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Abstract
Wedevelop amodel for contagion risks and optimal security investment in a directed network
of interconnected agents with heterogeneous degrees, loss functions, and security profiles.
Ourmodel generalizes several contagionmodels in the literature, particularly the independent
cascade model and the linear threshold model. We state various limit theorems on the final
size of infected agents in the case of random networks with given vertex degrees for finite and
infinite-variance degree distributions. The results allow us to derive a resilience condition
for the network in response to the infection of a large group of agents and quantify how
contagion amplifies small shocks to the network. We show that when the degree distribution
has infinite variance and highly correlated in- and out-degrees, even when agents have high
thresholds, a sub-linear fraction of initially infected agents is enough to trigger the infection
of a positive fraction of nodes. We also demonstrate how these results are sensitive to vertex
and edge percolation (intervention). We then study the asymptotic Nash equilibrium and
socially optimal security investment. In the asymptotic limit, agents’ risk depends on all
other agents’ investments through an aggregate quantity that we call network vulnerability.
The limit theorems enable us to capture the impact of one class of agents’ decisions on
the overall network vulnerability. Based on our results, the vulnerability is semi-analytic,
allowing for a tractable Nash equilibrium. We provide sufficient conditions for investment
in equilibrium to be monotone in network vulnerability. When investment is monotone, we
demonstrate that the (asymptotic) Nash equilibrium is unique. In the specific example of
two types of core-periphery agents, we illustrate the strong effect of cost heterogeneity on
network vulnerability and the non-monotonous investment as a function of costs.

Keywords Contagion · Security investment · Stochastic networks · Random graphs

JEL Classification C70 · D62 · G18

1 Introduction

Internet security is one of themajor sources of concern in today’s interconnectedworld. Fraud,
cyber-attacks, and the influence of malicious software (or malware) on the World Wide Web
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and its plethora of overlying and underlying networks create significant economic, social,
and political damages. In finance, security investment can be seen as a financial institution’s
decision to hold higher capital. Higher capital comes, of course, at a cost but has a benefit
on the entire financial system because losses are absorbed. Otherwise, a firm’s failure can
translate into bankruptcy costs, and losses are imposed on other firms. As the financial crisis
has highlighted, systemic risk is one of the most important risks in financial systems, with
potential spillovers to the real economy. Investment in capital and liquidity has beenmandated
in various forms by financial regulators in the aftermath of the crisis.

Security investment is by no means specific to communication networks or to economic,
information, or financial exchanges. In the current Covid-19 health emergency, the self-
isolation decision played an important role in network vulnerability. Mitigating epidemic
spreading and COVID-19 [1, 12, 26] can be seen as a variant of security investment when
security investment is replaced by self-isolation decisions. However, the epidemic models in
such applications are more realistically based on the Susceptible-Infected-Recovered (SIR)
model for non-directed graphs.

In this paper, we propose a general framework in which a directed network of intercon-
nected agents is subject to contagion risks and potential loss. We study the asymptotic Nash
equilibrium and socially optimal security investments in a random directed network with
fixed degrees. The structure of the networks plays an important role in the resilience of the
network and impacts the decisions of different network players. We demonstrate how an
agent’s decision on their security level might depend on the decisions of other agents in
the network. In particular, agents who decide not to invest in self-protection also put other
network participants at contagion risk.

The independent threshold model with security profiles that we introduce generalizes
several contagion models in the literature, particularly the independent cascade model and
the linear threshold model. We state several limit theorems on the final size of infected
agents in the case of random networks with fixed degrees, for finite and infinite variance
degree distributions. The results allow us to derive resilience conditions for the network in
response to small initial shocks.

We characterize the asymptoticNash equilibriumand socially optimal security investment.
In the asymptotic limit, agents’ risk depends on all other agents’ investments through an
aggregate quantity, which we call network vulnerability, and which captures how risky an
unknown counterparty is. Based on our results, the vulnerability is semi-analytic, allowing
for a tractable Nash equilibrium.

We provide sufficient conditions for investment in equilibrium to be monotone in network
vulnerability. When investment is monotone, we demonstrate that the asymptotic Nash equi-
librium is unique. For the case of random regular graphs and core-periphery network models,
the social optimum is explicit, and we theoretically guarantee that individual decisions will
result in underinvestment compared to the social optimum. In the particular example of
two types of agents, called core and periphery agents, we exhibit a strong effect of cost
heterogeneity and, in particular, non-monotonous investment as a function of costs.
Related literature

Limiting contagion risk requires new analytical and computational tools. Extensive
research in this area focuses on the spread of epidemics over different network structures.
For example, see [14, 18, 21, 24, 32, 42] for SIR epidemics in random networks and [6, 37,
39, 41, 46] for threshold contagion models in random networks.

Another related strand of literature is on default cascades and systemic risk in random
financial networks, see e.g., [5, 8, 11, 13, 17, 23, 25]. In particular, in [7], the authors
study financial contagion on configuration model and derive a criterion for the resilience
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of a financial network to insolvency contagion, based on connectivity and the structure of
contagious links (i.e., those exposures of a bank larger than its capital).

There is an emerging literature on the economics of (information) security and themanage-
ment of systemic cyber risk, see e.g., [2, 29, 40, 48]. In [29], the authors consider a simple
one-period economic model for a single agent decision characterized by two parameters:
� ∈ R+ for the monetary loss and v ∈ [0, 1] called vulnerability, representing the probability
that without additional security investment, the agent becomes infected and the loss � occurs.
The agent can invest the amount x at time 0 to reduce the probability of infection (loss) to
p(x, v). Assuming the agent is risk-neutral, her optimal security investment would be the
value x∗ = x∗(v, �) minimizing

x∗(v, �) = argmin{x + �p(x, v) : x ≥ 0}.

Note that the fixed point solution(s) x(v, �) does not need to be non-decreasing in (v, �).
For instance, [29] consider the following example: p(x, v) = vαx+1, where α > 0 is a
productivitymeasure parameter for information security. A sufficient condition formonotone
investment is given in [38]: Assume that p(x, v) is twice continuously differentiable on

R+ × [0, 1], non-increasing in x and ∂2 p
∂x∂v

(x, v) ≤ 0, then the function (v, �) → x∗(v, �) is
non-decreasing in (v, �). In this case, the security investment decision is simpler since there
is an augmenting return on investment with vulnerability.

We extend the existing literature in several ways: we generalize the contagion model,
allow for network heterogeneity and multiple security levels, and treat the directed network
case. When investment is monotone, we show that the Nash equilibrium is unique. In the
case of two types of core-periphery agents, we exhibit the strong effect of cost heterogeneity
on network vulnerability and the non-monotonic investment as a function of costs.
Outline The paper is structured as follows. Section2 provides two motivating examples for
the optimal security investment game. In Sect. 3, we present our general framework for
the study of contagion risks in random networks. We also state our main results on the
asymptotic magnitude of contagion and resilience of large networks to small initial shocks in
Sect. 3. In Sect. 4, we consider the network security game and provide a sufficient condition
for the uniqueness of the equilibrium. In Sect. 5, we give a more detailed analysis of the
particular case when there are two security classes, and investment in security provides
strong protection. For the case of random regular graphs and core-periphery network modes,
the social optimum is explicit, and we theoretically guarantee that the individual decision
will be to underinvest compared to the social optimum. Section6 concludes, and Appendix A
contains all the proofs.
Notations We let N be the set of non-negative integers. For non-negative sequences xn and
yn , we write xn = O(yn) if there exist N ∈ N and c > 0 such that xn ≤ cyn for all n ≥ N ,
and xn = o(yn) (or xn � yn), if xn/yn → 0, as n → ∞. Let {Xn}n∈N be a sequence of
real-valued random variables on a probability space (�,P). If c ∈ R is a constant, we write

Xn
p−→ c to denote that Xn converges in probability to c. That is, for any ε > 0, we have

P(|Xn − c| > ε) → 0 as n → ∞. Let {an}n∈N be a sequence of real numbers that tends
to infinity as n → ∞. We write Xn = op(an), if |Xn |/an converges to 0 in probability.
Additionally, we write Xn = Op(an), to denote that for any positive sequence ω(n) → ∞,
we have P(|Xn |/an ≥ ω(n)) = o(1). If En is a measurable subset of �, for any n ∈ N, we
say that the sequence {En}n∈N occurs with high probability (w.h.p.) if P(En) = 1 − o(1), as
n → ∞. Also, we denote by Bin(k, p) a binomial distribution corresponding to the number of
successes of a sequence of k independent Bernoulli trials each having probability of success
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Table 1 Expected costs associated with investing and not investing in security

Agent 2
0 1

Agent 1

0
(
α1 + (1 − α1)α2β1

)
�1,

(
α2 + (1 − α2)α1β2

)
�2 (α1�1,C + α1β2�2)

1 (C + α2β1�1, α2�2) (C,C)

p. We will suppress the dependence of parameters on the size of the network n, if it is clear
from the context.

2 Preliminaries

To illustrate the basic intuition in a simpler framework, this section provides two motivating
examples for the network security game. First, the case of two agents is considered, followed
by a simplified contagion process in the form of a contact process on infinite regular trees.

2.1 Optimal security investment for two agents

We first look at the optimal security investment game in the case of two agents A = {1, 2}
sharing two links (1 → 2 and 2 → 1). Assume that each agent has two security choices
S = {0, 1}: si = 1 if the agent i invests in strong security (in this case, she never gets
infected) and si = 0 if the agent i does not invest in security and is subject to epidemic risk.

Table 1summarizes the expected costs to the agents for the four possible outcomes: �i is
the loss in case agent i becomes infected, and C = C1 is the cost of investing in security
(level 1). If agent i does not invest in security, there is a probability αi that they become
infected directly. On the other hand, βi denotes the probability of indirect contagion from
the other agent. Let us make the example even simpler and assume that only direct loss can
be avoided by investing in security.

We observe that investing in security is a dominant strategy for agent 1 if C < α1�1 and

C + α2β1�1 < (α1 + (1 − α1)α2β1)�1 	⇒ C < α1(1 − α2β1)�1.

Similarly, investing in security is a dominant strategy for agent 2 if C < α2�2 and

C + α1β2�2 < (α2 + (1 − α2)α1β2)�2 	⇒ C < α2(1 − α1β2)�2.

We conclude that if

C < min {α1(1 − α2β1)�1, α2(1 − α1β2)�2} ,

then both agents will invest in self-protection, while if

C > max {α1�1, α2�2} ,

then neither agent will want to invest in self-protection. In the case

max {α1(1 − α2β1)�1, α2(1 − α1β2)�2} < C < min{α1�1, α2�2},
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there are two Nash equilibria, (0,0) and (1,1), and the solution to this game is indeterminate.
In other cases, the agent with higher loss will invest in security, while the agent with lower
loss will prefer not to invest.

2.2 Contact process on infinite regular trees

We now consider a set of infinitely many agents placed over an infinite directed regular
tree with the same in-degree (denoted by d+) and out-degree (denoted by d−) satisfying
d+ = d− = d . Let S = {0, 1, . . . , K } be a finite ensemble of all possible security strategies
for each agent, and, β0 > β1 > · · · > βK be the infection probabilities over each directed
edge depending on the security investment of the host agent. Further, let α0 ≥ α1 ≥ · · · ≥ αK

denote the initial exogenous infection probabilities.
Let γ0, γ1, . . . , γK ∈ [0, 1] with γ0 + γ1 + · · · + γK = 1 be the fraction (probability) of

agents invested in each security class. A simple argument shows that

gs(x) := 1 − (1 − αs) (1 − βs x)
d

is the probability that an agent invested in security class s ∈ S ever gets infected assuming
each of its incoming neighbors are infected with probability x .

