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Abstract The cathode is the most important component of a
lithium-ion battery. The olivine structure lithium iron phos-
phate (LiFePO4) with its numerous appealing features, such as
high theoretical capacity, acceptable operating voltage, in-
creased safety, environmental benignity, and low cost, has
attracted extensive interest as a potential cathode material for
Li-ion batteries. As a precursor, FePO4 can be used to produce
LiFePO4 on a large scale with high bulk density, discharge
rate, and capacity. This can be realized by controlling the
crystal size and morphology of FePO4. The characteristics,
structure, and synthesis methods of FePO4 are discussed in
this review. The relative merits of these synthetic methods, as
well as some suggestions on how to improve them, are also
presented.
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Introduction

In recent years, lithium-ion battery has been widely used due
to its high voltage and high specific and volumetric energy
densities, and easy transportability. Currently, a key factor in
the lithium-ion battery is the research of high-voltage cathode
materials that has mainly focused on layered transition metal

oxides LiMO2 (M = Co, Ni) and spinel structures LiM2O4

(M = Mn, Ni) [1–7]. The widely used LiCoO2-based batteries
have problems regarding safety, cost, and environment, which
are difficult to overcome. Searching for cheaper, more secure,
stable and environmentally friendly cathode materials has
become a top priority. LiNiO2, which has a similar structure
as LiCoO2, has an advantage with respect to cost and raw
materials. However, the difficulties in the synthetic process,
the unstable structure, and the poor chemical stability become
shortcomings of LiNiO2 to limit its application. Finally, the
spinel LiMnO4 has advantages in rich resources of raw mate-
rials, low cost, increased safety, environmental friendliness,
and simple synthetic process. But further research, development,
and application of the synthetic process are hindered by the
Jahn–Teller effect in the process of charging and discharging.

In 1997, the Goodenough group [8] first reported that
olivine structure lithium iron phosphate (LiFePO4) can display
the intercalation/de-intercalation of lithium ions reversibly.
Since, LiFePO4 has been considered to be the most promising
cathodematerial for the lithium-ion battery due to its nontoxicity,
low cost, and high thermal stability characteristics [9–17]. Unlike
other Li electrodes, LiFePO4 exhibits almost theoretical capacity
of about 170 mAh g−1 [2], and Li4Ti5O12 also almost shows
theoretical capacity (Fig. 1); however, it must be mentioned
that the practical capacity depends on C-rate.

The iron sources for preparation of lithium iron phosphate
can be divided into trivalent iron sources [18–24] and divalent
iron sources [25, 26]. Divalent iron sources are expensive
and easily oxidized. Even in an inert atmosphere, it is still
difficult to avoid the appearance of Fe3+ impurity. FePO4, as a
trivalent iron source, which has a low cost and a high chemical
stability, is an ideal material for the synthesis of lithium iron
phosphate. LiFePO4 particles can be obtained by controlling
the size andmorphology of FePO4 with similar characteristics,
so as to achieve the target of high bulk density, high discharge
rate, and high specific capacity, overcoming the limitation in
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ionic conductivity of LiFePO4 to a certain extent. In this paper,
we review the crystal structure, physical and chemical prop-
erties, and charging/discharging mechanism of Li iron phos-
phate and focus on the aspect of synthesizing iron phosphate
as a precursor for lithium-ion batteries.

Crystal structure, and charging/discharging mechanism
of iron phosphate

FePO4 [27–30] with amorphous and different crystalline
phases has already been synthesized, including heterosite, α-
quartz phase, monoclinic system, and orthorhombic system.
In this paper, the amorphous state and various crystalline
phases of iron phosphate are discussed. However, discussion
is limited to phosphate ions in the form of independent PO4

3−,
with no expansion to the aggregate state, meaning that the n in
(PnO3n+1)

