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Abstract
We develop a tractable equilibrium model for price formation in intraday electricity markets
in the presence of intermittent renewable generation. Using stochastic control theory, we
identify the optimal strategies of agents with market impact and exhibit the Nash equilibrium
in closed form for a finite number of agents as well as in the asymptotic framework of mean
field games. Our model reproduces the empirical features of intraday market prices, such as
increasing price volatility at the approach of the delivery date and the correlation between
price and renewable infeed forecasts, and relates these features with market characteristics
like liquidity, number of agents, and imbalance penalty.

Keywords Intraday electricity market · Market impact · Renewable energy

JEL Classification C73 · Q42 · D53

1 Introduction

The electricity markets around the world are undergoing amajor transformation driven by the
transition towards a carbon-free energy system. The increasing penetration of intermittent
renewables puts a stronger emphasis on short-term electricity trading and balancing. The
intraday electricity markets are increasingly used by the renewable producers to compensate
forecast errors. This improves market liquidity and at the same time creates feedback effects
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of the renewable generation on the market price, leading to increased price volatility and
negative correlations between renewable infeed and prices. These effects have an adverse
impact on the revenues of renewable producers. They are already significant in countries with
high renewable penetration and will become even more important as new renewable capacity
comes online. A better understanding of the impact of intermittent renewable generation
on intraday electricity market prices and trading volumes is therefore needed to ensure the
long-term economic sustainability of the renewable energy production.

In this paper, we build an equilibrium model for the intraday electricity market, aiming
to understand the price formation and identify the optimal strategies for market participants
in the setting where both the strategies of the agents and the demand or generation forecasts
may affect market prices. We consider an intraday electricity market, where the participants
optimize their revenues based on imperfect forecasts of terminal demand or production.
We place ourselves in the standard linear-quadratic setting with quadratic trading costs and
linear market impact. The actions of each agent therefore impact market prices, leading to a
stochastic game where players interact through the market price. We exhibit a closed-form
Nash equilibrium for this game, and provide explicit formulas for the market price and the
strategies of the agents under two different settings:

– the setting of N identical agents, having complete information about the forecasts of the
other agents,

– the setting of an infinite number of identical small agents (the mean field), where each
agent only observes the aggregate forecast as well as its own forecast.

We then show by theoretical analysis and through numerical simulations that our model
reproduces the stylized features of the market price, which we document empirically. In
particular,

– the market price becomes more volatile at the approach of the delivery time, a phe-
nomenon known as Samuelson’s effect in the empirical literature on futures markets;

– the market price exhibits negative correlation with the total renewable infeed forecast,
which grows in absolute value at the approach of the delivery time.

Furthermore, our model provides direct quantitative links betweenmarket characteristics and
market price features, as well as the gain of individual agents. For instance,

– observed price volatility increases for higher imbalance penalties which force the agents
to follow the forecasts more closely;

– observed price volatility increases for lower instantaneous trading costs, which allow
agents to trade more actively;

– increased competition (greater number of agents in the market) limits profit opportunities
for individual agents and leads to lower price volatility.

Correlations between renewable infeed and intraday market prices have been studied
empirically by a number of authors. Kiesel and Paraschiv [27] perform an econometric
analysis of the German intraday market and show that a deeper penetration of renewable
energies increases market liquidity and price-infeed correlations. The wind power output
forecast errors thus turn out to be of paramount importance in explaining the price differences
between the day ahead and intraday prices. Karanfil and Li [26] draw similar conclusions
from an empirical study of the Danish market, and exhibit the impact of renewable energies
on prices, bid-ask spread and volatility. Rowińska et al. [30] establish a negative correlation
between the wind energy penetration and the day ahead market prices. Jonsson et al. [25]
show that in addition to creating a negative correlation between the renewable infeed and spot
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prices, a deeper penetration of the intermittent energies significantly modifies the distribution
of spot prices.