Assume that each agent i faces a fixed potential loss �i in case they become infected.
Investing in a higher security class decreases the infection probability but increases the cost.
Let Cs denote the cost of investing in security level s. So we can write the loss function for
agent i investing in security class s ∈ S as

Ji (s, γ ) = �i gs(x
γ∗ ) + Cs,

where (by a simple recursive argument) xγ∗ is the solution in [0,1] to the fixed point equation

x = 
γ (x) :=
∑

s∈S
γs gs(x).

Note that 
γ (0) ≥ 0,
γ (1) ≤ 1 and 
γ (x) is a strictly increasing function of x . Hence, in
this case the fixed point solution is unique.

We call xγ∗ the global network vulnerability parameter as it represents the fraction of
infected links in the network. Obviously, this parameter also depends on the agents security
strategies through γ0, γ1, . . . , γK . In order to find out these quantities in equilibrium, let us
denote by δs(x) the infection probability variation between security level s and s − 1, i.e.,

δs(x) := gs−1(x) − gs(x) = (1 − αs) (1 − βs x)
d − (1 − αs−1) (1 − βs−1x)

d > 0,

so that each agent i prefers security class s over s − 1 if and only if

�i > �s(x) := Cs − Cs−1

δs(x)
.

As we will see later in Sect. 4, we will assume that the cost function is such that

�1(x) ≤ �2(x) ≤ · · · ≤ �K (x),

for all x ∈ [0, 1]. Indeed, if �s+1(x) < �s(x), the agent who believes in vulnerability x will
never invest in security class s for any loss �: If � < �s(x), the agent prefers s−1 over s, and
if � ≥ �s(x) > �s+1(x), the agent prefers security s + 1 over s. In particular, the condition
will be satisfied if gs(x) and Cs are both (discrete) convex functions of s:

Cs+1 + Cs−1 ≥ 2Cs, and gs+1(x) + gs−1(x) ≥ 2gs(x),
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since in this case δs(x) = gs−1(x) − gs(x) will be a decreasing function of s.
Consider now a strictly increasing continuous loss distribution function F . Consequently,

it yields that the fraction γ
(s)
e of agents investing in security s in equilibrium satisfies

γ (s)
e = F(�s+1(x

γe∗ )) − F(�s(x
γe∗ )),

where xγe∗ is the unique solution to the fixed point equation x = 
γe (x):

x =
∑

s∈S
γ (s)
e gs(x),

and, we set �K+1(x) = ∞, F(�K+1(x)) = 1 and F(�0(x)) = 0. We will come back to this
example later in Sect. 5.2 and investigate how the social optimum security strategies differ
from the individual decisions.

3 Independent thresholdmodel with security profiles

In this section, we provide our general framework for the study of contagion risks in random
networks and state our main results on the asymptotic magnitude of contagion. We will also
provide a resilience condition for the large network to small initial shocks and show how the
bailout and intervention by a planner (government) could change the results and make the
network more resilient. These results are prerequisites for the analysis of the security game
in the next section.

3.1 Contagion risk model

Consider a directed graphG = (V , E)where V = [n] := {1, 2, . . . , n} is the set of n vertices
(agents). We study the independent threshold model with security investment, in which a
vertex’s threshold is drawn independently from a distribution which depends on the vertex’s
degrees and its security investment. More precisely, we consider a finite ensemble of security
classes S. We use the notations s = (s1, s2, . . . , sn) and s−i = (s1, . . . , si−1, si+1, . . . , sn)
to denote the security profiles of all agents and all agents other than i respectively.

The contagion process under the threshold model is a diffusion process that starts with
a set I(s)

0 ⊆ V consisting of initially infected vertices, while every other vertex is unin-
fected. For each vertex i ∈ V with security level s ∈ S, we assign a (random) threshold
�

(s)
i ∈ N representing its capacity to resist infection from incoming neighbors. We denote by

p(s)(d+, d−, θ) the probability that a vertex with in-degree d+, out-degree d− and investing
in security class s becomes infected after (exactly) θ of its incoming neighbors are infected:

p(s)(d+, d−, θ) := P(�
(s)
i = θ),

for agent i with degrees (d+, d−) and investing in security class s ∈ S.
The contagion process starts from I(s)

0 and continues progressively by rounds. In round
k ≥ 1, the contagion reaches a set

I(s)
k :=

{
i ∈ V | �

(si )
i ≤ #{ j ∈ I(s)

k−1, ( j, i) ∈ E}
}

.

This is repeated until no more vertices become infected. Note that the set of final infected
vertices depend on the security investment across all agents. The final infected set is denoted

123



Mathematics and Financial Economics (2023) 17:247–283 253

by I(s)
f . We now provide few important classes of contagion models which can be seen as a

special case of our general framework.

Example 3.1 (Independent cascademodels) The cascademodel has been extensively used for
modeling the spread of infectious diseases, computer viruses, diffusion of innovation, and
marketing. For example, consider the SIR (susceptible-infected-removed) epidemic model
in which sites (vertices) begin as susceptible, and after being infected, they become removed,
i.e., become immune to further infection. Let αs denote the initial infection probability, and
βs denote the probability of getting infected from each incoming neighbor if the host vertex
invests in security (immunization) class s. It is easy to show that the above independent
cascade model corresponds to the independent threshold model by setting

p(s)(d+, d−, 0) = αs and p(s)(d+, d−, θ) = (1 − αs)βs(1 − βs)
θ−1,

for all d+, d− ∈ N and θ = 1, . . . , d+.

Example 3.2 (Bootstrap percolation model) In the case where

p(s)(d+, d−, 0) = αs, p(s)(d+, d−, θ) = (1 − αs)11{θ=θs },

our model is equivalent to the bootstrap percolation process for each security class s. This
process (as well as numerous extensions and variations) has been used as a model to describe
various complex phenomena in different areas. A short survey regarding its applications can
be found in [3]. Several quantitative characteristics of bootstrap percolation, particularly the
dependence of the initially infected set on the final infected set, have been studied on a variety
of random graphs [6, 9, 10, 16, 33].

Example 3.3 (Linear threshold model) The linear threshold model has been extensively used
in the literature, particularly to model neuronal activity [4, 22] and default contagion in
financial networks [5, 7, 11, 27]. In this model, see e.g. [34], the edge weights

(
Li j

)
denote

the liability (influence) that agent i has on agent j and Ci = C (s)
i represents the capacity

(capital or threshold) for agent i to absorb the losses (influences) from incoming neighbors
before becoming infected. At every time step, each agent i computes the total incoming
weight from all infected neighbors, and if the sum exceeds the threshold C (s)

i , they become
infected and remain so forever. For each i ∈ N, let {L�,i }∞�=1 be a sequence of i.i.d. random
variables. For a vertex i with degree (d+, d−), by setting

p(s)(d+, d−, θ) = P(�
(s)
i = θ) = P

(
θ−1∑

�=1

L�,i ≤ C (s)
i <

θ∑

�=1

L�,i

)

, (1)

all our results will be applicable to the linear threshold model with i.i.d. random weights.

3.2 The directed configurationmodel

We represent the underlying network as a set of vertices [n] := {1, 2, . . . , n}, endowed with
a sequence of in-degrees d+ := {d+

i }i∈[n] and a sequence of out-degrees d− := {d−
i }i∈[n].

Naturally, the degrees should satisfy the condition that
∑n

i=1 d
+
i = ∑n

i=1 d
−
i , in order for

a graph with in- and out-degree sequence (d+,d−) to exist. A vertex i ∈ [n], with degree
(d+

i , d−
i ) is assigned d+

i in-coming half edges and d−
i out-going half edges, and the condition

above ensures that in total there are as many in-coming half edges as there are out-going half
edges. The configuration model with given directed degree sequence (d+,d−) is defined as
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the multigraph resulting from the uniform random matching of the in-coming half edges and
the out-going half edges [19, 43]. This graph is denoted by G = G(d+,d−) and we write
(i, j) ∈ G for the event that there is a directed link from i to j . Although self-loops may
occur, these become rare as n → ∞. It is easy to see that, conditional on the multigraph
being simple graph, we obtain a uniformly distributed random graph with these given degree
sequences; see e.g., [43].

We now describe the regularity assumptions on vertex degrees under the security profile
sn = (s1, s2, . . . , sn). For each n ∈ N we have a degree sequence (d+

n ,d−
n ) and security

profile sn = (s1, s2, . . . , sn), but (to lighten notation) this dependency on n will not be
carried in the notation. The empirical distribution of the degrees is denoted by μn which is
given by

μ(s)
n (d+, d−) := 1

n

n∑

i=1

11{d+
i =d+,d−

i =d−,si=s}. (2)

We assume that the sequence (d+,d−, s) satisfies the following regularity conditions:

Condition 3.4 (Degree regularity conditions) We say that the sequence (d+,d−, s) satisfies
the regularity conditions if for someprobability distributionμ : N2×S → [0, 1], independent
of n, the following holds:

(C1) for every d+, d− ∈ N and s ∈ S, as n → ∞
μ(s)
n (d+, d−) → μ(s)(d+, d−);

(C2) The average degree λ := ∑∞
j=0

∑∞
k=0

∑
s∈S jμ(s)( j, k) ∈ (0,∞) and as n → ∞

∞∑

j=0

∞∑

k=0

∑

s∈S
jμ(s)

n ( j, k) → λ.

We end this section by the following remark:

Remark 3.5 We state our results for the randommultigraph G(d+,d−) constructed by config-
uration model. However, they could be transferred by conditioning on the multigraph being
a simple graph (without loop and multiples edges). The resulting random graph, denoted by
G∗(d+,d−), will be uniformly distributed among all directed graphs with the same degrees
sequence. In order to transfer the results, wewould need to assume that the degree distribution
has a finite second moment, i.e.

∞∑

j=0

∞∑

k=0

∑

s∈S
( j + k)2μ(s)( j, k) ∈ (0,∞),

which from [30] implies that the probability that G(d+,d−) is simple being bounded away
from zero as n → ∞. However, as stated also in [32], we suspect that all results hold even
without the second moment assumption for simple random graph G∗(d+,d−). In [20], the
authors have recently shown results for the size of the giant component from the multigraph
case without using the second moment assumption; they prove that even with the (expo-
nentially) small probability that the multigraph is simple, the error probabilities are even
smaller.
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3.3 Limit theorems and the resilience conditions

We let p(s)(d+, d−, 0) the probability that agent i ∈ [n] with degree (d+, d−) and investing
in security s ∈ S is initially infected:

p(s)(d+, d−, 0) = P(i ∈ I(s)
0 | si = s, d+

i = d+, d−
i = d−).

Let us denote by I(s)
f (d+, d−) the set of finally infected agents with degrees (d+, d−) and

security level s ∈ S.
We define the function 
(s) : [0, 1] → [0, 1] as


(s)(x) :=
∞∑

j=0

∞∑

k=0

∑

s∈S

kμ(s)( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ), (3)

and let x (s)∗ be the smallest fixed point of 
(s) in [0, 1]. Note that 
(s) admits at least one
fixed point since it is a continuous increasing function, 
(s)(1) ≤ 1 and 
(s)(0) ≥ 0.