(n+2)− can only take the value 1, but not 2 or 3.
Pressure and temperature can affect the structure of FePO4.
At normal pressure, FePO4 exists as α-quartz phase, the same
structure as AlPO4. Each phosphorus atom and iron atom are
connected to four oxygen atoms. Under a higher pressure, it
changes to a tetragonal system similar to CrPO4 with the cell
parameters a=5.227 Å, b=7.770 Å, and c=6.332 Å. Then,
under a pressure of 2.5 GPa, FePO4 changes to a structure
between VCrO4 phase and amorphous state. Recent experi-
mental observations suggest that LiFePO4/FePO4 interfaces
are the juxtapositions of the two end members (FePO4 and
LiFePO4) instead of solid solutions [31]. However, a solid
solution might exist under particular conditions, e.g., at high
temperatures [32] or in nanosized particles [33]. FePO4 chang-
es into a trigonal system at 650 °C.When the temperature rises
to 705 °C, an α–β phase transition from a P6222 to a P31121
space group occurs [34]. Compared to the tetragonal system of
LiFePO4, FeO6 octahedron is replaced by FeO4 tetrahedron in
the trigonal system [35] (Fig. 2).

The intercalation/de-intercalation process of lithium ions
between FePO4 and LiFePO4 can be expressed as LiFePO4⇔
xFePO4+(1−x)LiFePO4+xLi

++xe− (at 3.45 V/Li) over a
large composition range, with a theoretical capacity of
170 mAh g−1. To further study the intercalation process of
lithium ions, Padhi et al. [8] proposed a radial model (Fig. 3a).
It was suggested that this process is carried out through a two-
phase interface with FePO4 and LiFePO4 looking like a coax-
ial core–shell. During charging, along with lithium-ion
inserting, the interface migrates to the particle center and the
interfacial area decreases, and when a critical value of area is
reached, lithium-ion migration through the interface cannot
support the current, and the electrochemical behavior becomes
limited by the rate of diffusion (Fig. 3).

Anderson and Thomas [36] proposed a different “Mosaic
model.” It is believed that the de-intercalation process of
lithium ions can occur over the entire surface area rather than
only at the two-phase interface. With the FePO4 phase of the
de-lithiation region increasing gradually, the LiFePO4 that
remained un-reacted is coated by FePO4 layers in the process,
becoming a source of capacity loss. Chen et al. [37] proposed
that the FePO4 region and the LiFePO4 region are separated
by a dislocation line along the c-axis with anisotropy. In the
de-intercalation process of lithium ions, the two-phase inter-
face located at the b–c plane advances along the a-axis hori-
zontally (for details, see Fig. 3b). Laffont et al. [31] proposed
that in both the intercalation and de-intercalation processes of
lithium ions, the FePO4 region is always in the center of the
plane, while the LiFePO4 region can be found close to the
edge of area (Fig. 3c). Li-ion migration paths in a unit cell of
LiFePO4 are represented in Fig. 4, as summarized by the
above three models.

The FePO4 obtained from LiFePO4 with a de-intercalation
process of lithium ions, referred to as heterosite structure,
belongs to the same Pnma space group with LiFePO4 with a
similar structure, exhibiting a small contraction in a and b

Fig. 1 A range of lithium-ion
battery electrode available or
currently under development and
comparison of their theoretical
capacity and practical capacity
(NCA: LiNi0.8Co0.15Al0.05O2,
NCM: LiNi1/3Co1/3Mn1/3O2)
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parameters and a small increase in the c parameter [40]
(Table 1).

Synthesis of FePO4 by wet chemical methods

When the synthetic process involves water or is carried out in
aqueous solution, the FePO4 obtained often contains crystal
water, namely, FePO4·xH2O. Figure 5 shows the
thermogravimetry–differential scanning calorimetry (TG-
DSC) diagram of FePO4·xH2O obtained by Qian et al. [41].
In the range of 18–500 °C, an obvious endothermic peak in
the DSC curve and a well-defined weight loss in the TG curve
were observed, corresponding to the loss of crystal water of
the precursor. According to the weight loss in this process, the
x in FePO4·xH2O can be estimated. The exothermic peaks at
614.46 and 690.63 °C without obvious weight loss can be
assigned to structural transformation from amorphous to hex-
agonal FePO4 and the α–β transition, respectively. Of course,
TG-DSC curves vary with different synthetic methods
[41, 42] but are generally similar with the previous example.

