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Abstract
Within the one-factor capital asset pricing model (CAPM), the minimum-variance portfolio
(MVP) is known to have long positions in those assets of the underlying investment universe
whose betas are less than a well-defined long-short threshold beta. We study the structure of
MVPs in more general multi-factor asset pricing models and clarify the low-beta puzzle for
multi-factormodels: Formulti-factormodelswe derive a similar criterion in terms of the betas
with explicit closed-form formulas. But the structural relationship is now more involved and
the long-short threshold turns out to be asset-specific. The results rely on recursive inverse-
free formulas for the precision matrix, which hold for multi-factor models and allow quick
computation of that inverse matrix without the need to invert matrices going beyond diagonal
ones. We illustrate our findings by analyzing S&P 500 asset returns. Our empirical results of
the S&P 500 constituents between 2019 and 2022 confirm the theoretical findings and shows
that the minimum variance portfolio is long in low-beta assets when applying estimates of
the established asset-specific thresholds.

Keywords Asset pricing models · Factor models · Minimum-variance portfolio · PCA ·
Portfolio optimization · Long-short strategies

JEL Classification G11 · G12

1 Introduction

Investment strategies related to the minimum variance portfolio (MVP) have a couple of
unique features interesting for investors. By definition, a minimum variance portfolio for a
financial market consisting of a universe of risky assets weights the assets in such a way that
the variance of the portfolio return is minimized. That portfolio is unique if the variance-
covariance matrix of the d asset returns is positive definite. It coincides with the Markowitz-
optimal portfolio in the case that mean returns are zero, and thus it is located on the efficient
frontier in the mean-variance space. Concretely, it is located at the very left tip of the mean-
variance efficient frontier of feasible portfolios. It is the only efficient portfolio which does
not require to know or estimate resp. forecast mean returns. This is a beneficial feature,
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since estimating or predicting future mean returns is highly challenging, especially for small
time horizons and high dimensions, even for i.i.d. returns. It is also well known and easily
observable in practice that feasible portfolios aiming at realizing high mean returns assign
high weights to a small number of highly volatile assets, namely those possessing the largest
predicted future returns. But such assets often tend to show local trends and bubble-like
behaviour followed by local bull-like mean-reverting phases. Thus such portfolios tend to
show trend- or momentum-following behaviour, such that estimates of the mean returns
may be already outdated when forming the portfolio. Investing in the MVP avoids this. It is
diversified, invests in low-beta assets, is agnostic to themean returns and hedges each asset by
optimally selected positions in all other assets to minimize the remaining risk, [21]. Starting
with [6] empirical studies have shown that portfolios investing in low-beta assets with low
idiosyncratic variances tend to outperform the market. These phenomena are called low-beta
anomaly and idiosyncratic volatility or low-risk anomaly. For a recent study dealing with the
Euro area and a literature review we refer to [2] and [22], respectively.

Although the MVP only depends on the covariance matrix of the asset returns and not
on their mean returns, its computation is still challenging, since without further structural
assumptions one needs to calculate a high-dimensional inverse covariance matrix. In general,
the latter is a computationally expensive and error-prone task.However, under the capital asset
pricingmodel (CAPM),which explains return fluctuations by themarket as a single factor and
idiosyncratic noise of the shares, simple closed-form expressions for the precisionmatrix and
optimal portfolio weights are known, see [5, 6, 15]. These formulas analytically reveal that
the MVP holds long positions in low-beta assets and short positions in high-beta shares, and
the associated long-short threshold beta is explicitly known. For more sophisticated models
the structure of the MVP has not yet been studied in detail.

This paper contributes by elaborating inverse-free formulas for the precision matrix for
general multi-factor asset models, which substantially simplify the calculation of MVPs. We
derive a recursion, whichmakes it easy to study theMVP step by step as the number of factors
increases. More importantly, we clarify the low-beta anomaly for multi-factor models: For
two-factormodelswederive a closed-formcriterionwhich shows that the sign of eachposition
of the MVP can be inferred by comparing the position’s beta with a threshold. However, it
turns out that the threshold is now asset-specific and has a more involved form. Although
the long-short thresholds may vary and there is a lack of an unique threshold applying to
all assets, the novel results clarify the structural relations of the beta factors and the optimal
weights, and they uniquely identify long and short positions. For general factor models with
more factors a similar result can be obtained, although there are no closed-form formulas.

We demonstrate our findings by analyzing asset returns from the S&P 500. Following
the general conception that daily returns of exchange-traded assets can be reasonably well
explained by five factors, a five-factor asset pricing model was considered with the S&P 500
index as observable factor and four unobservable factors spanning a subspace in the orthogo-
nal complement. In addition, two-factor models are examined with two unobservable factors
and the S&P 500 as a observable factor, respectively. Unobservable factors are estimated
by principal component analysis (PCA) and thus extracted from the estimated covariance
matrix. The empirical results show that the returns of the estimated market portfolio (corre-
sponding to the leading eigenvector of the estimated two-factor model covariance matrix of
the asset returns) are strongly correlated to the returns of the S&P 500 index. The empirical
results essentially confirm the theoretical findings. Especially, the results for the five-factor
model demonstrate that the estimated minimum variance portfolio is long in low-beta assets
and the estimated thresholds uniquely determine the sign of each position.
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The paper is organized as follows. Section2 recalls the general definition of the MVP,
basic facts and its low-beta structure when assuming a one-factor model such as the CAPM.
Section3 reviews multi-factor asset pricing models and establishes the recursion for the
computation of the precision matrix of the returns. The structure of the MVP is studied
in Sect. 4 for two-factor models, where closed-form formulas can be derived, and general
multi-factor models. Section5 illustrates the findings for the S&P 500 investment universe.

2 Theminimum-variance portfolio in one factor models

For the problem at hand we can and will confine ourselves to a one-period setting, but clearly
the results carry over to multi-period settings. Thus, suppose that Rt = (Rt1, . . . , Rtd)

′ is a
vector of d mean zero (excess) asset returns with positive definite covariance matrix �. Con-
sider the global minimum-variance portfolio (MVP) w∗ ∈ R

d defined by the minimization
problem

min
w∈Rd

w′�w, such that w′1 = 1,

where 1 is a d-vector of ones. The constraint is a budget constraint which allows for long as
well as short position. It is well known that there is a closed-form formula for the solution,
namely

w∗ = �−11

1′�−11
.