We can interpret x (s)∗ as the probability that an incoming neighbor of a randomly chosen
agent gets infected during the contagion process. The intuition behind Eq. (3) is the as
follows: The incoming neighbor of a randomly chosen agent has in-degree j , out-degree k,

and security s with the size-biased distribution kμ(s)( j,k)
λ

. Moreover, they will have threshold
θ with probability p(s)( j, k, θ) and they will get infected if at least θ of their incoming
neighbors are infected (each independently with probability x (s)∗ ).

Our first theorem concerns the limit theorem for the final number of infected agents when
the number of initially infected agents is macroscopic:

Theorem 3.6 Consider a sequence of random graphs G(d+,d−) and security profiles s sat-
isfying Condition 3.4 and let x (s)∗ be the smallest fixed point of 
(s) in [0, 1]. We have for all
ε > 0 w.h.p.

|I(s)
f |
n

≥
∑

j,k

∑

s∈S
μ(s)( j, k)

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x (s)∗ ) ≥ θ) − ε.

Moreover,

• if x (s)∗ = 1 then w.h.p. almost all vertices become infected: |I f | = n − op(n);
• if x (s)∗ < 1 and furthermore x (s)∗ is a stable fixed point of 
(s) (i.e., 
(s)(x) < x for

x ∈ (x (s)∗ , x (s)∗ + ε) and ε > 0 small enough), then

|I(s)
f |
n

p−→ ψ(x (s)∗ ) :=
∑

j,k

∑

s∈S
μ(s)( j, k)

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x (s)∗ ) ≥ θ),

and,

|I(s)
f (d+, d−)|

nμ
(s)
n (d+, d−)

p−→ ψ(s)(d+, d−, x (s)∗ ) :=
j∑

θ=0

p(s)(d+, d−, θ)P(Bin(d+, x (s)∗ ) ≥ θ).

The theorem extends the result in [7] by allowing for different agent types (securities)
distributions. The proof of the theorem is provided in Appendix A.3.

Our next theorem concerns the case with few initially infective agents, i.e. |I(s)
0 | = o(n).

As a corollary of Theorem 3.6, we have:
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Theorem 3.7 Consider a random graph G(d+,d−) and a security profile s satisfying
Condition 3.4. If there exists x0 > 0 such that for all 0 < x < x0,

x >
∑

j,k

∑

s∈S

kμ(s)( j, k)

λ

j∑

θ=1

p(s)( j, k, θ)P(Bin( j, x) ≥ θ),

and we initially infect randomly |I(s)
0 | = o(n) vertices in [n], then |I(s)

f | = op(n).

Further, as a corollary of the above theorem, we have the following result, which
generalizes the resilience condition of [7] by allowing for different agent types.

Let us define

R(s)
0 := 1

λ

∑

j,k∈N

∑

s∈S
jkμ(s)( j, k)p(s)( j, k, 1). (4)

We denote by S1 to be the largest strongly connected component of the random graph
G(d+,d−) on which we apply the site percolation process by removing all vertices with
threshold �i ≥ 2. Let I(s)

f (i) denote the final infected set when the epidemic is initiated
from vertex i ∈ [n], under the security profile s.

Theorem 3.8 Consider a random graph G(d+,d−) and a security profile s satisfying
Condition 3.4.

• If R(s)
0 < 1,

∑

j,k

∑

s∈S
jkμ(s)( j, k) < ∞

and we initially infect randomly |I(s)
0 | = o(n) vertices in [n], then |I(s)

f | = op(n).

• If R(s)
0 > 1 then w.h.p. for any i ∈ S1,

lim inf
n

|I(s)
f (i)|
n

≥ lim inf
n

|S1|
n

> 0.

The proof of the theorem is provided in Appendix A.6. It is worth noting that the above
resilience condition requires

∑
j,k

∑
s∈S jkμ(s)( j, k) < ∞. In [7], this is implied by the

condition of finite second-ordermoment for the degree distribution. Thus, under the resilience
condition and assuming that

∑
j,k jkμ( j, k) < ∞, the infection amplification is finite.

However, if
∑

j,k

∑

s∈S
jkμ(s)( j, k) = ∞,

which is the case for many real-world networks, a small fraction of initially infected agents
can still trigger a large cascade under certain conditions. This is the object of a new result in
this paper, which we state below.

Consider the case when
∑

j,k
∑

s∈S jkμ(s)( j, k) = ∞. Suppose that there is a positive
fraction of vertices with a finite threshold and at the same time with a large number of in- and
out-degrees. These vertices will amplify the initial infections: their large number of incoming
links will likely be connected to multiple initially infected vertices, and thus these vertices
will reach their infection threshold. Moreover, these vertices have a large out-degree, and
thus they will increase the rate of the epidemic’s spread. The following theorem is another
corollary of Theorem 3.6.
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Theorem 3.9 Consider a random graph G(d+,d−) and a security profile s satisfying Con-
dition 3.4. Assume that a small fraction ε > 0 of all vertices represent the initial seed,
i.e.,

∑

j,k

∑

s∈S
μ(s)( j, k)p(s)( j, k, 0) = ε.

If there exists x0 > 0 such that for all 0 < x < x0,

x <
∑

j,k

∑

s∈S

kμ(s)( j, k)

λ

j∑

θ=1

p(s)( j, k, θ)P(Bin( j, x) ≥ θ),

then with high probability (for all ε > 0)

|I(s)
f |
n

> ψ(x0) > 0.

The following corollary shows a discontinuity at 0 for the final size of the infected agents
when the degree distribution is heavy-tailed, such as in scale-free networks.

Corollary 3.10 Assume that for some K ∈ N, c ∈ R
+ and χ ∈ (2, 3):

∑

k∈N

∑

s∈S

K∑

θ=1

kμ(s)( j, k)p(s)( j, k, θ) ≥ cj−χ+1

for all j ∈ N. Consider a small fraction ε > 0 of all vertices represent the initial seed, i.e.,
∑

j,k

∑

s∈S
μ(s)( j, k)p(s)( j, k, 0) = ε.

Then there exists x̂ > 0 the smallest positive solution of

x =
∑

j,k

∑

s∈S

∑

θ≥1

kμ(s)( j, k)

λ
p( j, k, θ)P(Bin( j, x) ≥ θ) (5)

such that for all ε > 0, with high probability

0 < ψ(x̂) <
|I(s)

f |
n

< ψ(x̂) + 2ε.

The proof of above corollary is provided in Appendix A.4. This shows that the final size
of the cascade has a jump discontinuity at 0 when the degree distribution is heavy-tailed and
the condition

∑

k∈N

∑

s∈S

K∑

θ=1

kμ(s)( j, k)p(s)( j, k, θ) ≥ cj−χ+1

holds for all j ∈ N. In particular, this condition implies that (since χ ∈ (2, 3)),
∑

j,k

∑

s∈S
jkμ(s)( j, k) ≥ c

∑

j

j−χ+2 = ∞.

The interest of this result lies in the case K > 1, since when K = 1, we already know from
Theorem 3.8 that with this condition R(s)

0 > 1, and the network is not resilient. Note that
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in the fixed-point equation (5), the threshold runs over θ ≥ 1, contrary to the fixed point of
the function 
(s) in Theorem 3.6. Corollary 3.10 states that as the fraction of vertices with
θ = 0 tends to zero, the number of vertices that become infected (which have a threshold
θ > 0) represents a positive fraction of the system. We also give a precise value for this final
fraction of infected vertices.

3.4 Targeting interventions

In this section, we consider a social planner (lender of last resort or government) who seeks to
intervene and make the network (which is initially subject to an exogenous shock) resilient,
by targeting the most central players. Note that the interventions are based on the partial
information of the network (based on the degrees and security class of each agent). The
complete information setup has been studied in various papers, see e.g., [15, 28, 34–36].

We assume that the planner’s intervention could be either saving (vulnerable) links in the
network or saving (defaulting/infected) agents based on their degrees and security classes.
We denote by (1−πe) ∈ [0, 1] the fraction of links saved by the planner, i.e., πe denotes the
fraction of remaining links in the network. Further, for a given functionπv : N2×S → [0, 1],
we denote by (1 − π

(s)
v (d+, d−)) the fraction of agents with degree (d+, d−) and invested

in security class s ∈ S saved (bailed out) by the planner.
The above intervention model is equivalent to considering contagion in the percolated

random graph, where we first generate the random graph G(d+,d−) using the configuration
model and then randomly delete either vertices or edges based on the given intervention policy
(since saved links and agents will not play any role in the contagion process). We denote this
percolated random graph by Gπv,πe (d

+,d−). Specifically, each edge of G(d+,d−) is deleted
with probability 1 − πe and each agent with degree (d+, d−) and invested in security s is
removed from the network with probability 1 − π

(s)
v ( j, k). Consider now the independent

threshold model on the percolated random graph Gπv,πe (d
+,d−).

Theorem 3.11 Consider Gπv,πe (d
+,d−) and suppose that Condition 3.4 holds. Let x (s)∗ be

the smallest fixed point in [0,1] of


(s)
πv,πe

(x) :=
∑

j,k

∑

s∈S

kμ(s)( j, k)π(s)
v ( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, xπe) ≥ θ).

If x (s)∗ < 1 and furthermore x (s)∗ is a stable fixed point of 
(s)
πv,πe , then

|I(s)
f |
n

p−→
∑

j,k

∑

s∈S
μ(s)( j, k)π(s)

v ( j, k)
j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x (s)∗ πe) ≥ θ),

and,

|I(s)
f (d+, d−)|

nμ
(s)
n (d+, d−)π

(s)
v (d+, d−)

p−→
j∑

θ=0

p(s)(d+, d−, θ)P(Bin(d+, x (s)∗ πe) ≥ θ).

The proof of theorem is provided in Appendix A.5
We now investigate how the interventions could make the network resilient. Let us

denote by S̃1 the largest strongly connected component of the percolated random graph
Gπv,πe (d

+,d−) (network after interventions) on which we apply (another) site percolation
by removing all vertices with threshold �i ≥ 2.
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Theorem 3.12 Consider Gπv,πe (d
+,d−) and suppose that Condition 3.4 holds. We have:

(i) If
∑

j,k,s jkμ(s)( j, k) < ∞ and

πe < π∗
e := λ

∑
j,k,s jkμ(s)( j, k)π(s)

v ( j, k)p(s)( j, k, 1)
,

then the network is resilient, i.e., if we we start by initially infecting (randomly) |I(s)
0 | =

o(n) vertices in [n], then |I(s)
f | = op(n).

(ii) If πe > π∗
e , then w.h.p. for any i ∈ S̃1,

lim inf
n

|I(s)
f (i)|
n

≥ lim inf
n

|S̃1|
n

> 0.

The proof of theorem is provided in Appendix A.6. The theorem characterizes the critical
value of the bond percolation parameter (fraction of vulnerable links saved by the planner)
required to make the network resilient. Note that if π∗

e > 1, then the network is already
resilient under the site percolation (agents bailout by the planner).

4 Network security games

In this section, we study the network security game and provide sufficient conditions for the
uniqueness of an (asymptotic) Nash equilibrium.

Remark 4.1 For the financial applications, considering the linear threshold model of Exam-
ple 3.3, the threshold represents the liquidity or capital to absorb incoming losses from the
defaulted neighbors (creditors). In this case, the security class could represent the quality of
a firms’ assets in terms of liquidity and capital charges. A firm with more liquid assets will
then have higher Tier 1 capital. In this case, instead of security classes, we can introduce
different asset liquidity classes, so that agents (banks) choose optimally their asset liquidity
classes. Our results could be easily transferred to this case.