Optimal strategies in the intraday market for a single wind energy producer have also
been the object of studies both in the price-taker and price-maker context. In the price-taker
setting, Garnier and Madlener [21] solve a discrete-time optimal trading problem to arbitrate
between immediate and delayed trading when price and production forecasts are uncertain.
Morales et al. [29] consider a multimarket setting to derive an optimal bidding strategy for
a wind energy producer in the day ahead and adjustment markets, while minimizing the
cost incurred in the balancing market. Discrete decisions are taken for each delivery period,
considering a finite number of probable scenarii. This approach has been enhanced by Zugno
et al. [34], where the wind energy producer is now price maker in the balancing market.
Following the same framework, Delikaraoglou et al. [14] formulate a problem where the
renewable producer is price maker in both the day ahead and balancing markets and assess
the relevance of strategic behavior in the context of high renewable penetration and varying
flexible capacities. Still in the price-maker setting, continuous-time approaches have also
been developed. Aïd et al. [2], consider the optimal trading rate and power generation of
a thermal producer when the residual demand at the terminal date is random. In the same
trend, Tan and Tankov [32] develop an optimal trading model for a wind energy producer.
They quantify the evolution of forecast uncertainty at the approach of the delivery time, and
exhibit optimal strategies depending on forecast updates.

In our study, the uncertain renewable production is also a source of randomness, and the
producers’ trading decisions impact themarket. Unlike the previous papers on electricitymar-
kets, we consider the equilibrium setting with many agents and determine the market price
as the result of their interaction. Explicit results for dynamic equilibria are often difficult to
obtain. In particular, Nash equilibria often lead to systems of coupled partial differential equa-
tions. However, the linear-quadratic setting and in particular the Almgren–Chriss framework
of linear market impact and quadratic trading costs has become a standard toolbox allowing
many authors to obtain the explicit form of equilibrium price under different market designs.

In the N-agent setting, Bouchard et al. [9], study the equilibrium returns in a market with
mean-variance optimizing investors under quadratic transactions costs. Closer to our model,
Voß [33] considers a game of two agents in the Almgren–Chriss framework, interacting
through the market impact function, where each agent aims to follow a target as in the single-
agent model of Bank et al. [7]. Bank et al. [6] apply the Almgren–Chriss framework to the
study of liquidity dynamics in OTC dealer markets. Evangelista and Thamsten [16] consider
liquidation games in a finite population of agents with information asymmetry.

The problemof finding the equilibriummay be simplified further by assuming a continuum
of agents and using the mean field game approach. Fu et al. [17] consider the optimal liquida-
tion mean-field game in the generalized Almgren–Chriss framework and obtain the optimal
strategies and the equilibrium price as a solution to a linear forward–backward stochastic
differential equation (FBSDE) with a singular terminal condition. Fu and Horst [18] extend
these results to a leader–follower setting using the theory of mean-field games with a major
player and Fu et al. [19] extend the framework with a self-exciting order flow. Fujii and
Takahashi [20] find an equilibrium price under market clearing conditions under quadratic
trading costs. Casgrain and Jaimungal [12,13] used the Almgren and Chriss framework in the
mean field setting to deal with heterogeneous sub-populations of agentswith distinct filtration
and/or different beliefs for each sub-population. Shrivats et al. [31] recently applied the the-
oretical setting developed in [13] to the case of trading in solar renewable energy certificate
markets. Finally, while this paper was under review, a different equilibrium price model for
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electricity market was proposed in Aïd et al. [1], where in particular the Samuelson’s effect
is explained through heterogeneity among agents.

Following these authors, our paper is based on the Almgren–Chriss toolbox, which we use
to study market impact, trading strategies and equilibrium prices in intraday electricity mar-
kets. Electricity markets are very different from traditional stock/futures markets. The most
fundamental difference is the predictability of prices: since electricity is non storable, shifts
in demand and supply forecasts are reflected in the price. Other features, such as the Samuel-
son effect (growth of volatility at the approach of the delivery date) are specific to futures
markets in general. Our paper is an attempt to model these features of electricity markets in
an endogenous way, by relating price formation to production and demand forecasts. The
classical Almgren–Chriss setting, extended with production and demand forecasts provides
a simple and tractable framework to take into account the different features of electricity
markets: market impact; low liquidity, which improves at the approach of the delivery date
etc. We justify the use of this framework a posteriori by showing that the price obtained with
our model reproduces the main observed empirical features of intraday electricity prices.