If μ denotes the vector of mean returns, the portfolio w earns the mean return w′μ. One may
aim at constructing a portfolio earning a target mean return μ0 with minimal variance. The
Markowitz approach to portfolio opimization, [13], thus adds the constraint w′μ = μ0 and
hence considers the optimization problem

min
w∈Rd

w′�w, such that w′μ = μ0,w
′1 = 1.

If μ′�−1μ · 1′�−11 − (1′�1)2 �= 0, the optimal solution is given by the portfolio vector

θ∗ = λ∗
1�

−1μ + λ∗
2�

−11

where λ∗ = (λ∗
1, λ

∗
2)

′ = A−1(μ0, 1)′ with a 2 × 2 matrix A with diagonal elements 1′�−11
and μ′�−1μ and off-diagonal element −1′�−1μ. Any rational investor in the Markowitz
sense aiming at a target mean return μ0 holds a linear combination of the portfolio �−11
related to theMVP portfolio and the portfolio�−1μ.We see that the inverse of the covariance
matrix is essential to calculate optimal portfolios. This carries over to problems such as dollar
neutral optimal long-short porfolios, see [10]. For further interpretations in terms of optimal
portfolios and hedging of assets see [21]. For simplicity, however, we confine ourselves to a
discussion of the MVP.

If short sales are excluded, one could invest only in the long positions, i.e. set negative
entries ofw∗ to zero. Usually this leads to suboptimal portfolios. The associated formal opti-
mization problem determines the optimal long-only minimum-variance portfolio (LMVP) as
the solution of

min
w∈Rd

w′�w, such that wi ≥ 0, 1 ≤ i ≤ d, w′1 = 1,
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which adds the long-only constraints to the optimization problem. In general, there are no
explicit solutions so that one has to rely on numerical algorithms. If the covariance matrix
of the underlying assets has a block structure with sufficiently small common between-asset
correlation and between-block correlations, the MVP has no short positions, see [7]. But that
assumption is doubtful for asset returns.

In the single factor model, a simple closed-form solution for the MVP can be derived
which carries over to a semi-closed form solution for the LMVP, see [5] and [15]. Recall that
the single factor model with the market portfolio as factor, i.e., the CAPM, assumes that the
time t excess return, Rti , is given by

Rti = βi (RMt − r) + εti , 1 ≤ i ≤ d, 1 ≤ t ≤ n,

where r is the risk-free rate of return, β1, . . . , βd are the beta factors and εti the mean zero
idiosyncratic errors with variances σ 2

i , uncorrelated across i , and n is the size of the available
sample. RMt stands for the time t return of the market portfolio. Here, in practice, one
often uses an index serving as a proxy of the market. For example, the S&P 500 for the US
market or, more generally, a capitalization-weighted average of the investable universe under
consideration. σ 2

M = Var(RMt − r) will denote the market’s variance. In the following it is
assumed that all beta factors are nonnegative. Put b = (β1, . . . , βd)

′. Then the covariance
matrix takes the form

� = σ 2
M bb′ + S, S = diag(σ 2

1 , . . . , σ 2
d ). (1)

If all idiosyncratic risks, σ 2
i , are positive, which we assume throughout the paper, S is invert-

ible and then the inverse covariance matrix is given by

�−1 = S−1 − br b′
r

σ−2
M + b′

r b
.

Here br = (β1/σ
2
1 , . . . , βd/σ

2
d )′ is the vector of risk-adjusted beta factors and S−1 =

diag(σ−2
1 , . . . , σ−2

d ). Thus, in a single-factor model the precision matrix �−1 is easy to
obtain and there is no need to compute an inverse matrix going beyond the simple case of
inverting a diagonal matrix. As a result, one gets the explicit closed-form optimal solution
for the MVP weights

w∗
i = σ 2

MV P

σ 2
i

(
1 − min(βi , βLS)

βLS

)
, 1 ≤ i ≤ d. (2)

Here βLS = σ−2
MV P+∑d

i=1 βi /σ
2
i∑d

i=1 βi /σ
2
i

is the long-short threshold beta. One buys only assets with

betas smaller than this threshold. Assets with beta factors exceeding βLS are shorted. The
long-short threshold βLS depends on the idiosyncratic variances but also on all beta factors,
so that changing a single βi changes the threshold. Therefore, the characterization of the
signs of all position in terms of the beta factors is a structural property of the MVP in terms
of the beta factors. It is worth mentioning that it has been conjectured in [6] and shown in [15]
that the long-only minimum-variance portfolio attains the same formula with βLS replaced
by the long-only threshold beta given by the smallest solution of the equation

βLO = σ−2
MV P + ∑

βi<βLO
βi/σ

2
i∑

βi<βLO
βi/σ

2
i

.
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Therefore, the LMVP weights are given w∗
L,i = 1

σ 2
i

(
1 − min(βi ,βLO )

βLO

)
. The optimal long-

only portfolio has positions in all investable assets with beta factors not exceeding βLO , i.e.
in low-beta assets.

In [1] an alternative criterion has been elaborated for the case d = 2, which is based on
the general representation � = Pδe�e−�Pδ , where � is the diagonal matrix of the positive

eigenvalues λ1, . . . , λd ,P is the block-diagonalmatrixwith upper left block

(
0 1
1 0

)
and lower

right block Id−2, δ = 0 or δ = 1, and � is a skew-symmetric matrix, i.e. �′ = −�. Here, Ik
stands for the unit matrix of dimension k. In this representation the entries pi j , 1 ≤ j < i ,
1 ≤ i ≤ d , parameterize �. In dimension d = 2 the MVP weights are then given by

w1 = λ1 + (λ2 − λ1)(cos v + sin v) cos v

λ1 + λ2 + 2(λ2 − λ1) sin v cos v
, w2 = 1 − w1,

and the numerator determines the sign of the position. However, the results of this paper hold
for arbitrary d .

3 Multi-factor models

To set the stage for our results, let us now consider and review multi-factor models for
asset returns. For further reading we refer to [3, 4, 8] and the references given therein. Our
discussion starts with the case of observed factors and then proceeds to the case that a some
or all of the factors are unobserved.