4.1 Contagion risks model

We consider a network security game introduced and motivated in Sect. 2. We assume that
agent i can obtain a security level s ∈ S := {0, 1, . . . , K } for a cost C (s)

i = C (s)(d+
i , d−

i ),
and faces a potential loss �i in case it becomes infected. It is natural to assume that:

(C3) For all vertices the threshold is stochastically increasing with the security investment
i.e., for any agent with degrees (d+, d−) and for s < s′ we have for all k ∈ N,

k∑

θ=0

p(s)(d+, d−, θ) >

k∑

θ=0

p(s′)(d+, d−, θ). (6)

On the other hand, we assume that investing in a higher security class increases the cost
and thus C (s)

i is strictly increasing in s.

The timeline is as follows: agents learn their potential loss in case they become infected.
This is their private information, but the distribution of losses, denoted by F , is common
knowledge. Agents then decide on their security level. They draw a threshold θ from a
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distribution that increases stochastically with their security investment and depends on their
degree. Agents that have a threshold of zero are initially infected and trigger a cascade of
infections. This is equivalent to the random attack model, in which the attacker targets and
infects each agent based on their degree and security level (see, e.g., [2]).

We assume that agents are risk neutral, so in the network of size n, we can write the payoff
of vertex i as

Ji (�, s) = Ji (�1, . . . , �n, s1, . . . , sn) := �iPn(i ∈ I(s)
f ) + C (si )

i ,

where Pn(i ∈ I(s)
f ) is over the distribution of the random graph G(d+,d−) of size n and

random thresholds, given all vertices’ degrees, losses and investment security vector s.
We say that a security investment across agents s∗ = (s∗

1 , s
∗
2 , . . . , s

∗
n ) is a (pure-strategy)

Nash equilibrium if

s∗
i ∈ argmin

s∈S
Ji (�1, . . . , �n, s

∗
1 , . . . , s

∗
i−1, s, s

∗
i+1, . . . , s

∗
n ),

for all i ∈ [n].
Similarly, a security profile s∗ = (s∗

1 , s
∗
2 , . . . , s

∗
n ) is a social optimum if for all s ∈ Sn ,

n∑

i=1

Ji (�, s∗) ≤
n∑

i=1

Ji (�, s).

4.2 Conditions for monotone investment

Consider a sequence of random graphs G(d+,d−) and security profiles s satisfying Condi-
tion 3.4. According to Theorem 3.6, see also the proof in Appendix A.3, we know that x (s)∗
is the ratio of infected edges among all the edges. We call this parameter the global vulnera-
bility of the network and securities. Then, for a given random network with vulnerability x ,
a representative agent with degrees (d+, d−) and security s will become infected and faces
losses � with (asymptotic) probability

ψ(s)(d+, d−, x) :=
d+∑

θ=0

p(s)(d+, d−, θ)P(Bin(d+, x) ≥ θ).

Consequently, under the network vulnerability parameter x ∈ [0, 1], the agent’s optimal
security investment shall be the value s∗(x) satisfying

s∗(x) ∈ argmin
s∈S

{
�ψ(s)(d+, d−, x) + C (s)(d+, d−)

}
.

This can be interpreted as anasymptoticNash equilibriumwith respect to the representative
agent’s optimal security investment when the global network vulnerability x summarizes the
impact of all individuals’ optimal security strategies and degrees distribution. This is a fixed
point problem that will be described in the following.

In particular, the representative agent prefers the security class s over a lower security
class s − 1 if and only if

�
(
ψ(s−1)(d+, d−, x) − ψ(s)(d+, d−, x)

)
> C (s)(d+, d−) − C (s−1)(d+, d−).

Note also that

δs(d
+, d−, x) := ψ(s−1)(d+, d−, x) − ψ(s)(d+, d−, x)
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=
d+∑

θ=0

(
p(s−1)(d+, d−, θ) − p(s)(d+, d−, θ)

)
P(Bin(d+, x) ≥ θ)

=
d+∑

θ=0

qs(d
+, d−, θ)P(Bin(d+, x) = θ) > 0,

since by Condition (C3),

qs(d
+, d−, θ) :=

θ∑

j=0

(
p(s−1)(d+, d−, j) − p(s)(d+, d−, j)

)
> 0.

In order to restrict ourselves to threshold-type strategies, we need a stronger assumption.
Specifically, let us define for k = 1, 2, . . . , K :

�s(d
+, d−, x) := C (s)(d+, d−) − C (s−1)(d+, d−)

δs(d+, d−, x)
, (7)

so that the representative agent with degrees (d+, d−) would prefer the security class s over
s − 1 if and only if � > �s(d+, d−, x).

(C4) We assume in the following that for all d+, d− ∈ N and x ∈ [0, 1],
�1(d

+, d−, x) < �2(d
+, d−, x) < · · · < �K (d+, d−, x).

Under this condition, the optimal agent’s security investment is threshold-type: invest in
security class k if and only if � ∈ (�k, �k+1] (we set �K+1 = ∞). Note that the above condition
is automatically verified for the case with only two security strategies, i.e., S = {0, 1}.

On the other hand,wewill also need to assume that such thresholds are (strictly) decreasing
with the network vulnerability level x :

(C5) For all d+, d− ∈ N, s ∈ S and x ∈ [0, 1], the threshold function �s(d+, d−, x) is a
decreasing function of x .

The abovemonotone investment condition states that the level of loss where agents choose
to invest in higher security class is lower when the network vulnerability is higher. The higher
the global network vulnerability, the more agents invest in security.

Lemma 4.2 The monotone investment condition (C5) holds if and only if for all d+, d− ∈
N, s ∈ S and x ∈ [0, 1],

d+∑

θ=1

(
p(s−1)(d+, d−, θ) − p(s)(d+, d−, θ)

)
P(Bin(d+ − 1, x) = θ − 1) > 0.

The proof of lemma is provided in Appendix A.7. Consequently, the above lemma implies
that if

p(s−1)(d+, d−, θ) > p(s)(d+, d−, θ)

for all θ < d+, then the monotone investment condition will be held. In particular, when
we consider the strong versus weak protection setting in Sect. 5.1, the above condition will
be held since S = {0, 1} and the agent investing in security will never get infected, i.e.,
p(1)(d+, d−, θ) = 0. Therefore, the condition in the lemma will be satisfied.
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4.3 Asymptotic Nash equilibrium analysis

We are now ready to describe the asymptotic Nash equilibrium as a fixed point problem. In
the previous section we described the agents’ strategy given the global network vulnerability.
Let xe denote the expected network vulnerability (expected ratio of infected links among all
the links) of the random network under expected security investments across all agents.

The representative agent with degrees (d+, d−) would invest in the security class s ∈ S
if and only if

�s(d
+, d−, xe) < � ≤ �s+1(d

+, d−, xe).

Hence, the fraction of agents with degrees (d+, d−) investing in security class s =
0, 1, . . . , K will be (set F(�K+1) = 1)

γ (s)
e (d+, d−) = F(�s+1(d

+, d−, xe)) − F(�s(d
+, d−, xe)),

and we have

μ(s)
e (d+, d−) = μ(d+, d−)γ (s)

e (d+, d−).

On the other hand, given the probability distributions γe : N2 → P(S), following The-
orem 3.6, a vertex i with degrees (d+, d−) will invest in security class s ∈ S as long
as

�s(d
+, d−, xγe∗ ) < �i ≤ �s+1(d

+, d−, xγe∗ ),

where xγe∗ is the smallest fixed point of


γe (x) :=
∑

j,k

∑

s∈S

kμ( j, k)γ (s)
e ( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ), (8)

in [0, 1]. Hence, the actual fraction of vertices with degree (d+, d−) investing in security
class s ∈ S is given by

γ (s)(d+, d−) = F(�s+1(d
+, d−, xγe∗ )) − F(�s(d

+, d−, xγe∗ )). (9)

Then for s = K , we have

�K (d+, d−, xγe∗ ) = F−1
(
1 − γ (K )(d+, d−)

)
,

and, by backward induction, we obtain for s = 1, . . . , K :

�s(d
+, d−, xγe∗ ) = F−1

(
1 − γ (K )(d+, d−) − · · · − γ (s)(d+, d−)

)
= F−1

(
s−1∑

k=0

γ (k)(d+, d−)

)

.

The willingness to pay to move from security class s − 1 to s for the last vertex with
degrees (d+, d−) in a network with fraction investing in security γ and with expectation γe
can be defined as

W (s)
γ,γe

(d+, d−) := δs(d
+, d−, xγe∗ )F−1

(
s−1∑

k=0

γ (k)(d+, d−)

)

. (10)
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For a fixed cost function C : S ×N
2 → R

+, in equilibrium, the expected fraction γe and
the actual one γ must satisfy (for all d+, d− with μ(d+, d−) > 0):

C (s)(d+, d−) − C (s−1)(d+, d−) = δs(d
+, d−, xγe∗ ))F−1

(
s−1∑

k=0

γ (k)(d+, d−)

)

.

Hence in equilibrium, when expectations are fulfilled, the possible equilibria are given by
the fixed point equations (for all d+, d− with μ(d+, d−) > 0)

�s(d
+, d−, xγ∗ ) = F−1

(
s−1∑

k=0

γ (k)(d+, d−)

)

, (11)

where xγ∗ is the smallest fixed point in [0, 1] of equation


γ (x) :=
∑

j,k

∑

s∈S

kμ( j, k)γ (s)( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ). (12)

4.4 Uniqueness of equilibrium

For any z ∈ [0, 1], (d+, d−) ∈ N
2 and s ∈ S, following Eq. (11), we define

γ (s)(d+, d−, z) = F(�s+1(d
+, d−, z)) − F(�s(d

+, d−, z)),

and we set


γ(z)(x) :=
∑

j,k

∑

s∈S

kμ( j, k)γ (s)( j, k, z)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ).

In the following theorem, we show the uniqueness of the (asymptotic) Nash equilibrium
for the security mean-field game under monotone investment conditions.

Theorem 4.3 Consider the network security game in a random graph G(d+,d−). Assume
that (C1)–(C5) hold. We have at most one mean-field equilibrium, which is given by the
solution of the following equation:

z = inf
x∈[0,1]{x : 
γ(z)(x) = x}. (13)

The proof of theorem is provided in Appendix A.8.

4.5 Algorithms to find the fixed point

In this section, we present an iterative algorithm to compute the mean-field equilibrium in
Theorem 4.3 for our baseline model. We assume that the degrees are bounded from above
by �. Note that, by Condition 3.4, one can always choose � = �ε such that

∞∑

j=0

∞∑

k=�ε

∑

s∈S
jμ(s)( j, k) +

∞∑

j=�ε

∞∑

k=0

∑

s∈S
jμ(s)( j, k) < ε.

.
Under the assumptions of Theorem 4.3, the following algorithm is guaranteed to converge

to the unique fixed point of the mapping 
γ .
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Step 0: For initialization set t = 0, the error tolerance ε > 0 and γ
(s)
0 ( j, k) = 11{s=0} for all

0 ≤ j, k ≤ �. Let x0 be the smallest solution x ∈ [0, 1] of the fixed-point iteration
algorithm with error tolerance ε given by


0(x) :=
�∑

j=0

�∑

k=0

∑

s∈S

kμ( j, k)γ (s)
0 ( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ)

=
�∑

j=0

�∑

k=0

kμ( j, k)

λ

j∑

θ=0

p(0)( j, k, θ)P(Bin( j, x) ≥ θ).

This is the fixed-point equilibrium under no security investment.
Step 1: Set t ← t + 1. For all 0 ≤ j, k ≤ �, we set the fraction of agents with degrees

( j, k) investing in security s ∈ S at step t to

γ
(s)
t ( j, k) := F(�s+1( j, k, xt−1)) − F(�s( j, k, xt−1)),

and let xt be the smallest fixed-point x ∈ [0, 1] of


t (x) :=
�∑

j=0

�∑

k=0

∑

s∈S

kμ( j, k)γ (s)
t ( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ).