Xu et al. [40] proposed that Fe2P2O7 appeared at 380 °C
and transformed to FePO4 at 460 °C during the heating
process. Zhang et al. [43] divided the dehydration process of
FePO4·4H2O into a multistep reaction by an iso-conversional
rate method and analyzed it by a multivariate nonlinear re-
gression method. They concluded that no branching reaction
existed, and the most probable model for the dehydration
process is a two-step consecutive reaction with kinetic param-
eters, such as activation energy and pre-exponential calculated
out, for each of the two steps. The most probable kinetic
model was estimated with a multivariate nonlinear regression
method assuming a two-step consecutive reaction: D4→Fn.
The activation energy E and ln(A/s−1) of D4 were
79.62 kJ mol−1 and 19.35. Those of Fn were 103.04 kJ mol−1

and 25.38 [43].
Boonchom and Danvirutai [44] studied the thermal decom-

position kinetics of FePO4·3H2O in air. The FePO4·3H2O
decomposed in two steps after 50 °C: the first and second
decomposition steps are the loss of one and two molecules of
water in crystallization, respectively. The results indicated that

Fig. 2 Idealized crystal structures
of orthorhombic and trigonal
FePO4

Fig. 3 Schematics of three growth models for the LiFePO4–FePO4 phase transition. a Isotropic shrinking core model, b anisotropic growth mode, and c
anisotropic growth model. Reprinted from Ming et al. [38] copyright (2010), with permission from Annual Reviews
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the kinetic model, which better describes the second reaction
of dehydration for FePO4·3H2O, was the Fn model as a simple
nth-order reaction (n=2.50). The calculated kinetic parame-
ters of the Coats–Redfern method were Ea =77.95±
1.18 kJ mol−1 and ln(A/s−1)=14.26±0.87. Additionally,
Boonchom and Puttawong [45] also reported the dehydration
reaction of FePO4·2H2O in dynamical air atmosphere.
FePO4·2H2O decomposed in one step, and the possible con-
version function was based on the three-dimensional diffusion
mechanism (D4model), with the correlated kinetic parameters
Ea=65.94±2.83 kJ mol−1 and ln(A/s−1)=8.32±1.14.

Okawa et al. [46] reported that amorphous FePO4 can be
obtained at 350 °C and transformed into a crystalline state at
700 °C, with the specific capacity dropped down to less than a
half of the former. This can be attributed to the low activity for
FePO4 of the trigonal system and the formation of a glassy
phase, Fe3P5O7, covering the surface of FePO4 at 580 °C. This
is consistent with the study by Prosini et al. [47]. Chang et al.
[48] proposed that a hexagonal layered structure of FePO4 is
beneficial to the diffusion of lithium ions to the center of
grains, the formation of olivine LiFePO4 along the c-axis,
and the carbon coating in the reduction process, as well as
the metal ion doping.

Synthetic methods of iron phosphate

FePO4 is not only used as a precursor for LiFePO4, but can
also be used as the cathode material directly, however, with a
poor cycle performance. In addition, FePO4 has also been
used widely as absorbents, catalysts, antirust pigments, and
additives. In the electrochemical field, it is imperative that
FePO4 contains no undesirable impurities. Wang et al. [49]
proposed that the residual moisture in FePO4 can react with
Li+ to produce LiOH (Fig. 6a, b), resulting in a higher first
capacity and an irreversible degradation in the subsequent
cycles. Song et al. [50] proposed that a lower activity for
FePO4 sintered at a temperature of 700 °C was caused by a
glass phase on the surface (Fig. 6c). Secondly, it requires a
high specific surface area and a high bulk density. This can be
achieved by producing particles with a small size, a uniform
distribution, or a spherical morphology. The electrochemical
performance of LiFePO4 is the most important outcome of the
synthetic method. Finally, we hope that the synthetic method
is simple, convenient, feasible, low cost, fast, environmentally
friendly, and easy to achieve industrialization. At present, the
synthetic methods of iron phosphate mainly include coordi-
nate precipitation, sonochemical methods, hydrothermal
methods, sol–gel methods, homogeneous precipitation, fluo-
ride system methods, surfactant templates, and biologic
templates.