Due to its specific role, we assume that one factor is the market portfolio which is aug-
mented by K additional factors assumed to be uncorrelated among each other and with the
market. Let us first consider the case of observable factors, i.e., in addition to the market
returns RMt we are given K time series Fkt , 1 ≤ t ≤ n, for 1 ≤ k ≤ K . Then the time t
excess return, Rti , of asset i is explained by the model

Rti = βi (RMt − r) +
K∑

k=1

l(k)i Ftk + εti ,

where the first component is as above, Ftk is the time t observation of factor k, assumed to be
uncorrelated with the market and across k, with variance σ 2

Fk . The unknown coefficient l(k)i
is the factor-beta (or loading) of asset i with respect to factor k, thus measuring the influence
of the kth factor on the mean excess return of asset i . The errors εti are again assumed to be
mean zero random variables with variances σ 2

i , independent of the market and factor returns.
Since usually the market plays a specific role, we do not subsume it under the factors. For a
data set of size n, the model can be compactly written in matrix notation

R︸︷︷︸
n×d

= F︸︷︷︸
n×K

L′︸︷︷︸
K×d

+ e︸︷︷︸
n×d

(3)

where R is the data matrix of asset excess returns, matrix F = (Ftk) 1≤t≤n
1≤k≤K

collects the

factors as columns with first column given by (Ft0)nt=1 = (RMt − r)nt=1. L = (l(k)i ) 1≤i≤d
1≤k≤K

is the d × K loadings matrix with entries l(k)i and first column given by b, and e is the
matrix of error terms. We omit intercept terms, αi , since we are not interested in analyzing
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pricing errors. However, in our empirical analysis we included intercept terms in the CAPM
regressions to estimate the betas.

The covariance matrix �K of the d risky assets in the presence of K additional factors
attains the form

�K = σ 2
M bb′ +

K∑
k=1

σ 2
Fk lk l

′
k + S0, (4)

where lk = (l(k)1 , . . . , l(k)d )′ is the kth column of L and S0 = diag(σ 2
1 , . . . , σ 2

d ).
Consequently, the covariance matrix �K can be calculated from the model parameters
β1, . . . , βd , l

(k)
1 , . . . , l(k)d , 1 ≤ k ≤ K , and σ 2

1 , . . . , σ 2
d .

If some of the factors are observable, say, the first q ≤ K , the model takes the general
form

Rti =
q∑
j=1

l( j)obs,i Xt j +
K−q∑
k=1

l(k)i Ftk + εti , 1 ≤ i ≤ d, 1 ≤ t ≤ n,

where Xt j , 1 ≤ t ≤ n, 1 ≤ j ≤ q , are the observed factor series. In matrix notation we have
the compact representation

R︸︷︷︸
n×d

= X︸︷︷︸
n×q

L′
obs︸︷︷︸

q×d

+ F︸︷︷︸
n×(K−q)

L′︸︷︷︸
(K−q)×d

+ e︸︷︷︸
n×d

, (5)

where X = (Xti ) is the n × q data matrix of the observable factors, Lobs their loadings
(regression coefficients), and F and L have the same meaning as above. The full structure is
given by L∗ = (Lobs,L) and F∗ = (X,F). Clearly, if q = K we are given a multivariate
regression model. Otherwise, the returns are explained by q external factors, which can be
observed, and additional K −q factors which explain the structure ofR−XL′

obs , the returns
corrected by the influence of the observables. Such extendedmodels are of particular interest,
if one beliefs that a market index such as the S&P 500 represents a good proxy for the market
portfolio or if one wants to include other factors in the asset pricing model, such as size,
profitability, momentum or book-to-market ratio. The latter factors are not returns.

3.1 Estimation by PCA

If the factors are not observable, then both the factor matrix F and the loadings matrix L
need to be estimated. The above formula (4) for �K is the starting point, as it links the
columns of L to the spectral representation of �K . A common approach to estimate b and
lk , 1 ≤ k ≤ K , is to apply PCA. One calculates all eigenvalues and eigenvectors of the
sample covariance matrix (or of a more sophisticated estimator of the covariance matrix)
�̂n . This results in ordered eigenvalue-eigenvector pairs (λ̂0, û0), . . . , (λ̂d−1, ûd−1) where
λ̂0 ≥ λ̂1 > · · · > λ̂d−1. Now one estimates b by the leading eigenvector û0 and lk by ûk for
1 ≤ k ≤ K ≤ d −1. This means, the loadings matrix is estimated by the matrix L̂ consisting
of the first K eigenvectors. Further, σ̂ 2

M = λ̂0 and σ̂ 2
Fk = λ̂k, 1 ≤ k ≤ K . The idiosyncratic

variances σ 2
1 , . . . , σ 2

d are estimated as the diagonal elements of �̂n − ∑K
k=1 λ̂k ûk û

′
k . Lastly,

the factors (also called principal components) can then be obtained by regressing the returns
on the estimated loadings which gives F̂ = RL̂. The first column of F̂, i.e. r̂M = Rû0, gives
the estimated returns of the market portfolio.
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In order to make the estimated market returns comparable to a market proxy such as the
S&P 500, one can rescale the estimated market index appropriately and thus calculate

r̂∗
M = sdSP500

sd(r̂M )
r̂M ,

where sdSP500 and sd(r̂M ) are the standard deviations of the S&P 500 returns and r̂M ,
respectively. In the factor model equation this rescaling is then compensated by introducing
the suitably rescaled betas

β̂∗
i = sd(r̂M )βi

sdSP500
.

This scaling makes the estimated betas comparable to the given market proxy. Based on
r̂∗
M we may define the corresponding price process p̂∗

M by p̂i = PSP500,0
∏i

t=1(1 + r∗
M,i ),

1 ≤ i ≤ n, where PSP500,0 stands for the inital quote of the market proxy (S&P 500).
Behind this rescaling is the fact that factors and loadings are not uniquely determined:

For any full-rank K × K matrix A we have (FA)(A−1L′) = FL′. This indeterminacy can
be eliminated by imposing K 2 restrictions. PCA imposes the normalization F′F = I, L′L
diagonal with distinct entries, but any transformation by a full-rank matrix A yields a valid
model for the unobserved component as well.

