lgυ (R=0.9908). According to
Laviron theory [40], when the values of ΔEp are larger than
200/nmV, a graph of Ep=E0−(RT/αnF)ln(αnF/RTks)−(RT/
αnF)lnυ yields two straight lines with a slope equal to
−2.3RT/αnF for the cathodic peak and 2.3RT/(1−α)nF for
the anodic peak, in whichα is the electron transfer coefficient,
n is the electron-transfer number, ks is the rate constant of the
reaction, υ is the scan rate, and E0 is the formal redox poten-
tial. Here, we take R=8.314, T=298, and F=96500. So the
value of α and n can be easily calculated from 0.04969=
2.3RT/(1−α)nF and 0.03929=2.3RT/αnF. Therefore, the
charge transfer coefficient α is calculated to be 0.55 and the
electron transfer number n is estimated to be 2.3, implying that
there are two electrons involved in the oxidation process,
which is in accordance with previous report [13]. In addition,
with the increase of scan rate, the oxidation (Ipa) peak currents
of rutin increased gradually and linearly. The linear regression
equations can be expressed as Ipa(μA)=6.185+187.5υ (V s−1)
(R=0.9997), indicating that the redox behavior of rutin on
Fe2O3/RGO/GCE is a typical adsorption-controlled process.

The effect of pH value of the solution on the redox response
of 2 μM rutin is shown in Fig. 7. The redox current peaked at
the pH 5.7, with the solution pH ranging from 5.5 to 8.0; thus,
pH 5.7 was chosen in the following investigation for sensitiv-
ities. From Fig. 7a, b, it can also be seen that the redox peak
potentials shifted negatively and linearly when the pH values
increased from 5.5 to 8.0. The linear regression equation of the
oxidation peak can be expressed as Epa=0.85293−0.0615 pH
(R=0.9981). The slope value of 61.5 mV pH−1 was close to
the theoretical value of 59 mV pH−1, indicating that the same
amounts of electrons and protons took part in the electrode
reaction [41], namely two electrons and two protons were
involved in the reaction. The redox mechanism of for rutin
at the Fe2O3/RGO/GCE is illustrated in Fig. 8.

Electrochemical detection of rutin

Accumulation time can effectively increase the adsorption
of rutin on the electrode surface, thereby enhancing the
redox response and improving the detection sensitivity.
The oxidation peak current increased gradually with in-
creasing accumulation time to 90 s and only increased
slightly when the time exceeded 90 s. Therefore, 90 s was

Fig. 9 DPV curves of rutin at different concentration (a–j): 0, 0.02, 0.1,
0.5, 1, 2, 3, 3.5, 4, and 5.5 μM; inset shows the relationship of the anodic
peak currents versus rutin concentration

Table 1 Determination recovery
of rutin Found before adding (M) Added (M) Found after

adding (M)
Recovery (%) RSD (%), n=5

5.0×10−7 0 4.7×10−7 94.0 2.7

5.0×10−7 9.6×10−7 96.0 4.2

1.0×10−6 2.1×10−6 105.0 2.7
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chosen as the accumulation time. To investigate the effect
of accumulation potentials on the redox behavior of rutin,
we shifted the potentials from −0.2 to 0.3 V at a fixed
accumulation time of 90 s and only found out a slight
peak current change. Therefore, the accumulation poten-
tial has no obvious impact on the oxidation peak current.
The accumulation was employed under open circuit.

The Fe2O3/RGO modified GCE was used for the single
measurement in this work. The reproducibility for multiple
modified GCEs was estimated by measuring the peak current
of 1 μM rutin. In order to obtain good reproducibility, each
freshly modified electrode needs to be swept in the PBS
solution until background current minimized and stabilized.
The relative standard deviation (RSD) is 2.8 % for eight
Fe2O3/RGO modified GCEs, indicative of a good
reproducibility.

Under the optimal conditions, a differential pulse volt-
ammetry (DPV) was used to determine the rutin due to its
high sensitivity and selectivity (Fig. 9). Figure S1 shows
the DPV curves of the lower concentration addition of
rutin. In the inset of Fig. 9, the oxidation peak current of
rutin (IA, μA) was linear with its concentration (CA, μM)
over the range of 1.5×10−8∼1.8×10−5 M, obeying the
following equation: Ipa (μA)=14.3696 CA (μM)−0.0887.
The correlation coefficient was 0.9989, suggesting a good
linearity. After 90-s accumulation under open circuit po-
tential, the limit of detection was evaluated to be 9.8×
10−9 M, based on three signal to noise ratios. The com-
parison of Fe2O3/RGO/GCE with other modified elec-
trodes for rutin determination is listed in Table S1.

The potential interferences of some foreign species on the
determination of rutin were also examined. There was no
influence on the determination of 1 μM rutin when 500-fold
concentration of common ions (Cu2+, Fe3+, Mg2+, Zn2+, Pb2+)
or 100-fold of the pyrogallol, resorcinol, and 2-nitrophenol
were added to the electrolytic cell, indicating a high
selectivity.

Under the optimized conditions, rutin in a mixed solu-
tion of ethanol and PBS was determined using a standard
addition method, and each concentration was continuously
measured for five times. Table 1 shows the results of
recycling experiments. These results show clearly that the
recovery was between 94.0 and 105.0 %. The correlation
coefficient was under 5 %.

Real samples analysis

The dosage forms of rutin, tablets, declared content of 20 mg
rutin per each unit, were bought from Shanxi Yunpeng Phar-
maceutical Co. Ltd., China. To further validate out technique
for the detection of rutin, drug tablet was dissolved in ethanol,
the ethanol solution of drug tablet for the detection was
accurately diluted with a PBS. The determination of rutin
was conducted by the proposed method. As shown in Table 2,
the results obtained by the proposed method are in good
agreement with label amount. From Table 2, the recovery of
five independent experiments varied from 96.4 to 101.2 %,
and the content of rutin is calculated to be 19.89 mg per tablet,
demonstrating the accuracy of the proposed method. The
experimental results demonstrated that the proposed methods
could be efficiently used for the determination of rutin.

Conclusion

In summary, the Fe2O3/RGO nanocomposites were prepared by
a facile method in aqueous solution, with an electrostatic inter-
action assisted assembly followed by a hydrothermal process.
The glassy carbon electrodes modified by the resulting Fe2O3/
RGO nanocomposites have been successfully used to measure
the rutin contents by an electrochemical method. The synergistic
effect between the Fe2O3 nanoparticles and the RGOnanosheets
resulted in efficient transports of electrons and ions, which lead
to significantly improved current values of the oxidation peaks
for rutin. The use of the Fe2O3/RGO modified electrodes can
reliably and effectively determine low rutin concentrations, with
a detection limitation as low as 9.8×10−9 M.
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