Co-precipitation method

The co-precipitation method, also known as liquid phase
precipitation method, has a comparable convenient procedure,
consumes little energy, requires simple equipment, and can
produce particles with small size and uniform distribution.
However, this method requires similar precipitation condi-
tions for the raw materials, which may restrict the range of
choice for the starting materials. Over the past few years, there

Fig. 4 Li-ion migration paths in a unit cell of LiFePO4 [39].Mechanism
A, [010] direction; mechanism B, [001] direction; mechanism C, [101]
direction. Redrawn from Saiful et al. [39] copyright (2005), with permis-
sion from the American Chemical Society

Table 1 Lattice parameters of LiFePO4 and FePO4 [8]

Parameters LiFePO4 FePO4

Space group Pnma Pnma

a/Å 10.3290 9.8142

b/Å 6.0065 5.7893

c/Å 4.6908 4.7820

V/Å3 291.02 271.70

Fig. 5 TG-DSC curves of the amorphous FePO4. Reprinted from Qian
et al. [41] copyright (2012), with permission from Elsevier
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have been a number of reports regarding this method. The co-
precipitation method can be done via two approaches: the
liquid phase oxidation precipitation method and liquid phase
non-oxidation precipitation method. The former uses divalent
iron source and H2O2 as the oxidant, while the latter uses
trivalent iron source, which is cost effective.

Generally, a stoichiometric Fe/P ratio of 1 is used.
However, Hu et al. [51] believed that the electrochemical
performance can be improved by increasing the H3PO4 pro-
portion. FeSO4 was mainly selected as the iron source for the
liquid phase oxidation precipitation method, while Fe(NO3)3
and Fe2(SO4)3 were chosen to be the iron sources for the
liquid phase non-oxidation precipitation method. Chang
et al. [48] used several kinds of trivalent iron sources and
reached the conclusion that a maximum bulk density can be
gained by using Fe(NO3)3, which was about double of the
bulk density, when Fe2(SO4)3 and FeCl3 were used. H3PO4 or
(NH4)2HPO4 is mainly chosen as a phosphorus source. Jiang
et al. [52] proposed that a H3PO4/(NH4)2HPO4 ratios of 3:1
can reduce the difficulty of adjusting the pH value.

A too large concentration will result in a large number of
lattice defects, while a too low concentration will lead to
coarse grain. In addition, the concentration of solution can
affect the amount of crystal water, meaning that a higher
concentration causes a smaller value for x in FePO4·xH2O.
Both the adjustment and the final value of pH value in the
synthesis are of great importance. When pH >2.2, a red-brown
precipitate of Fe(OH)3 appears, while a too low pH value will
result in a incomplete precipitation of Fe3+ and waste. Ma
et al. [53] proposed that a low temperature (70 °C or less) was
not favorable for the Fe(OH)3 to FePO4·xH2O conversion,
while a high temperature was promoting the crystallization
of FePO4·xH2O. The whole synthesis process also needed
stirring. When the stirring speed increased, the raw materials
would react entirely. However, a too high speed can cause a
whirlpool in the liquid center, causing uneven mixing away
from the center. The FePO4·xH2O amorphous precipitation
was collected by filtration, washed with distilled water, dried,
grinded, and heated. Chang et al. [48] proposed that the

aggregation of FePO4 can be reduced by drying two times
(drying under vapor after natural drying), and the bulk density
of FePO4 can be increased by nearly 50 % to 2.14 g cm−3

simultaneously. Xia et al. [54] reported that a small
amount of Fe2P with a good dispersion after calcination
at 800 °C.

In addition, when the flow rate was controlled strictly by a
constant flow pump [48], a metering pump [55], or a peristal-
tic pump [56], the solution was added uniformly rather than
mixed directly, and a high-density FePO4 was obtained. Cao
et al. [56] reported that the FePO4 particles of large size can
get an excellent bulk density (2.03 g cm−3), and the FePO4

particles of middle size delivered a capacity density of
230.4 mAh cm−3 at a rate of 0.1C due to the relatively high
bulk density and a lower electrochemical polarization. Zhu
et al. [57] reported a facile co-precipitation route through
which amorphous iron phosphate particles were synthesized,

Fig. 6 SEM images of the a amorphous FePO4·2H2O, b crystalline FePO4, and c discharge curves of amorphous FePO4 obtained at different
temperatures. Reprinted from Wang et al. and Song et al. [49, 50], copyright (2012 and 2002), with permission from Elsevier

Phosphorus source:

H3PO4 or (NH4)2HPO4

Iron source: FeSO4 Fe(NO3)3

Fe2(SO4)3 or FeCl3

PH<2.3, T>50

With stirring measure

Pale yellow precipitate   

FePO4·xH2O

Filtered 

Washed

Dried

Fig. 7 Synthetic process of coordinate precipitation method [46, 48,
51–54, 56, 57]
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and the FePO4 obtained featured narrow size distribution,
abundant porous structure, and large specific surface.