In view of the wide acceptance of capitalization-weighted indices (such as the S&P 500)
as proxies for the market portolio, and the importance of observable factors (such as the Fama
and French factors), the question arises how to determine the d − q unobserved factors in
the presence of q observed factors with associated n × q data matrix X . Clearly, in case of
a market proxy, q = 1 and X is the n × 1 matrix of the excess returns of the index. This
can be achieved by the following two-step approach, [17]. In the first step one runs a least-
squares regression of the asset excess returns, R, on X . This gives regression coefficients,
[L̂obs]i = (X′X)−1X′[R]i , 1 ≤ i ≤ d , where [A]i is the i th column of amatrixA. In case of a
market index, β̂i = [ ˆLobs]i is a scalar, the asset’s beta, and then one puts b̂ = (β̂1, . . . , β̂d)

′.
Next, one calculates the n × q matrix Ê of regression residuals. In the second step, one
determines K − q factors in the orthogonal complement rg(X)⊥ of the column space of
X by applying the above PCA procedure with R replaced by Ê yielding a d × (K − q)

matrix L̂ of estimated eigenvectors, associated principal components (factors) F̂ = ÊL̂, and
estimates of the idiosyncratic variances σ̂ 2

1 , . . . , σ̂ 2
d . One may puts things together by letting

L̂∗ = (Lobs,L⊥) and F̂∗ = (X, F̂).
Classical PCA as reviewed above extracts factors and loadings from the sample covariance

matrix. Here, one may also use more sophisticated estimators of the asset returns’ variance-
covariance matrix �. Especially for high-dimensional settings, shrinkage estimators may
be used. For example, Ledoit and Wolf [11] proposed shrinkage estimators shrinking the
sample covariance, which is a nonparametric estimator, towards a parametric target such
as a multiple of the identity matrix. Sancetta [16] studies consistency in high dimension for
dependent time series, Steland and von Sachs [19, 20] provide distributional approximations.
For a recent more general approachwhere one shrinks towards a linear combination of typical
nonparametric targets, namely Toeplitz and banded covariance matrices, respectively, we
refer to [14]. Nonlinear shrinkage has been proposed by Ledoit and Wolf [12].
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3.2 Inverse-free computations of inverses and recursions

Let us return to the factor model. If one ignores the idiosyncratic noise and takes all compo-
nents, i.e. K = d − 1, the covariance structure has a pure factor structure and the associated
precision matrix, needed for model inference and calculation of optimal portfolios, can be
easily computed by �−1

K = 1
σ 2
M
bb′ + ∑K

k=1
1

σ 2
Fk
lk l ′k assuming that b, l1, . . . , lK are d unit

vectors, and similarly for the estimated inverse matrix. But the realistic assumption of the
presence of idiosyncratic terms εti representing asset-specific fluctuations of the returns inval-
idates this simple formula for the inverse. However, the following result shows that �−1

K can
be calculated for any value of K without the need to compute inverse matrices going beyond
the inverse of a diagonal matrix. We shall name such a formula inverse-free. Further, the
sequence of precision matrices �−1

k , 0 ≤ k ≤ K , can be calculated recursively.

Theorem 1 In the multi-factor asset return model it holds

�−1
K = (I − �−1

0 (I + BK�−1
0 )−1BK )�−1

0 ,

where �−1
0 = S−1

0 − br b′
r

1/σ 2
M+b′

r b
, BK = ∑K

k=1 σ 2
Fk lk l

′
k is the contribution of the K factors

to the covariance matrix, and br = (β1/σ
2
1 , . . . , βd/σ

2
d )′ is the vector of the beta factors

risk-adjusted by the idiosyncratic variances from the K -factor regression. Especially,

�−1
1 =

(
I − �−1

0

[
I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

]
σ 2
F1l1l

′
1

)
�−1

0

with g1 = (S−1
0 l1) − σ 2

F1 l
′
1br

1/σ 2
M+b′

r b
br . Further, for any k ≥ 2 we have the recursive formula

�−1
k =

(
I − �−1

k−1

[
I − σ 2

Fk

1 + σ 2
Fk l

′
k gk

lk g′
k

]
σ 2
Fk lk l

′
k

)
�−1

k−1, k ≥ 1,

with gk = �−1
k−1lk , where �−1

k−1 is the inverse matrix using factors l1, . . . , lk−1 and the
idiosyncratic variances σ 2

1 , . . . , σ 2
d from the K -factor regression model.

When using the recursion to compute the inverse covariance matrices, it is important to
note that in all steps one needs to use the idiosyncratic variances from the full factor model.
Therefore, the calculations startwith computing�−1

0 using thematrixS0 = diag(σ 2
1 , . . . , σ 2

d )

of the idiosyncratic variances of the factormodel employing all K factors. Then one computes
for k = 1, . . . , K

�−1
k =

(
I − �−1

k−1

[
I − σ 2

Fk

1 + σ 2
Fk l

′
k gk

lk g′
k

]
σ 2
Fk lk l

′
k

)
�−1

k−1.

The recursive formula for the inverse covariance matrix, which is needed to calculate
optimal porfolios, allows to calculate these portfolios step-by-step starting with the CAPM
(i.e. no additional factor) and then adding factors successively. In each step one determines
the factor betas lk , the factor variances σ 2

Fk and the new idiosyncratic risks σ 2
i . Then one

calculates gk and uses the inverse-free update formula to calculate �−1
k .