Step 2: If xt−1 − xt < ε, terminate the algorithm. Otherwise, return to Step 1.

Note that due to the monotone investment conditions and the strictly increasing cdf func-
tion F , 
t (x) is strictly increasing in x and strictly decreasing in t (see Appendix A.8).
Hence, the fixed-point sequence xt will be decreasing, converging to x

(s)∗ , which is unique by
Theorem 4.3. Since xt is non-increasing and the algorithm terminates when xt−1 − xt < ε,
the algorithm converges in at most �x0/ε� steps.

5 Examples and applications

In this section, we provide a more detailed analysis of the particular case where there are
two security classes, and investment in security provides strong protection. For the case of
random regular graphs and core-periphery network models, the social optimum is explicit,
and we can theoretically guarantee that the individual decision will result in underinvestment
compared to the social optimum.

5.1 Equilibrium analysis in the case of strong protection

We assume S = {0, 1} and consider the (extreme) case where a vertex invested in security
cannot be infected at all, i.e. p(1)( j, k, θ) = 0 and p(0)( j, k, θ) = p( j, k, θ) for all j, k, θ .
Namely, si = 0 if vertex i does not invest in security (i.e. C (0)

i = 0) and si = 1 if vertex
i invests in security. An agent i with degrees (d+, d−) can obtain a security level 1 for a
cost Ci = C(d+, d−). Let γ (d+, d−) denotes the fraction of vertices (in equilibrium) with
degrees (d+, d−) invested in security. Hence, all vertices investing in security can be removed
from the network and contagion goes through all non secured vertices. This is similar to site
percolation model by setting π

(s)
v (d+, d−) = 1 − γ (d+, d−).

123



Mathematics and Financial Economics (2023) 17:247–283 265

Note that in this setting, the conditions (C3) − (C5) are automatically satisfied (see the
remark after Lemma 4.2). Hence, the optimal decision for a vertex i with degrees (d+, d−)

and expected vulnerability belief for the network xe is

�i
∑

θ

p(d+, d−, θ)P(Bin(d+, xe) ≥ θ) > C(d+, d−) ⇐⇒ agenti invests in security.

The equilibrium fixed point equations can be simplified to

γ (d+, d−) = 1 − F

(
C(d+, d−)

∑
θ p(d+, d−, θ)P(Bin(d+, xγ∗ ) ≥ θ)

)
,

where xγ∗ is the smallest fixed point in [0, 1] of equation


γ (x) :=
∑

j,k

kμ( j, k)(1 − γ ( j, k))

λ

j∑

θ=0

p( j, k, θ)P(Bin( j, x) ≥ θ).

5.2 Equilibrium analysis in the case of random regular graphs

We next consider the previous strong protection setting in the case of random regular graphs,
where d+

i = d−
i = d for all vertices i ∈ [n]. Hence, μ(d, d) = 1, λ = d , and we simplify

the notations to

p(θ) = p(0)(d, d, θ), γ = γ (d, d),C = c(d, d),

and

δ(x) = δ1(d, d, x) =
d∑

θ=0

p(θ)P(Bin(d, x) ≥ θ).

Consequently in this case the optimal decision for agent i and expected global network
vulnerability belief xe is

�i >
C

δ(xe)
⇐⇒ agenti invests in security.

The equilibrium fixed point equations can be simplified as follows:

1 − γ = F

(
C

δ(xγ∗ )

)
= F

(
C

xγ∗ (1 − γ )

)
	⇒ C = xγ∗ (1 − γ )F−1(1 − γ ),

where xγ∗ is the smallest fixed point in [0, 1] of equation


γ (x) := (1 − γ )

d∑

θ=0

p(θ)P(Bin(d, x) ≥ θ) = F

(
C

δ(x)

)
δ(x).

In this case, the social utility averaged over all agents converges to

1

n

n∑

i=1

Ji (�, s)
p−→ J̄social(γ ) = δ(xγ∗ )

∫ 1

γ

F−1(1 − u)du + Cγ,

where δ(xγ∗ )
∫ γ

0 F−1(1− u)du is the (expected) gross cost imposed by the (1− γ )-fraction
of agents not investing in security and Cγ is the total cost of security.
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Fig. 1 Equilibrium solutions for contact process on random regular graphs: Here d = 10, p(0) = α, p(θ) =
(1 − α)β(1 − β)θ−1 for θ = 1, . . . , d, with α = 0.05, β = 0.1 and L follows an exponential distribution
with mean one, i.e. F(�) = 1 − e−�

Proposition 5.1 The social planner will choose a larger fraction γ of agents to invest in
security than the market equilibrium for any fixed cost C.

The proof of proposition is provided in Appendix A.9.
Figure 1 varies the cost C . As the cost function increases, the network vulnerability

fixed point solution increases, while the final fraction of individuals investing in security
decreases. The figure also shows the gap between the fraction of individuals who self-protect
in equilibrium and the social optimum.

5.3 Analysis of agents heterogeneity: Core-periphery setup

Financial networks often involve significant asymmetries, such as the presence of a core-
periphery structure. In order to provide more insights on the impact of network heterogeneity
and how agents influence each other, we consider a special case where there are two types
of agents: core agents with high degrees d+

H = d−
H = dH and periphery agents with low

degrees d+
L = d−

L = dL < dH . We denote by μH and μL (respectively) the fraction of
core agents and periphery agents in the (large) network. We assume that the cost of (strong)
self-protection for core agents is CH and the loss due to being infected follows distribution
FH . Similarly, for a periphery agent, the cost is CL < CH and the loss follows distribution
FL . We also set

pH (θ) = p(0)(dH , dH , θ) and pL (θ) = p(0)(dL , dL , θ).

A core agent i will invest in security (with expected network vulnerability xe) if

�i >
CH

δH (xe)
, δH (x) =

dH∑

θ=0

pH (θ)P(Bin(dH , x) ≥ θ),
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while a periphery agent i will invest in security in the case

�i >
CL

δL(xe)
, δL(x) =

dL∑

θ=0

pL(θ)P(Bin(dL , x) ≥ θ).

Hence, the (asymptotic) fraction of core agents γH and periphery agents γL investing in
security satisfies the equilibrium fixed point equations

γH = 1 − FH

(
CH

δH (xγ∗ )

)
, γL = 1 − FL

(
CL

δL(xγ∗ )

)
,

where xγ∗ is the smallest fixed point in [0, 1] of equation


γ (x) := dHμH (1 − γH )δH (x) + dLμL(1 − γL)δL(x)

dHμH + dLμL
.

In this case, the average social cost function 1
n

∑n
i=1 Ji (�, s) converges to

J̄social(γH , γL) = δH (xγ∗ )

∫ 1

γH

F−1
H (1 − u)du + δH (xγ∗ )

∫ 1

γL

F−1
L (1 − u)du + CHγH + CLγL .

Similarly to Proposition 5.1, we have:

Proposition 5.2 The social planner will choose a larger fraction γ of core and periphery
agents investing in security than the market equilibrium for any fixed costs CH and CL.

The proof of proposition is provided in Appendix A.9.
Figure 2varies the cost for core CH and periphery CL agents and plots the fraction of core

agents who invest in security against the fraction of peripheral agents who invest. The game’s
equilibrium decisions are symmetric for agents of the same type based on the loss function.
As the cost for periphery agents increases, we note that their investment decreases and this
decreases is most pronounced close to zero. This means, as soon as the cost becomes positive,
the fraction of peripheral agents investing quickly decreases. For core agents, the slope at zero
is much more pronounced. When the cost for both agents is low, both have large fractions
investing in security. When the cost for peripheral is low and for core it is high, we see that
peripheral agents invest evenmore. Essentially, because they anticipate underinvestment from
the cores they protect themselves to the highest degree possible. Otherwise, the contagion
risk from the highly connected cores is too high. It is the cores who are the free riders, and
this is based on the implicit threat of the systemic risk they impose. When the cost is high for
the peripherals and low for the cores, a high proportion of cores chooses to invest. Note that
peripheral agents do not immediately become free riders even when their costs become high
and all cores are invested. When the cost for peripheral agents is low and fixed, the fraction
of cores investing in protection is not monotone in cost. This is because of the discontinuity
of the fixed point solution as a function of initially self protected cores.

The above core-periphery example clearly shows that, in a general non-symmetric net-
work, the security investment decisions of agents not only create positive externalities but are
also strategic substitutes. This means that greater investment by one type of agent typically
reduces the willingness for investment of other agents. Similarly, underinvestment by some
agents will encourage over-investment by others.

In the case of introducing insurance to the model, as studied in e.g. [48], the combination
of security investment and insurance raises the problem of moral hazard, in which agents
covered by insurance may take fewer secure measures, or even falsify their loss.
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Fig. 2 Equilibrium solutions for security investment in core-periphery networks: Here μH = 0.2, dH =
20, pH (0) = 0.1, pH (5) = 0.9 and dL = 4, μL = 0.8, pL (0) = 0.2, pL (1) = 0.3, pL (2) = 0.5. Further,
we set FL (�) = FH (5�) = 1 − e−�; the (potential) infection loss for periphery and core agents follow
exponential distributions with mean 1 and 5, respectively

6 Concluding remarks

In this paper, we propose a general framework for security investment in a directed network
of interconnected agents subject to contagion risks and potential loss. We state various limit
theorems and resilience conditions depending on network structure and agent security pro-
file. We show how these results are sensitive to edge and vertex percolation. We study the
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asymptotic Nash equilibrium and socially optimal security investments in a random directed
network with fixed degrees. Our results allow us to understand how the structure of networks
affects the resilience of the network and impacts the decisions of different network players.
We show how an agent’s decision on their security level might depend on the decision of
other agents in the network. In particular, we quantify how agents who decide not to invest
in security protection would put the other network participants at contagion risks.

When the agents’ costs vary, the impact of the security choice on the overall system is
ambiguous. When peripheral agents anticipate investment by cores, they do not completely
decrease investment even when their costs increase. In contrast, cores can quickly become
free-riders when their costs increase and when they anticipate investment by the periphery
agents (for example because those agents have low costs). There are also non-monotonicities
in the investment choices of the cores as a function of their costs. Our results point to a strong
effect of the cost heterogeneity across classes of agents.

The model can be extended along the following directions.
Consider a strategic attacker which, after observing the degree and security profile of

agents, selects an attack decision α, with

α(s)(d+, d−) = p(s)(d+, d−, 0),

that represents the fraction of agents which are attacked and thus act as initial seed of the
contagion. His objective is to maximize his utility given by the expected infections minus
the cost of the attack decision. The cost of an attack can be captured in a simple way, for
example

ζ(α) =
∑

d+,d−

∑

s∈S
μ(s)(d+, d−)ζs(α

(s)(d+, d−)),

where ζs denotes the cost of initially infecting (attack) the fraction of individual with security
s ∈ S. This can turn into a attacker-defender game, if individuals take into account the
possibility of strategic attack.

The model could also be applied to the insurance industry, where security investments
can represent fraud detection capabilities. This means that firms with better security have a
greater risk-bearing capacity than those with lower security.