The main difference of our framework with the existing research, motivated by the pre-
dictability of electricity prices, is the presence of forecast processes, which determine the
terminal constraint on the strategy of each agent. We consider deterministic market impact
and trading cost parameters, which enables us to determine the trading strategies and the
equilibrium price in explicit form, under very general assumptions on the price process and
the forecast processes. In particular, unlike the above quoted papers, the fundamental price
process is not assumed to be a martingale. The explicit form of the equilibrium price enables
us to carry out a theoretical study of various characteristics of electricity markets, such as
observed volatility, price-forecast correlation, market impact of forecast adjustments and
trading costs. All these quantities are also determined in explicit form. As a final contribu-
tion, in the last section of the paper we perform an empirical analysis of intraday electricity
markets using order book data, and show empirically that the qualitative features of electricity
markets are reproduced by our model.

The paper is structured as follows. Section 2 describes the market and introduces our
modeling framework. In Sect. 3.1 we place ourselves in a setting with a finite number of
agents, where all agents observe the forecasts of the other agents. In Sect. 3.2 we consider
the mean field game, where agents only observe their individual forecasts and the common
information. To make a connection between the N -agent setting and the mean-field game
setting, we show in Sect. 3.3 that (i) the N -player equilibrium converges to the mean-field
equilibrium as N → ∞, and (ii) an ε-Nash equilibrium for the N -player problem may be
constructed from the mean-field equilibrium. In Sect. 4 we use the results of Sect. 3.1 to
analyze theoretically the properties of equilibrium price in electricity markets. Finally, in
Sect. 5 we perform an empirical analysis of intraday electricity prices and confront it with
the theoretical results obtained in the preceding sections.

2 Preliminaries on electricity markets

In this paper we consider a short-term electricity market, populated with small agents with
identical characteristics. These agents face uncertain demand or supply at some future time,
and use the electricity market to manage the associated risk. While our primary interest is to
study the impact of increasing renewable penetration on intraday market prices, the market
participants may in principle represent both renewable producers with uncertain generation
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forecasts and industrial consumers/utilities with uncertain demand. To simplify the language
and notation, in the sequel, unless specified otherwise, we will refer to forecasts of all agents
as demand forecasts (if the agent is a producer, its demand forecast will therefore be negative).

In most countries, the short-term electricity markets have the following structure (the
specific times correspond to the EPEX Spot/Intraday market):

– The day-ahead market is a one-off trading venue, where the agents may make bids until
12 PM (noon) on the day preceding the delivery day. At 12:55 the price is fixed using the
merit order mechanism and the market clears. A major part of the electricity production
is sold on the day-ahead market.

– At 3 PM on the day preceding the delivery day, the intraday market opens, allowing
continuous trading for each quarter-hour of the delivery day. The intraday market has
higher trading cost than the day-ahead market, and is mainly used by market participants
to adjust their day-ahead positions following forecast updates.

– 15min before delivery the intraday trading for the given delivery period closes. At this
point, negative production imbalances must be compensated to the market operator at the
’high imbalance settlement price’, which is higher than the last intraday price, and for
positive production imbalances, the producer is compensated at the ’low imbalance settle-
ment price’, which is lower than the intraday market price.1 In addition, high imbalances
carry a reputational cost for the market participant. To avoid paying the imbalance penal-
ties, the aggregate position (day-ahead plus intraday) held by the agent at the delivery
time must therefore be equal to the realized demand.

To represent this market structure in a simplified way, we consider a fixed delivery period,
starting at time T , and assume that the day-ahead market allows agents to trade instanta-
neously, without transaction costs, at time t = 0, at price denoted by S0. Then, between
t = 0 and t = T , the agents may trade in the intraday market, at price (Pt )0≤t≤T , which
contains a market impact component, and subject to transaction costs. Finally, at time T , if
there is an imbalance, the agents must purchase the missing amount/sell the extra amount
of electricity at price ST without transaction cost, and in addition, pay a penalty depending
on the absolute value of the imbalance. In the following section we provide details of the
model and compute explicitly the optimal strategies of the agents and the equilibrium intraday
market price.