Lastly, note that all these formulas hold for the estimated precision matrix associated to

the estimators �̂K = σ̂ 2
M b̂b̂

′ + ∑K
k=1 σ̂ 2

Fk l̂k l̂
′
k + �̂0, where �̂0 = diag(σ̂ 2

1 , . . . , σ̂ 2
d ), using

arbitrary estimators b̂, l̂1, . . . , l̂K , σ̂ 2
M , σ̂ 2

F1, . . . , σ̂
2
FK , σ̂

2
1 , . . . , σ̂ 2

d .
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4 Structure of theminimum variance portfolio

Recall from above that the formula for the global minimum variance portfolio is given by
w∗ = σ 2

MV P,K�−1
K 1 where σ 2

MV P,K = 1/1′�−1
K 1. Denote by w∗

1F = �−1
0 1/1′�−1

0 1 the
minimum variance portfolio using the idiosyncratic risks of the full factor model and the
associated value σ 2

MV P,0 = 1/1′�−1
0 1 instead of σ 2

MV P . Then �−1
0 1 = w∗

1F/σ 2
MV P,0 and

therefore the formula for �−1
K of Theorem 1 yields

w∗ = σ 2
MV P,K (I − �−1

0 (I + BK�−1
0 )−1BK )�−1

0 1

= σ 2
MV P,K

σ 2
MV P,0

(I − �−1
0 (I + BK�−1

0 )−1BK )w∗
1F

= σ 2
MV P,K

σ 2
MV P,0

(
w∗
1F − �−1

0 (I + BK�−1
0 )−1BKw∗

1F

)
.

The first formula shows that each K -factor model MVP can be obtained from the one-factor
MVP by means of a linear transformation. The second formula shows that the one-factor
optimal portfoliow∗

1F is corrected for the influence of the additional factors and then rescaled

by the minimum-variance ratio
σ 2
MV P,K

σ 2
MV P,0

to yield the K -factor MVP.

Let us first confine our study to the case of one additional factor. Then

w∗ = σ 2
MV P,K

σ 2
MV P,0

(
w∗
1F − �−1

0

(
I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

)
σ 2
F1l1l

′
1w

∗
1F

)
.

Define the following expressions.

A = σ 2
F1π

∗
1 ,

B = σ 4
F1π

∗
1 l

′
1g1

1 + σ 2
F1l

′g1
,

C = σ 4
F1b

′
r l1g

′
1l1π

∗
1

(1 + σ 2
F1l

′
1g1)(1/σ

2
M + b′

r b)
,

D = σ 2
F1π

∗
1 b

′
r l1

1/σ 2
M + b′

r b
.

Theorem 2 In the two-factor model consisting of the market portfolio and an additional
factor the minimum variance portfolio weights are obtained from the optimal one-factor
weights, w∗

1F , using the two-factor idiosyncratic variances by

w∗ = σ 2
LMV ,K

σ 2
MV P,0

(w∗
1F − w∗

c)

where the correction term, w∗
c = (w∗

ci )
d
i=1, has entries

w∗
ci =

(
σ 2
1Fπ∗

1 − σ 4
F1π

∗
1 (l ′1g1)

1 + σ 2
F1l

′
1g1

)
l1ri +

(
σ 4
F1(b

′
r l1)(g

′
1l1)π

∗
1

(1 + σ 2
F1l

′
1g1)(1/σ

2
M + b′

r b)
− σ 2

F1π
∗
1 (b′

r l1)

1/σ 2
M + b′

r b

)
βi

σ 2
i

.
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Here,π∗
1 = l ′1w∗

1F is the length of the projection of the optimal one-factor portfoliow∗
1F (onto

the subspace spanned by) the additional factor l1, l1ri = l1i/σ 2
i are the risk-adjusted factor

betas, g1 = (g1i )di=1 with g1i = l1i
σ 2
i

− σ 2
F1

∑d
j=1 l1 jβ j /σ

2
j

1/σ 2
M+∑d

j=1 β j /σ
2
j

βi
σ 2
i
, 1 ≤ i ≤ d, and b′

r b = ∑d
j=1

β2
j

σ 2
j
.

If βi ≥ 0 for all 1 ≤ i ≤ n, then we have the following equivalent characterizations:

(i) The portfolio holds a long position in asset i , if and only if w∗
1Fi > w∗

ci .
(ii) If C > D, then asset i is long, if and only if

βi < βLS,i ,

and if C < D, then asset i is long, if

βi < |βLS,i |, βLS,i < 0,

where the asset-specific long-short threshold betas are given by

βLS,i = σ 2
i

C − D

(
w∗
1F,i − (A + B)l1ri

)

for 1 ≤ i ≤ d.

The long-short thresholds are proportional to the idiosyncratic variances and thus indicate
that the two-factorMVP prefers assets with small idiosyncratic risks. However, the result also
shows that in the two-factor casewith one factor augmenting themarket portfolio the structure
of theMVP is more complex than in the one-factor case. There is no long-short threshold beta
applicable to all assets. Instead, each asset has its own long-short threshold and the threshold
can be positive or negative. The assumption of nonnegative betas is empirically justified as
shown by many empirical analyses including the example discussed in the next section. Real
financial markets of exchange-traded companies have this property. It is important to note
that the derived inequalities are a structural statement about the minimum variance portfolio,
since the thresholds depend on all inputs. For example, they change if the idiosyncratic
variances changes.

Theorem 2 also reveals that the optimal porfolio,w∗, can be expressed in terms of the gen-
erally non-orthogonal spanning vectorsw∗

1F , l1r and br with coefficients which are nonlinear
functions. Specifically,

w∗ = ϑ0w
∗
1F + ϑ1(l1)l1r + ϑ2(l1, br )br ,

with smooth functions

ϑ0 = σ 2
LMV ,K

σ 2
MV P,0

,

ϑ1(l1) = −σ 2
LMV ,K

σ 2
MV P,0

(
σ 2
1Fπ∗

1 − σ 4
F1π

∗
1 (l ′1g1)

1 + σ 2
F1l

′
1g1

)
,

ϑ2(l1, br ) = σ 2
LMV ,K

σ 2
MV P,0

(
σ 2
F1π

∗
1 (b′

r l1)

1/σ 2
M + b′

r b
− σ 4

F1(b
′
r l1)(g

′
1l1)π

∗
1

(1 + σ 2
F1l

′
1g1)(1/σ

2
M + b′

r b)

)
.

This means, the optimal portfolio is embedded in a threedimensional subspace spanned by
the one-factor optimal portfolio, the risk-adjusted factor betas and the risk-adjusted market
betas.
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In general factor models one can also derive a long-short criterion in terms of a condition
on the betas. However, the expressions need matrix calculus for their formulation and require
to invert a d × d matrix.