Another area of interest is the cyber-insurance market. One can investigate how the pres-
ence of competitive insurers can affect security adoption. One problem with the combination
of insurance and self-protection is moral hazard, which occurs when the insurance provider
cannot observe the protection level of each agent [48]. The reward for a user investing in
security depends on the general level of security in the network, leading to the following
feedback loop situation [40]: self-protection−→ state of the network−→ pricing of the pre-
mium −→ strategy of the agent −→ self-protection. Note that if insurance providers cannot
observe the security levels of the agents, there may be agents who choose not to invest in
self-protection if the insurance covers part of their losses. Hence, insurance might provide a
negative incentive for self-protection.

Acknowledgements I would like to thank Erhan Bayraktar and Andreea Minca for helpful discussions and
the two anonymous reviewers for their useful comments and suggestions.

Appendix A: Proofs

This appendix contains the proofs of all lemmas and theorems in the main text.
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We start by describing the dynamics of the contagion on Gn = G(d+
n ,d−

n ) as a Markov
chain, which is perfectly tailored for asymptotic study. Let

mn :=
∑

j,k

∑

s∈S
jμ(s)

n ( j, k) =
∑

j,k

∑

s∈S
kμ(s)

n ( j, k)

denote the number of incoming (outgoing) edges in the graph.

A.1. Markov chain transitions

Consider the configuration model algorithm described in Sect. 3.2. One can observe that
the uniform matching which constructs the graph can be obtained sequentially: choose an
outgoing half edge according to any rule (random or deterministic) and then choose the
corresponding incoming half edge uniformly over the unmatched incoming half edges.

At time 0 the threshold of each agent is distributed randomly. For θ ∈ N, let p(s)
n ( j, k, θ)

denotes the fraction of agents with in-degree j , out-degree k and security profile s which are
given threshold θ . Hence, p(s)

n ( j, k, θ) → p(s)( j, k, θ) as n → ∞. At a given time step t
agents (vertices) are partitioned into infected I(t) and uninfected U(t). We further partition
the class of uninfected vertices according to their in-degree, out-degree, security profile and
threshold U(t) = ⋃

j,k,s,θ U
jksθ (t).

At time zero, I(0) contains the initial set of infected agents. At each step we have one
interaction only between two agents, yielding at least one infected. Our processes at each
step is as follows:

• Choose an outgoing edge of an infected agent i ;
• Identify its partner j (i.e. by construction of the random graph in the configurationmodel,

the partner is given by choosing an incoming edge randomly among all available incoming
edges);

• Delete both edges. If j is currently uninfected with threshold θ and it is the θ -th deleted
incoming edge from j , then j fires.

Let us define U jksθ,�
n (t), 0 ≤ � ≤ θ , the number of uninfected agents with in-degree j ,

out-degree k, security s, threshold θ and � incoming edges from the infected agents at time
t . We introduce the additional variables of interest:

• I jksθn (t): the number of infected agents with in-degree j , out-degree k, security s and
threshold θ at time t ,

• I−
n (t): the number of outgoing edges belonging to infected agents at time t ,

• In(t): the number of infected agents at time t .

Because at each step we delete one incoming edge and the number of incoming edges at time
0 is mn , the number of existing incoming edges at time t will be mn − t . It is easy to see that
the following identities hold:

I jksθn (t) = μ(s)
n ( j, k)p(s)

n ( j, k, θ) −
θ−1∑

�=0

U jksθ,�
n (t),

I−
n (t) =

∑

j,k

∑

s∈S

j∑

θ=0

k I jksθn (t) − t,

In(t) =
∑

j,k

∑

s∈S

j∑

θ=0

I jksθn (t).
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The contagion process will finish at the stopping time Tn which is the first time t ∈ N

where I−
n (t) = 0. The final number of infected agents will be In(Tn). By definition of our

process Un(t) =
{
U jksθ,�
n (t)

}

j,k,s,θ,�
represents a Markov chain. We write the transition

probabilities of the Markov chain. There are three possibilities for the B, the partner of an
outgoing edge of an infected agent A.

1. B is infected, the next state is Un(t + 1) = Un(t).
2. B is uninfected of in-degree j , out-degree k, security s, threshold θ and this is the (�+1)-

th deleted incoming edge and � + 1 < θ . The probability of this event is ( j−�)U jksθ,�
n (t)

mn−t .
The changes for the next state will be

U jksθ,�
n (t + 1) = U jksθ,�

n (t) − 1,

U jksθ,�+1
n (t + 1) = U jksθ,�+1

n (t) + 1.

3. B is uninfected of in-degree j , out-degree k, security s, threshold θ and this is the θ -th

deleted incoming edge. The probability of this event is ( j−θ+1)U jksθ,θ−1
n (t)

mn−t . The changes
for the next state will be

U jksθ,θ−1
n (t + 1) = U jksθ,θ−1

n (t) − 1.

Let �t be the difference operator: �t X := X(t + 1) − X(t). We obtain the following
equations for the expectation ofUn(t+1), conditional onFn,t (the pairing generated by time
t), by averaging over the possible transitions:

E

[
�tU

jksθ,0
n |Fn,t

]
= − jU jksθ,0

n (t)

mn − t
,

E

[
�tU

jksθ,�
n |Fn,t

]
= ( j − � + 1)U jksθ,�−1

n (t)

mn − t
− ( j − �)U jksθ,�

n (t)

mn − t
. (14)

The initial condition is

U jksθ,�
n (0) = nμ(s)

n ( j, k)p(s)
n ( j, k, θ)11(� = 0)11(0 < θ ≤ j).

Remark that we are interested in the value of In(Tn), where Tn is the first time that
In(t) = 0. In case Tn < mn , the Markov chain can still be well defined for t ∈ [Tn,mn)

by the same transition probabilities. However, after Tn it will no longer be related to the
contagion process and the value I−

n (t), representing for t ≤ Tn the number of in-coming
half-edges belonging to infected agents, becomes negative. We consider from now on that
the above transition probabilities hold for t < mn .

We will show in the next section that the trajectory of these variables throughout the
algorithm is a.a.s. (asymptotically almost surely, as n → ∞ ) close to the solution of the
deterministic differential equations suggested by these equations.

A.2. Fluid limit of contagion process

Let (DE) be the following system of differential equations:

(u jksθ,0)′(τ ) = − ju jksθ,0(τ )

λ − τ
,
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(u jksθ,�)′(τ ) = ( j − � + 1)u jksθ,�−1(τ )

λ − τ
− ( j − �)u jksθ,�(τ )

λ − τ
, (DE),

with initial conditions

u jksθ,�(0) = μ(s)( j, k)p(s)( j, k, θ)11(� = 0)11(0 < θ ≤ j).

Lemma A.1 The system of ordinary differential equations (DE) admits the unique solution

u(τ ) :=
{
u jksθ,�(τ )

}

j,k,s,0≤�<θ≤ j
,

in the interval 0 ≤ τ < λ, with

u jksθ,�(τ ) := μ(s)( j, k)p(s)( j, k, θ)

(
j

�

)
(1 − τ

λ
) j−�(

τ

λ
)�. (15)

Proof We denote by DEK the set of differential equations defined above, restricted to j∧k <

K and by bK the dimension of the restricted system. (The operator ∧ is defined as x ∧ y =
max(x, y).) Since the derivatives of the functions

{
u jksθ,�(τ )

}
j∧k<K ,s,0≤�<θ≤ j depend only

on τ and the same functions, by a standard result in the theory of ordinary differential
equations, there is an unique solution of DEK in any domain of the type (−ε, λ) × R, with
R a bounded subdomain of RbK and ε > 0. The solution of (DE) is defined to be the set
of functions solving all the finite systems (DEK , K ≥ 1). We solve now the system DE. Let
γ = γ (τ) = − ln(λ − τ). Then γ (0) = − ln(λ), γ is strictly monotone and so is the inverse
function τ = τ(γ ). We write the system of differential equations (DE) with respect to γ :

(u jksθ,0)′(γ ) = − ju jksθ,0(γ ),

(u jksθ,�)′(γ ) = ( j − � + 1)u jksθ,�−1(γ ) − ( j − �)u jksθ,�(γ ).

Then we have

d

dγ
(u jksθ,�+1e( j−�−1)(γ−γ (0))) = ( j − �)u jksθ,�(γ )e( j−�−1)(γ−γ (0)),

and by induction, we find

u jksθ,�(γ ) = e−( j−�)(γ−γ (0))
�∑

r=0

(
j − r

� − r

) (
1 − e−(γ−γ (0))

)�−r
u jksθ,r (γ (0)).

By going back to τ , we have

u jksθ,�(τ ) = (1 − τ

λ
) j−�

�∑

r=0

u jksθ,r (0)

(
j − r

� − r

)
(
τ

λ
)�−r .

Then, by using the initial conditions, we find (for θ > 0)

u jksθ,�(τ ) = μ(s)( j, k)p(s)( j, k, θ)

(
j

�

)
(1 − τ

λ
) j−�(

τ

λ
)�.

��
A key idea to prove Theorem 3.6 is to approximate, following [47], the Markov chain by

the solution of a system of differential equations in the large network limit. We summarize
here the main result of [47].
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For a set of variables Y 1, . . . , Yb and for D ⊆ R
b+1, define the stopping time

TD = TD(Y 1, . . . , Yb) = inf{t ≥ 1, (t/n; Y 1(t)/n, . . . , Yb(t)/n) /∈ D}.

Lemma A.2 [45, 47] Given integers b, n ≥ 1, a bounded domain D ⊆ R
b+1, functions

( f�)1≤�≤b with f� : D → R, and σ -fields Fn,0 ⊆ Fn,1 ⊆ . . . , suppose that the random
variables

(
Y �
n (t)

)
1≤�≤b are Fn,t -measurable for t ≥ 0. Furthermore, assume that, for all

0 ≤ t < TD and 1 ≤ � ≤ b, the following conditions hold

(i) (Boundedness). max1≤�≤b |Y �
n (t + 1) − Y �

n (t)| ≤ β,

(ii) (Trend-Lipschitz). |E[Y �
n (t + 1) − Y �

n (t)|Fn,t ] − f�(t/n, Y 1
n (t)/n, . . . , Y �

n (t)/n)| ≤ δ,
where the function ( f�) is L-Lipschitz-continuous on D,

and that the following condition holds initially:

(iii) (Initial condition). max1≤�≤b |Y �
n (0) − ŷ�n| ≤ αn, for some

(
0, ŷ1, . . . , ŷb

) ∈ D.

Then there are R = R(D, L) ∈ [1,∞) and C = C(D) ∈ (0,∞) such that, whenever
α ≥ δmin{C, L−1} + R/n, with probability at least 1 − 2be−nα2/(8Cβ2) we have

max
0≤t≤σn

max
1≤�≤b

|Y �
n (t) − y�(t/n)n| < 3eCLαn,

where
(
y�(t)

)
1≤�≤b is the unique solution to the system of differential equations

dy�(t)

dt
= f�(t, y

1, . . . , yb) with y�(0) = ŷ�, for � = 1, . . . , b,

and σ = σ(ŷ1, . . . , ŷb) ∈ [0,C] is any choice of σ ≥ 0 with the property that
(t, y1(t), . . . , yb(t)) has �∞-distance at least 3eLCα from the boundary of D for all
t ∈ [0, σ ).