The homogeneous precipitation method, in which a pre-
cipitant is added to achieve a uniform precipitation, can be
classified in the liquid phase precipitation method. Carbamide
is a commonly used precipitant. Gong et al. [58] reported that
the wafer-like FePO4 of hexagonal structure with uniform
particle size was obtained by adding a carbamide precipitant
and a shape control agent. In the sonochemical method, pro-
posed by Okawa et al. [46], an ultrasonic vibration measure
was employed to initiate a series of reactions, mainly gener-
ating H2 and H2O2, and achieving oxidation of FeSO4. Al-
though a different name was used, in essence, it was still in the

range of the co-precipitation method. This method had
the following advantages: no use of oxidation agents, reduc-
tion in reaction time, and the ability to control particle
size. However, we believe that it may not be suitable
for large-scale industrialization due to repeated filtration
and washing. The common synthetic process is shown
in Fig. 7.

Hydrothermal method

Mal et al. [59] reported that a novel organic–inorganic meso-
porous FePO4 had been synthesized by using sodium dodecyl
sulfate (SDS) molecules as surfactant, adding FeCl3 and
C6H5PO(OH)2 as raw materials under stirring, followed by a
heat treatment at 453 K for 15 h in a Teflon-lined stainless
steel autoclave (Fig. 8). The hydrothermal method had the
following advantages: small size and uniform distribution of
particles obtained, simple reaction condition, and complete-
ness of grain growth. The use of autoclave meant that raw
materials should be added all at once, that the process was
extremely difficult to observe and control, and that industrial
production was limited due to the small autoclave container
size.

Sol–gel method

Guo [60] reported that the trigonal FePO4 with a particle size
of 100 nm was synthesized by using citric acid as ligand
after adjusting the pH value and the ligand molar ratio.
Lu et al. [61] reported that FePO4 with uniform distri-
bution was synthesized by thermal decomposition of
FeOPO(OC6H4COOH)2·0.5H2O precursor prepared from a
HOPO(OC6H4COOH)2 ligand dissolved in distilled water
(70 %) and ethanol (30 %) with the addition of Fe(NO3)3
drop-wise under continuous stirring (Fig. 9). It was suggested
that the existence of a little residual carbon after thermal
decomposition can improve the conductivity of the cathode
material. The advantages of the sol–gel method were low

Fig. 8 Synthetic process of hydrothermal method [59]

Fig. 9 Synthetic process of sol–
gel method [61]
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temperature and high uniformity. But a large number of mi-
cropores in the gel may cause contraction during the drying
process. The best discharge capacity of the synthesized sam-
ples around 380 °C was 146 mAh g−1.

Fluoride system method

Guo [60] reported that the hexagonal mesoporous FePO4 with
a particle size of 2.6 nm was synthesized by adding HF as
mineralizer and sodium dodecyl sulfate as surfactant into
FePO4 (prepared by mixing Na2HPO4 with Fe(NO3)3 suspen-
sion and reacting at 60 °C for 2.5 h) (Fig. 10). However, the
removal of impurities was cumbersome. It was proposed that
neither NaF nor NH4F can work well, while HF with a low
dissociation degree could form a hydrogen bonding between
[FeHPO4]

+–F− ion pairs. Also, the F− anions had an effect on
the electrostatic interaction between ion pairs and anionic
surfactant micelles. They also enhanced the formation of the
hexagonal mesostructured phase.