Theorem 3 Consider a general multi-factor model with K factors and βi ≥ 0 for all 1 ≤
i ≤ d. Let a = b′

r (I + BK�−1
0 )−1(−BKw∗

1F ). If a > 0, then the MVP is long in asset i , if
and only if

βi < βLS,i = σ 2
i

1/σ 2
M + b′

r b

b′
r (I + BK�−1

0 )−1(−BKw∗
1F )

(
w∗
1F,i − 1

σ 2
i

[(I + BK�−1
0 )−1]iBKw∗

1F

)

for 1 ≤ i ≤ d, where [A]i denotes the i th row vector of a matrix A, BK = ∑K
k=1 σ 2

Fk lk l
′
k

is the contribution of the K additional factors to the covariance matrix of the asset returns
and w∗

1F , br and σ 2
1 , . . . , σ 2

d are as in the previous result.
If a < 0, then the MVP is long in asset i , if and only if

βi < |βLS,i |, βLS,i < 0,

for 1 ≤ i ≤ d.

5 Empirical analysis

To illustrate the results, we analyze daily asset returns of S&P 500 stocks using data from
1, 008 trading days for the years 2019 to 2022 downloaded from yahoo finance. One may
criticize that this period includes the COVID-19 crash. Below we provide an analysis of the
period from2016 to 2019 to indicate and highlight the differences. Generally, the asset returns
were demeaned using a running mean before estimating the covariance matrix. Clearly, now
all quantities such as the beta factors are calculated from the data. Basically, two analyses
were conducted:

Firstly, a two-factor model without observable factors, named pure factor model in what
follows, estimated by PCA. Here the market portfolio is estimated by the leading principal
component. Thismeans, the leading eigenvector, û0, of the estimated covariancematrix plays
the role of the market. One flips the sign of the leading eigenvector if the majority of entries is
negative and then estimates b by û0. The associated principal component, Rû0, is the return
series of the estimated market and Pû0, where P denotes the n × d matrix of asset prices,
yields the associated price series, i.e. the estimated prices of the market portfolio. For the data
under investigation, this results in an estimator with positive entries. Figure1 demonstrates
that the estimated market index closely resembles the S&P 500 index commonly used as a
proxy. The sample coefficient of correlation between Rû0 and the S&P 500 returns is 0.929.

Secondly, a factor model was considered with the S&P 500 as observable factor and four
additional unobserved factors determined by PCA within the orthogonal complement. In the
following, we discuss in parallel the results for both analyses.

The left panel of Fig. 2 shows a plot of the beta factors of all assets for the pure factor
model approach, and the right panel for the extended factor model. Assets which are long in
the MVP are marked blue and shorted assets are in red. Although there is no clear cut as in
a one-factor model, there is a visible tendency that the MVP is long in low-beta assets. For
the factor model with five factors, there is still a tendency that the MVP is long in low-beta
assets, but the point clouds of long and short assets have a large overlap.

Our theoretical results resolve this structure: The asset-specific long-short thresholds allow
to identify long and short positions. Figure3 shows betas and the associated long-short
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Fig. 1 S&P 500 (black) and market index estimated by PCA (blue)
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Fig. 2 Shown are estimated betas of all assets. Long positions of the minimum-variance portfolio are marked
in blue, short positions are red. Left: Full factor model. Right: Five-factor model, first factor is S&P 500

thresholds |β̂LS,i | (connected by a line) for all long positions of the full two-factorMVPwhere
the market portfolio is estimated by the leading principal component. 56.73% of the MVP
positions are long. There are some cases where the characterization is violated (marked in red
in the plot). A possible explanation is estimation error of the idiosyncratic variances: Contrary
to a five-factor model, a two-factor model cannot fully explain the dependence structure of
the assets, such that the covariance matrix of the error terms is not well approximated by
a diagonal matrix. It is puzzling that the empirical thresholds are large compared to the
betas. Thus, they seem to provide only loose bounds for the betas, which complicates their
interpretation in practice. The analysis was repeated based on nonlinear shrinkage estimator
of the assets’ covariance matrix, see [12], but the result were almost the same. However, the
structural relationship between the betas, β̂i , and their long-short threshods, β̂LS,i , explains
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Fig. 3 Pure two-factor model betas and long-short threshold betas. Left: Estimated betas, β̂i , and their long-
short thresholds β̂LS,i for long positions. Cases violating the rule are marked in red. Right: Plot of estimated

betas and β̂LS,i . Long positions are characterized by negative thresholds, short positions by positive ones
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Fig. 4 Five-factor model betas and long-short-threshold betas. Left: Estimated betas, β̂i , and their long-short
thresholds β̂LS,i for long positions. Cases violating the rule are marked in red. Right: Plot of estimated betas

and β̂LS,i . Long positions in blue, short positions in red

the long-short structure of the MVP. The second illustration in Fig. 3 plots the betas, β̂i ,
against their thresholds, β̂LS,i , for all assets. One can see that the sign of the thresholds is
highly informative and determines the sign (long or short) of the MVP position.

Figure4 provides the corresponding plots for the five-factor model where the S&P 500
serves as market proxy. Now there is a 1–1 relationship between the sign of a position
(long/short) and the ordering of the assets’ betas and their long-short thresholds.

The plot in Fig. 5 provides an alternative representation. It depicts the estimates for the
differences β̂i − β̂LS,i betweeen the betas and their thresholds for all assets i . Such a plot
can help in asset monitoring by identifying those securities whose betas are close to the
threshold. Then, a small change in their linkage to the market may change the sign of the
position. Contrary, assets with betas far away from the threshold are likely to keep their sign
even if there are small frictions resulting in changing betas. However, because the asset-
specific long-short threholds depend on all betas, this interpretation needs some care.
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Fig. 5 Estimates of the distances, β̂i − β̂LS,i of all betas from their respective long-short thresholds using a
two-factor model estimated by PCA. Long positions are blue, short positions red
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Fig. 6 The MVP is long in low risk assets: Plot of the idiosyncratic standard deviations against the assets’
weights in the minimum variance portfolio (in %). Left: Pure two-factor model. Right: Five-factor model with
S&P 500 as observed factor

Figure 6 plots the idiosyncratic risks, expressed as the standard deviations σi , against
the assets’ weights in the two-factor MVP. The analysis is in agreement with the obtained
bounds, |β̂LS,i |, which are proportional to σ 2

i (ceteris paribus): The MVP is long in low-risk
assets.