A.3. Proof of Theorem 3.6

We apply Lemma A.2 to the contagion model described in Sect.A.1. Let us define, for
0 ≤ τ ≤ λ,

η jksθ (τ ) := μ(s)( j, k)p(s)( j, k, θ) −
θ−1∑

�=0

u jksθ,�(τ ),

η−(τ ) :=
∑

j,k

∑

s∈S

j∑

θ=0

kη jksθ (τ ) − τ, and

η(τ) :=
∑

j,k

∑

s∈S

j∑

θ=0

η jksθ (τ ),

with u jksθ,� given in Lemma A.1. With Bin( j, π) denoting a binomial variable with
parameters j and π , we have

η jksθ (τ ) = μ(s)( j, k)p(s)( j, k, θ)P
(
Bin( j,

τ

λ
) ≥ θ

)
, (16)

η−(τ ) =
∑

j,k

∑

s∈S
kμ(s)( j, k)

j∑

θ=0

p(s)( j, k, θ)P
(
Bin( j,

τ

λ
) ≥ θ

)
− τ = λ

(

(s)(

τ

λ
) − τ

λ

)
,
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(17)

and

η(τ) =
∑

j,k

∑

s∈S
μ(s)( j, k)

j∑

θ=0

p(s)( j, k, θ)P
(
Bin( j,

τ

λ
) ≥ θ

)
= ψ(

τ

λ
). (18)

We now proceed to the proof of Theorem 3.6 whose aim is to approximate the value
In(Tn)/n as n → ∞. We base the proof on Lemma A.2. We first need to bound the con-
tribution of higher order terms in the infinite sums (17) and (18). Fix ε > 0. By Condition
3.4,

λ :=
∑

j,k∈N

∑

s∈S
jμ(s)( j, k) =

∑

j,k∈N

∑

s∈S
kμ(s)( j, k) < ∞

Then, there exists an integer Kε , such that
∑

k≥Kε

∑

j,s

kμ(s)( j, k) +
∑

j≥Kε

∑

k

jμ(s)( j, k) < ε,

which implies that
∑

j∧k≥Kε

∑

s∈S
kμ(s)( j, k) < ε.

It follows that for all 0 ≤ τ ≤ λ,

∑

j∧k≥Kε

j∑

θ=0

∑

s∈S
kμ(s)( j, k)p(s)( j, k, θ)P

(
Bin( j,

τ

λ
) ≥ θ

)
< ε. (19)

The number of vertices with degree ( j, k) and security s is nμ
(s)
n ( j, k). Again, by Condition

3.4,
∑

j,k

∑

s∈S
kμ(s)

n ( j, k) =
∑

j,k

jμ(s)
n ( j, k) → λ ∈ (0,∞).

Therefore, for n large enough,
∑

j∧k≥Kε

∑
s∈S kμ(s)

n ( j, k) < ε, and for all 0 ≤ t ≤ mn ,

∑

j∧k≥Kε

j∑

θ=0

∑

s∈S
kU jksθ

n (t)/n < ε. (20)

For K ≥ 1, we denote

yK :=
(
u jksθ,�(τ )

)

j∧k<K , s∈S, 0≤�<θ≤ j
and

Y K
n :=

(
U jksθ,�
n (τ )

)

j∧k<K , s∈S, 0≤�<θ≤ j
,

both of dimension b(K ), and η jksθ (τ ), u jksθ,�(τ ) are solutions to a system (DE) of ordinary
differential equations. Let

x (s)∗ = min{x ∈ [0, 1] : 
(s)(x) = x}.
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For the arbitrary constant ε > 0 fixed above, we define the domain Dε as

Dε = {
(
τ, yKε

)
∈ R

b(Kε )+1 : −ε < τ < λ − ε , −ε < u jksθ,� < 1}. (21)

The domain Dε is a bounded open set which contains the support of all initial values of the
variables. Each variable is bounded by a constant times n (C0 = 1). By the definition of
our process, the Boundedness condition is satisfied with β = 1. The second condition of the
theorem is satisfied by some δn = O(1/n). Finally the Lipschitz property is also satisfied
since λ − τ is bounded away from zero. Then by Lemma A.2 and by convergence of initial
conditions, we have:

Lemma A.3 For a sufficiently large constant C, we have

P(∀t ≤ nσH (n),YKε
n (t) = nyKε (t/n) + O(n3/4)) = 1 − O(b(Kε)n

−1/4 exp(−n−1/4))

(22)

uniformly for all t ≤ nσH (n) where

σH (n) = sup{τ ≥ 0, d(yKε (τ ), ∂Dε ) ≥ Cn−1/4}.

When the solution reaches the boundary of Dε , it violates the first constraint, determined by
τ̂ = λ − ε. By convergence of mn

n to λ, there is a value n0 such that ∀n ≥ n0,
mn
n > λ − ε,

which ensures that τ̂n ≤ mn . Using (19) and (20), we have, for 0 ≤ t ≤ nτ̂ and n ≥ n0:

∣∣I−
n (t)/n − η−(t/n)

∣∣ =
∣∣∣∣∣∣

∑

j,k

∑

s∈S

j∑

θ=0

k(I jksθn (t)/n − η jksθ (t/n))

∣∣∣∣∣∣

≤
∑

j,k

∑

s∈S

j∑

θ=0

k
∣∣∣I jksθn (t)/n − η jksθ (t/n)

∣∣∣

≤
∑

j∧k≤Kε

∑

s∈S

j∑

θ=0

k
∣∣∣I jksθn (t)/n − η jksθ (t/n)

∣∣∣ + 2ε, (23)

and

|In(t)/n − η(t/n)| ≤
∑

j∧k≤Kε

∑

s∈S

j∑

θ=0

∣∣∣I jksθn (t)/n − δ jksθ (t/n)

∣∣∣ + 2ε. (24)

We obtain by Lemma A.3 that

sup
t≤τ̂n

∣∣I−
n (t)/n − η−(t/n)

∣∣ ≤ 2ε + op(1), and (25)

sup
t≤τ̂n

|In(t)/n − η(t/n)| ≤ 2ε + op(1). (26)

We now study the stopping time Tn and the size of the contagion In(Tn). First assume
I (x) > x for all x ∈ [0, 1), i.e., x (s)∗ = 1. Then we have for all τ < τ̂

η−(τ ) =
∑

j,k

∑

s∈S

j∑

θ=0

kη jksθ (τ ) − τ > 0.
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Then we have that Tn/n = τ̂ + O(ε) + op(1) and from convergence (26), since δ(τ̂ ) =
1 − O(ε), we obtain by tending ε to 0 that

|Dn(Tn)| = n − op(n).

This proves the first part of the theorem.
Now consider the case x (s)∗ < 1, and furthermore x (s)∗ is a stable fixed point of 
(s)(x).

Then by definition of x (s)∗ and by using the fact that 
(s)(1) ≤ 1, we have 
(s)(x) < x
for some interval (x (s)∗ , x (s)∗ + x̃). Then η−(τ ) is negative in an interval (τ∗, τ∗ + τ̃ ), with
τ∗ = λx (s)∗ . Let ε such that 2ε < − infτ∈(τ∗,τ∗+τ̃ ) η−(τ ) and denote σ̂ the first iteration at
which it reaches the minimum. Since η−(σ̂ ) < −2ε it follows that with high probability
I−(σ̂n)/n < 0, so Tn/n = τ∗ + O(ε) + op(1). The Theorem 3.6 thus follows by taking the
limit ε → 0.

A.4. Proof of Corollary 3.10

Let x (s)∗ (ε) be the smallest fixed point of 
(s) in [0, 1], when a fraction ε of all vertices
represent fundamental defaults, i.e., this is the smallest solution in [0, 1] to the fixed point
equation

x = 
(s)
ε (x) := ε +

∑

j,k

∑

s∈S

∑

θ≥1

kμ(s)( j, k)

λ
p(s)( j, k, θ)P(Bin( j, x) ≥ θ).

Further, let x̂ > 0 be the smallest positive solution of

x = 

(s)
0 (x) :=

∑

j,k

∑

s∈S

∑

θ≥1

kμ(s)( j, k)

λ
p(s)( j, k, θ)P(Bin( j, x) ≥ θ).

We first show that such a solution exists in (0, 1). Note that 

(s)
0 (0) = 0, 
(s)

0 (1) ≤ 1 and



(s)
0 is an increasing function of x . Then in order to prove the existence of such a positive x̂

it suffices to show that 
′
0(x) > 1 for x close to zero.

Claim A.4 Assume that for some � ∈ N, γ ∈ R
+ and β ∈ (2, 3):

∑

k

∑

s∈S

�∑

θ=1

kμ(s)( j, k)p(s)( j, k, θ) ≥ γ j−β+1

for all j ∈ N. Then there exists x0 ∈ (0, 1) such that we have 
′
0(x) > 1 for all x ∈ (0, x0].

Proof We have for x ∈ (0, 1) and � ∈ N


′
0(x) =

∑

j,k

∑

s∈S

∑

θ≥1

jkμ(s)( j, k)

λ
p(s)( j, k, θ)P(Bin( j − 1, x) = θ − 1)

≥ 1

λ

2�∑

j=�+1

∑

k

�∑

θ=1

jkμ(s)( j, k)p(s)( j, k, θ)P(Bin( j − 1, x) = θ − 1).

We now set x0 = 1
�
so that we have for x ≤ x0 and � large enough


′
0(x) ≥ 1

λ

2�∑

j=�+1

∑

k

∑

s∈S

�∑

θ=1

jkμ(s)( j, k)p(s)( j, k, θ)e−( j−1)x (( j − 1)x)θ−1

(θ − 1)!
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≥ e−2

λ(� − 1)!
2�∑

j=�+1

j
∑

k

∑

s∈S

�∑

θ=1

kμ(s)( j, k)p(s)( j, k, θ)

≥ γ e−2

λ(� − 1)!
2�∑

j=�+1

j−β+2 >
γ e−2

λ(� − 1)!�
−β+3.

Hence by choosing � large enough, e.g.,

� ≥
(

γ e−2

λ(� − 1)!
) 1

3−β

,

and setting x0 = 1/� we have I ′
0(x) > 1 for all x ≤ x0 and the claim thus follows. ��

Since 

(s)
ε is continuous we have limε→0+ x (s)∗ (ε) = x̂ . The corollary now follows by

Theorem 3.6.

A.5. Proof of Theorem 3.11

Consider the percolated random graph Gπv,πe (d
+,d−) and suppose that Condition 3.4 holds.

Our proof of Theorem 3.11 is based on ideas applied in [31] to study the conditions for
existence of giant component in the percolated random non directed graph with given vertex
degrees; see also [44]. The site percolation model for directed random graphs has also been
investigated in [7] in the context of skeleton of contagious links in financial networks.

We fist consider the site percolation model where we remove (delete) each vertex with
degrees (d+, d−)with probability 1−π

(s)
v (d+, d−), independently. Thiswould be equivalent

to changing the initial infection probability (for all d+, d− ∈ N and s ∈ S) to
p̃(s)(d+, d−, θ) = π(s)

v (d+, d−)p(s)(d+, d−, θ) for θ = 0, 1, . . . , d+, (27)

and p̃(s)(d+, d−, d+ + 1) = 1 − π
(s)
v (d+, d−). Note that the removed vertices in site per-

colation model are the vertices with threshold d+ + 1 in our new contagion process. Hence,
they will never get infected and the final infected set would have the same distribution in
both contagion models.

We now consider the bond percolationmodel, where we remove each link with probability
(1−πe). For all i ∈ [n], let D+

i (πe) ∼ Bin(d+
i , πe)bebinomial randomvariables independent

over all vertices. We then split a vertex with degree (d+, d−) into a single vertex with degree(
D+(πe), d−)

plus d+ − D+(πe) red (artificial) vertices with in-degree 1 and out-degree
0. We call this the explosion of a vertex. Note that the red vertices may be considered as
being artificial as they will later need to be removed. After all explosions, a directed edge
is retained when its incoming half-edge is retained, which occurs with probability πe as it
should be. Let

N+(πe) =
n∑

i=1

(
d+
i − D+

i (πe)
)
,

so that N (πe) = n + N+(πe) denotes the (new) total number of vertices after explosions.
Then [N (πe)]/[n] will be the set of all artificial (red) vertices.