Surfactant template method

In this method, mesoporous materials are synthesized under
the guide function of templates. Zhu et al. [62] reported that
highly ordered hexagonal mesoporous FePO4 was

synthesized by adding cetyltrimethylammonium chloride
(CTMACl) into Fe2(SO4)3 and H3PO4 raw materials. How-
ever, it was pointed out that only 50 % of CTMACl can be
removed effectively. Similarly, Shi et al. [63] took a surfactant
(EO20–PO20–EO20, Plurinic P123) as the template. They pro-
posed that a little residual carbon would be left in FePO4 after
heating and a collapse of the mesoporous structure would
happen in the temperature range of 500–600 °C. The meso-
porous FePO4 delivered enhanced specific capacity of
160 mAh g−1 at the first discharge process and 135 mAh g−1

in the following cycles at 0.1C rate. Wang et al. [64]
reported that cetyltrimethylammonium bromide (CTAB) was

Fig. 10 Synthetic process of fluoride system method [60]

Fig. 11 Synthetic process of surfactant template method [64]

Fig. 12 Synthetic process of biologic template method [66]
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also suitable to be a template (Fig. 11). The LiFePO4/C
nanoparticles lithiated from the obtained FePO4·2H2O
nanoplates delivered discharge capacities of more than 150,
120, 110, 100, and 75 mAh g−1 at rates of 5C, 10C, 15C, 20C,
and 30C, respectively.

Biologic template method

In the so-called biologic templatemethod, organisms provided
nucleation sites to regulate the grain growth. Zhou et al. [65]
reported that iron phosphate nanopowders with flake mor-
phology had been synthesized with yeast cells as a biologic
template. In the synthetic process, the biologic template
adsorbed Fe3+ cations firstly, which led to the formation of
FePO4. They pointed that the organisms could be removed
completely after heating at 500 °C and only little conductive
carbon was left. Similarly, Cao and Li [66] reported that iron
phosphate hollow microspheres were obtained with pollen
grains as biologic template (Fig. 12).

Other synthetic methods

Chen et al. [67] reported that crystalline FePO4 had been
synthesized through a reaction between iron powder, H3PO4,
and NH4H2PO4 in aqueous solution and mixed with conduc-
tive agent after grinding. This synthetic method was simple
and low cost; however, the electrochemical performance was
poor. Wu et al. [68] prepared nano FePO4·xH2O powders by
controlled crystallization method, using Fe(III) compound as
the iron source. Then, the olivine nano LiFePO4/C composites
were obtained through carbothermal reduction process at dif-
ferent temperatures. The results show that the nano LiFePO4/
C composite calcined at 700 °C for 10 h has fine particle sizes
of about 40–100 nm. The nano LiFePO4/C composite
cathode material can deliver an initial discharge capacity
of 156.5, 134.9, 105.8, 90.3, and 80.9 mAh g−1 in the
voltage range of 2.5–4.2 V, at a rate of 0.1C, 1C, 5C,
10C, and 15C, respectively, which exhibits good rate
performance.

Okada et al. [35] reported that an increase of more than
35 % in specific capacity can be obtained by mixing P2O5

with Fe, ball milling with water for 24 h, and subsequent
heating and ball milling without water for 24 h. Delacourt
et al. [69] reported that several different hydrated iron
phosphates were prepared under refluxing conditions. The
low temperature solid phase method [70] took high ener-
gy consumption in the synthesis process, and the unifor-
mity of particle size distribution was relatively poor. Qian
et al. [41] reported that amorphous FePO4 had been
synthesized by an electrochemical synthetic method with
H3PO4 as the electrolyte, iron as the anode, and H2O2 as
the oxidant. This method may be a new direction to
prepare FePO4.

Conclusion and prospection

In this paper, the structure, properties, and various synthetic
methods of iron phosphate were discussed, with a focus on the
synthetic methods. One common issue that needs to be ad-
dressed is that although some researchers had synthesized
FePO4 of a large surface area or small particle size, the
electrochemical performances of the ultimate product
LiFePO4 were still unknown. On one hand, to obtain an
appropriate FePO4 precursor, researchers should continue to
increase bulk density, reduce cost, and optimize details to
adapt to industrialization. On the other hand, the coordination
between synthetic methods for FePO4 precursor and the sub-
sequent lithium insertion operation should be taken into con-
sideration. In general, the method to prepare LiFePO4 was
mixing the FePO4 precursor with a carbon source and a
lithium source in a tube furnace by carbothermal reduction
method, which inevitably led to a reduction of bulk density
and an enlargement of particle size. At present, some re-
searchers also take a rheological phase method [71] as well
as other methods.
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