Figure 7 analyzes for the five-factor model the relationship between the weigth of an
asset in the minimum variance portfolio and the distance of its beta, β̂i , from the applicable
long-short threshold, β̂LS,i . For both long and short positions there is quite strong empirical
relationship between the distance and the portofolio weight. Simple linear regression for long
and short positions, respecitvely, with distances not exceeding 30 yield adjusted R2 values
of 0.45 and 0.57.
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Fig. 7 Plot of the distance, |β̂i − β̂LS,i |, of asset betas from their long-short tresholds against the weight in
the five-factor minimum variance portfolio. Long positions are in blue, short positions in red

One may criticize that the time span of the data includes the COVID-19 crash and the
market turmoils of the following period. Indeed, Bours and Steland [4] found a break (change-
point) in the loadings of the Fama/French factors dated between February 21 and February
28, 2020, and Steland [18] provides evidence for a significant change in the time-frequency
representation of the S&P 500 investment universe. Thus, the five-factor model including the
S&P 500 index was refitted to the shorter time period from 2016–2019 where markets were
relatively stable, at least compared to the period 2020–2022. Figure8 provides the crucial
plots of the estimated betas and long-short thresholds. Now, the long-short threshold are
much smaller in magnitude and show a notable smaller variation, and the thresholds provide
considerably tighter bounds for the beta factors.

6 Conclusions

It is shown that in a multi-factor models for asset pricing the global minimum-variance
portfolio is long in low-beta assets similar as in a one-factor model where explicit formulas
are known.Althoughnow the long-short threshold is asset-specific, this sheds new light on this
question. For general multi factor asset pricing models a criterion in terms of the beta factors
can also be developed but not in closed-form. In addition, recursive formulas are derived
which simplify the calculation of inverse covariance matrices in multi factor models, which
are a basic ingredient of optimal porfolios related to the classical and widely usedMarkowitz
framework. Empirical analyses of the constituents of the S&P 500 confirm the theoretical
findings. For a five-factor asset pricing model with the S&P 500 index return as observable
market proxy the derived criteria uniquely determine the long and short positions of the
minimum variance portfolio. However, the analysis reveals a quite unexpected behaviour of
the estimated long-short thresholds, which could motivate future research on this question.
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Fig. 8 Five-factor model betas and long-short-threshold betas for the period 2016–2019. Left: Estimated betas,
β̂i , and their long-short thresholds β̂LS,i for long positions. Cases violating the rule are marked in red. Right:

Plot of estimated betas and β̂LS,i . Long positions in blue, short positions in red

Appendix: Proofs

In the derivations, we make frequent use of the following known result, which we prove for
completeness.

Lemma A Let a, b ∈ R
n be vectors, x ∈ R, and let D be an invertible n × n matrix with

real-valued entries and inverse E = D−1. Then

(D + xa′b)−1 = E − x

1 + xa′Eb
a′b

Proof of Lemma A: Make the ansatz (D + xa′b)−1 = E − ya′b. Then, after some algebra,

(D + xa′b)(E − ya′b) = I + (x − y − xya′Eb)a(Eb)′

Solving x − y − xya′Eb = 0 for y establishes the assertion. 	

Proof of Theorem 1 To show the first general formula, observe that we may write �K as

�K = �0 + BK ,

where

BK =
K∑

k=1

σ 2
Fk lk l

′
k

and �0 = σ 2
M bb′ + S0 with S0 = diag(σ 2

1 , . . . , σ 2
d ). Thus, �0 is a 1-factor-model covari-

ance matrix, but now the idiosyncratic risks are those from the multi-factor regression. The
representation of �K as the sum of the 1-factor model matrix �0 and a perturbation matrix
BK allows to make use of explicit formulas for the inverse �−1 of an invertible matrix of
this form. By [9, formula (23)]

�−1
K = (I − �−1

0 (I + BK�−1
0 )−1BK )�−1

0 .

Here, �−1
0 =

(
S−1
0 − br b′

r
1/σ 2

M+b′
r b

)
, where br = (β1/σ

2
1 , . . . , βd/σ

2
d )′.
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Let us now consider �1 such that B1 = σ 2
F1l1l

′
1. We have

I + B1�
−1
0 = I + σ 2

F1l1l
′
1

(
S−1
0 − br b′

r

1/σ 2
M + b′

r b

)

= I + σ 2
F1l1(S

−1
0 l1)′ − σ 2

F1l
′
1br

1/σ 2
M + b′

r b
l1b′

r

= I + σ 2
F1l1g

′
1

where

g1 = (S−1
0 l1) − σ 2

F1l
′
1br

1/σ 2
M + b′

r b
br

with entries g1i = l1i
σ 2
i

− σ 2
F1

∑d
j=1 l1 jβ j /σ

2
j

1/σ 2
M+∑d

j=1 β j /σ
2
j

βi
σ 2
i
, 1 ≤ i ≤ d . The vector g1 is given by the scaled

factor loadings corrected by a scaled projection of the factor loadings l1 onto the risk-adjusted
beta factors br . It follows that

(I + B1�
−1
0 )−1 = I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

.

Thus, we arrive at

�−1
1 =

(
I − �−1

0

[
I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

]
σ 2
F1l1l

′
1

)
�−1

0 .

For k ≥ 2 observe that

�k = �k−1 + Ek, Ek = σ 2
Fk lk l

′
k

where�k−1 is the covariancematrix using factors l1, . . . , lk−1 and the idiosyncratic variances
from the full factor model with all K factors. By [9, formula (23)]

�−1
k = (I − �−1

k−1(I + Ek�
−1
k−1)

−1Ek)�
−1
k−1. (6)

Write

I + Ek�
−1
k−1 = I + σ 2

Fk lk l
′
k�

−1
k−1 = I + σ 2

Fk lk g
′
k

with

gk = �−1
k−1lk .

Then

(I + Ek�
−1
k−1)

−1 = I − σ 2
Fk

1 + σ 2
Fk l

′
k gk

lk g′
k .

Pluging this into the formula for �−1
k yields the inverse-free recursion

�−1
k =

(
I − �−1

k−1

[
I − σ 2

Fk

1 + σ 2
Fk l

′
k gk

lk g′
k

]
σ 2
Fk lk l

′
k

)
�−1

k−1, k ≥ 1.