Further, instead of removing the N+(πe) red vertices with degrees (1,0), we will give
threshold 2 to these artificial vertices so that they will never get infected and hence they will
not play any role in the contagion process.
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Note that as n → ∞, since mn/n → λ,

N (πe)

n
= 1 +

∑n
i=1

(
d+
i − D+

i (πe)
)

n
= 1 + mn − Bin(mn, πe)

n

p−→ 1 + λ(1 − πe)

and then

N+(πe)

N (πe)

p−→ λ(1 − πe)

1 + λ(1 − πe)
.

Consequently, it would be quite easy to show that the set of final infected vertices in the
initial contagion process on percolated random graph Gπv,πe (d

+,d−) will have the same
distribution as the contagion process in configuration model with N (πe) vertices where the
degrees converges (in probability) to the new distribution

μ̂(s)(1, 0) = μ(s)(1, 0)

1 + λ(1 − πe)
+ λ(1 − πe)

1 + λ(1 − πe)
and μ̂(s)(d+, d−) = μ(s)(d+, d−)

1 + λ(1 − πe)
(28)

for (d+, d−) �= (1, 0). Further, the new threshold distribution function satisfies

p̂(s)(d+, d−, θ) = π(s)
v (d+, d−)p(s)(d+, d−, θ) for θ = 0, 1, . . . , d+. (29)

Note that p̃ (threshold distribution after site percolation model) and p̂ (threshold distribution
after site and bond percolation) only doesn’t agree each other for θ > d+; in particular
for d+ = 1, d− = 0 and θ = 2. However, this difference will not play any role on the
final infected set in the contagion process and the changes will be due to the new degree
distribution.

We conclude by applying Theorem 3.6 to the new degree distribution that

|I(s)
f |

N (πe)

p−→
∑

j,k

∑

s∈S
μ̂(s)( j, k)

j∑

θ=0

p̂(s)( j, k, θ)P(Bin( j, x̂ (s)∗ ) ≥ θ),

and then, using N (πe)/n → 1 + λ(1 − πe), Eqs. (28), (29) and x̂ (s)∗ = x (s)∗ πe we have

|I(s)
f |
n

p−→
∑

j,k

∑

s∈S
μ(s)( j, k)π(s)

v ( j, k)
j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x (s)∗ πe) ≥ θ).

Note that x (s)∗ by Theorem 3.6 is the smallest fixed point in [0,1] of


(s)
πv,πe

(x) :=
∑

j,k

∑

s∈S

kμ̂(s)( j, k)

λ

j∑

θ=0

p̂(s)( j, k, θ)P(Bin( j, xπe) ≥ θ).

=
∑

j,k

∑

s∈S

kμ(s)( j, k)π(s)
v ( j, k)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, xπe) ≥ θ).

Similarly, by applying Theorem 3.6, we obtain

|I(s)
f (d+, d−)|

nμ
(s)
n (d+, d−)

p−→ π(s)
v (d+, d−)

j∑

θ=0

p(s)(d+, d−, θ)P(Bin(d+, x (s)∗ πe) ≥ θ),

and the theorem follows.
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A.6. Proof of Theorems 3.8 and 3.12

We first use Theorem 3.6 to prove that if R(s)
0 < 1,

∑

j,k

∑

s∈S
jkμ(s)( j, k) < ∞

and we initially infect randomly |I(s)
0 | = o(n) vertices in [n], then |I(s)

f | = op(n). Let us

assume that p(s)(d+, d−, 0) = ε for all d+, d− ∈ N and s ∈ S. We show that as ε → 0 then
x (s)∗ (ε) → 0 which implies the claim. Note that by Theorem 3.6, x (s)∗ (ε) is the smallest fixed
point of 


(s)
ε in [0, 1], where


(s)
ε (x) := ε +

∞∑

j=0

∞∑

k=0

∑

s∈S

kμ(s)( j, k)

λ

j∑

θ=1

p(s)( j, k, θ)P(Bin( j, x) ≥ θ). (30)

Hence 

(s)
ε (0) > 0 and, for

∑
j,k

∑
s∈S jkμ(s)( j, k) < ∞ and x ≈ 0,

d
(



(s)
ε (x) − x

)

dx
= 1

λ

∑

j,k∈N

∑

s∈S
jkμ(s)( j, k)p(s)( j, k, 1) − 1 = R(s)

0 − 1 < 0.

This implies that the smallest fixed point x∗(ε) → 0 as ε → 0.
We now consider the supercritical case when R(s)

0 > 1. From [7, 43], we know if

∑

s∈S
jkμ(s)( j, k) > λ,

there exists a giant strongly connected component in the random graph G(d+,d−). Let S1
be the largest strongly connected component of the random graph G(d+,d−) on which we
apply site percolation by removing all vertices with degrees (d+, d−) and security level s
with probability 1 − p(s)(d+, d−, 1) (we remove all vertices with threshold greater than or
equal to 2).

Wedenote byS1 the largest strongly connected component of the randomgraphG(d+,d−)

onwhichwe apply site percolation by removing all verticeswith threshold�i ≥ 2. LetI(s)
f (i)

denotes the final infected set is when we initiate the epidemic from I(s)
0 = {i} for all i ∈ [n].

Using the coupling argument on the site percolation model used in the last section, we obtain
if R(s)

o > 1, i.e.,
∑

s∈S
jkμ(s)( j, k)p( j, k, 1) > λ,

there exists a giant strongly connected component in the percolated random graph and we
have

lim inf
n

|I(s)
f (i)|
n

≥ lim inf
n

|S1|
n

> 0,

which concludes the proof of Theorem 3.8.
Moreover, using the distribution μ̂ and p̂ obtained from last section for the percolated

random graph Gπv,πe (d
+,d−), gives us the new contagion reproduction number
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R(s)
0 (πv, πe) := 1

λ̂

∑

j,k∈N

∑

s∈S
jkμ̂(s)( j, k) p̂(s)( j, k, 1)

= 1

λπe

∑

j,k∈N

∑

s∈S
jkμ(s)( j, k)π(s)

v ( j, k)p(s)( j, k, 1).

Hence, if
∑

j,k,s jkμ(s)( j, k) < ∞ and R(s)
0 (πv, πe) < 1, i.e.,

πe < π∗
e := λ

∑
j,k,s jkμ(s)( j, k)π(s)

v ( j, k)p(s)( j, k, 1)
,

then initially infecting randomly |I(s)
0 | = o(n) vertices in [n] implies that |I(s)

f | = op(n).

Further, if πe > π∗
e then R(s)

0 (πv, πe) > 1 and w.h.p. for any i ∈ S̃1,

lim inf
n

|I(s)
f (i)|
n

≥ lim inf
n

|S̃1|
n

> 0,

which concludes the proof of Theorem 3.12.

A.7. Proof of Lemma 4.2

We show that under the lemma condition, δk(d+, d−, x) will be strictly increasing function
of vulnerability parameter x . This is equivalent to

∂δk(d+, d−, x)

∂x
=

d+∑

θ=0

qk(d
+, d−, θ)

∂P(Bin(d+, x) = θ)

∂x

= d+
d+∑

θ=0

qk(d
+, d−, θ)

(
P(Bin(d+ − 1, x) = θ − 1) − P(Bin(d+ − 1, x) = θ)

)

= d+
d+∑

θ=1

(
qk(d

+, d−, θ) − qk(d
+, d−, θ − 1)

)
P(Bin(d+ − 1, x) = θ − 1)

= d+
d+∑

θ=1

(
p(k−1)(d+, d−, θ) − p(k)(d+, d−, θ)

)
P(Bin(d+ − 1, x) = θ − 1) > 0

for all d+, d−, k = 1, 2, . . . , K . Consequently, δk(d+, d−, x) is strictly increasing function
of x and so

�k(d
+, d−, x) := C (k)(d+, d−) − C (k−1)(d+, d−)

δk(d+, d−, x)

is a strictly increasing function of global network vulnerability x , as desired.

A.8. Proof of Theorem 4.3

Define a function ψ : [0, 1] → [0, 1] via the following,
ψ(z) := inf

x∈[0,1]{x : 
γ(z)(x) = x}.
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It can be easily seen that 
γ(z)(0) > 0,
γ (z)(1) < 1. In conjugation with the continuity of
x �→ 
γ(z)(x), we conclude that for any z ∈ [0, 1], the set {x : 
γ(z)(x) = x} is nonempty
and closed, and hence ψ(z) ∈ (0, 1) is well-defined.

Now we show that z �→ ψ(z) is decreasing in z, which implies that (13) has at most one
solution. Suppose we have 0 < z1 < z2 < 1.

It can be easily seen that (note that F(�K+1( j, k, z)) = 1)


γ(z)(x) =
∑

j,k

∑

s∈S

kμ( j, k)γ (s)( j, k, z)

λ

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ)

=
∑

j,k

kμ( j, k)

λ

∑

s∈S
(F(�s+1( j, k, z)) − F(�s( j, k, z)))

j∑

θ=0

p(s)( j, k, θ)P(Bin( j, x) ≥ θ)

=
∑

j,k

kμ( j, k)

λ

K+1∑

s=1

F(�s( j, k, z))
j∑

θ=0

(
p(s−1)( j, k, θ) − p(s)( j, k, θ)

)
P(Bin( j, x) ≥ θ)

=
∑

j,k

kμ( j, k)

λ

K+1∑

s=1

F(�s( j, k, z))δs( j, k, x).

Hence, by monotone investment conditions and since F is strictly increasing cdf function,

γ(z)(x) is strictly increasing in x and strictly decreasing function of z. So that we have

γ(z1)(x) > 
γ(z2)(x) for any x ∈ [0, 1], and


γ(z2)(ψ(z1)) − ψ(z1) < 
γ(z1)(ψ(z1)) − ψ(z1) = 0.

Combining with the fact that 
γ(z2)(0) ≥ 0 and the continuity of x �→ 
γ(z2)(x), there
exists an x < ψ(z1) such that 
γ(z2)(x) = x , which implies that ψ(z2) < ψ(z1).

A.9. Proof of Propositions 5.1 and 5.2

We will prove Proposition 5.2, which implies Proposition 5.1 by setting μH = 1, dH =
d,CH = C , and μL = CL = 0. Note that γe = (γeH , γeL) is such that

δH (xγe∗ )F−1
H (1 − γeH ) = CH , δL(xγe∗ )F−1

L (1 − γeL) = CL ,

while the social planner chooses γs = (γsH , γsL) which minimizes C̄social(γ ):

γs = argmin
γH ,γL∈[0,1]

{
δH (xγ∗ )

∫ 1

γH

F−1
H (1 − u)du + δH (xγ∗ )

∫ 1

γL

F−1
L (1 − u)du + CHγH + CLγL

}
.

Since xγ∗ is decreasing in γH , γL and δH (.), δL (.) are increasing functions, δH (xγ∗ ), δL(xγ∗ )

are decreasing functions of γH and γL . Moreover, we have

∂ Jsocial(γeH , γeL)

∂γH
≤ − δH (xγe∗ )F−1

H (1 − γe) + CH = 0,

∂ Jsocial(γeL , γeL)

∂γH
≤ − δL(xγe∗ )F−1

L (1 − γe) + CL = 0,

and the proposition follows.
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