This completes the proof. 	
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Proof of Theorem 2

w∗ = σ 2
MV P,K

σ 2
MV P,0

(
w∗
1F −

[
S−1
0 − br b′

r

1/σ 2
M + b′

r b

] [
I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

]
σ 2
F1l1l

′
1w

∗
1F

)

= σ 2
MV P,K

σ 2
MV P,0

(
w∗
1F − w∗

c

)

where the optimal portfolio weights w∗
1F are corrected by

w∗
c =

[
S−1
0 − br b′

r

1/σ 2
M + b′

r b

] [
I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

]
σ 2
F1l1l

′
1w

∗
1F

where g1 is as in the previous proof. Put w
∗
1 = l ′1w∗

1F and let l1r = S−1
0 l1 = (

l1i
σ 2
i
)di=1 be the

risk-adjusted factor betas. The correction term can be simplified as follows.

w∗
c =

[
S−1
0 − br b′

r

1/σ 2
M + b′

r b

] [
I − σ 2

F1l1g
′
1

1 + σ 2
F1l

′
1g1

]
σ 2
F1l1l

′
1w

∗
1F

=
[
S−1
0 − br b′

r

1/σ 2
M + b′

r b
− S−1

0
σ 2
F1l1g

′
1

1 + σ 2
F1l

′
1g1

+ br b′
r

1/σ 2
M + b′

r b

σ 2
F1l1g

′
1

1 + σ 2
F1l

′
1g1

]
σ 2
F1l1l

′
1w

∗
1F

=
[
S−1
0 σ 2

F1l1l
′
1 − b′

r l1σ
2
F1br l

′
1

1/σ 2
M + b′

r b
− S−1

0
σ 4
F1g

′
1l1l1l

′
1

1 + σ 2
F1l

′
1g1

+ σ 4
F1br (b

′
r l1)(g

′
1l1)l

′
1

(1 + σ 2
F1l

′
1g1)(1/σ

2
M + b′

r b)

]
w∗
1F

= σ 2
F1π

∗
1 l1r − σ 4

F1l
′
1g1π

∗
1

1 + σ 2
F1l

′
1g1

l1r + br

(
σ 4
F1b

′
r l1g

′
1l1π

∗
1

(1 + σ 2
F1l

′
1g1)(1/σ

2
M + b′

r b)
− σ 2

F1b
′
r l1π

∗
1

1/σ 2
M + b′

r b

)

= (A − B)l1r + (C − D)br ,

where the expressions A, B,C, D are given in the theorem. Especially, the entries w∗
ci of w∗

c
are given by

w∗
ci =

(
σ 2
1Fπ∗

1 − σ 4
F1π

∗
1 (l ′1g1)

1 + σ 2
F1l

′
1g1

)
l1ri +

(
σ 4
F1(b

′
r l1)(g

′
1l1)π

∗
1 )

(1 + σ 2
F1l

′
1g1)(1/σ

2
M + b′

r b)
− σ 2

F1π
∗
1 (b′

r l1)

1/σ 2
M + b′

r b

)
βi

σ 2
i

,

where l1ri are the entries of l1r and g1i = l1i
σ 2
i

− σ 2
F1

∑d
j=1 l1 jβ j /σ

2
j

1/σ 2
M+∑d

j=1 β j /σ
2
j

βi
σ 2
i
, 1 ≤ i ≤ d . We can

conclude that the position i is a long position, if and only if w∗
1Fi > w∗

ci .
Lastly, let us show (ii) and thus assume βi ≥ 0.
First, consider the case C > D: Then solving the inequality w∗

F1,i ≥ w∗
ci for βi , immedi-

ately yields the long-short criterion βi < βLS,i .

Next consider the case C < D: By definition of βLS,i = σ 2
i

C−D (w∗
1F − (A − B)l1ri ) we

have the equality

w∗
i = σ 2

MV P,K

σ 2
MV P,0

(C − D)(βLS,i + βi )

Thus, w∗
i > 0 if and only if βLS,i + βi < 0. This implies βLS,i < 0, since otherwise

βLS,i + βi ≥ 0 (because βi ≥ 0), which in turn implies w∗
i < 0, in view of C < D, a

contradiction. But βLS,i + βi < 0 and βLS,i < 0 holds if and only if

βi < −βLS,i = |βLS,i |, βLS,i < 0.
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Proof of Theorem 3 In view of the formula for �−1

0 we have

w∗ = σ 2
MV P,K

σ 2
MV P,0

(
w∗

1F − �−1
0 (I + BK�−1

0 )−1BKw∗
1F

)

= σ 2
MV P,K

σ 2
MV P,0

(
w∗
1F − (S−1

0 − br b′
r

1/σ 2
M + b′

r b
)(I + BK�−1

0 )−1BKw∗
1F

)

= σ 2
MV P,K

σ 2
MV P,0

(
w∗
1F − S−1

0 (I + BK�−1
0 )−1BKw∗

1F − b′
r (I + BK�−1

0 )−1(−BKw∗
1F )

1/σ 2
M + b′

r b
br

)
.

Therefore, w∗
i > 0 if and only if

w∗
1F,i − 1

σ 2
i

[(I + BK�−1
0 )−1]iBKw∗

1F >
b′
r (I + BK�−1

0 )−1(−BKw∗
1F )

1/σ 2
M + b′

r b

βi

σ 2
i

(7)

If

a = b′
r (I + BK�−1

0 )−1(−BKw∗
1F ) > 0,

then, in view of (7), w∗
i > 0 if and only if

βi < βLS,i = σ 2
i

1/σ 2
M + b′

r b

b′
r (I + BK�−1

0 )−1(−BKw∗
1F )

(
w∗
1F,i − 1

σ 2
i

[(I + BK�−1
0 )−1]iBKw∗

1F

)
.

If a < 0, then we may argue as in the previous proof. The equation

w∗
i = σ 2

MV P,K

σ 2
MV P,0

a(βi,LS + βi )

again leads to βi,LS < 0 and βi < |βi,LS |, since βi ≥ 0, 1 ≤ i ≤ n, by assumption. 	
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