3 Optimal trading strategies and equilibrium price

In this sectionwe introduce ourmodel of electricitymarket and derive explicit expressions for
the equilibrium price and optimal equilibrium trading strategies of the agents. We consider
both the N-agent setting (Sect. 3.1) and the mean-field game setting (Sect. 3.2). Section 3.3
clarifies the relationship between the equilibrium strategies and prices in the N-agent market
and those of the mean field game limit.

3.1 N-player setting

In this section we assume that in the market there are N identical agents, and we denote by φi
t

the position of i-th agent at time t . As is common in optimal execution literature, we assume

1 See www.services-rte.com/en/learn-more-about-our-services/becoming-a-balance-responsible-party/
Imbalance-settlement-price.html for details.
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that the position of i-th agent is an absolutely continuous process, and we define the rate of
trading φ̇i

t . We introduce a filtered probability space (Ω,F, F := (Ft )t∈[0,T ], P) to which
all processes are adapted, and which models the information available in the market to all the
agents. The position of the i-th agent at time t is given by φi

t = φi
0 + ∫ t

0 φ̇i
sds with φi

0 ∈ F0

denoting the position of the agent in the day-ahead market. The fundamental electricity price
process is denoted by (St )t∈[0,T ], where S0 corresponds to the day-ahead market price and
St for 0 < t < T denotes the intraday market price net of the price impact component.
The intraday market price with the price impact component is denoted by (PN

t )t∈[0,T ]. The
strategies of the agents impact the market price PN

t as follows:

PN
t = St + a

(
φ̄N
t − φ̄N

0

)
, ∀t ∈ [0, T ], (1)

where φ̄N
t = 1

N

∑N
i=1 φi

t is the average position of the agents and a is a constant. The
parameter N describes the size of the market (number of agents), it is therefore natural that
the trading strategy of each agent has an effect of order of 1/N on the market price. The
permanent component of the price impact of trades in our model is thus linear, which is
the only shape compatible with the absence of arbitrage, see [22,23]. On the other hand,
the transient component of market impact is not modelled directly. Literature on market
microstructure mostly shows that metaorders have a concave transient impact on prices (see
Bershova and Rakhlin [8], Bacry et al. [5], Bucci et al. [11] and Bouchaud [10]). However,
for the sake of simplicity and in order to obtain an analytical solution for our model, we
choose a linear impact function as in the seminal papers by Almgren and Chriss [3,4] and
many other more recent papers, including Aïd et al. [2] in the context of electricity markets.
The transient component of the market impact is taken into account indirectly, via a trading
cost penalty.

The agents trading in the market at time t incur an instantaneous cost,

φ̇i
t P

N
t + α(t)

2
φ̇i
t

(
φ̇i
t + b ˙̄φN ,−i

t

)
, ∀t ∈ [0, T ]

for the i-th agent where ˙̄φN ,−i
t = 1

N−1

∑N
j=1, j �=i φ̇

j
t . Here the first term represents the actual

cost of buying the electricity, and the second term represents the cost of trading, where α(.) is
a continuous strictly positive function on [0, T ] reflecting the variation of market liquidity at

the approach of the delivery date. The term b ˙̄φN ,−i
t with b > 0 represents the impact of the

crowd trading direction on the cost of trading of a single agent, which accounts for possible
synchronization of the agents. The instantaneous cost paid by each agent is thus independent
of the size of the market. This corresponds to a market where immediately available liquidity
(market depth) is low (thus even a minor agent has to pay order book costs) but the order
book is resilient (thus the trade of a minor agent only has a lasting impact of order of 1/N
on the price). This is consistent with recent empirical and theoretical studies of order book
dynamics, for example, according to [15], while the total daily volume exchange on a typical
stock is around 1/200th of its market capitalization, the volume present in the order book at
any given time is 1000 times smaller than this.

Each agent i has a demand forecast Xi
t and aims to maximize her gain from trading in

the market under the volume constraint φi
T = Xi

T . More precisely, whenever φi
T �= Xi

T , the
agent must first purchase themissing amount or sell the extra amount of electricity at price ST
and in addition pay an imbalance penalty λ

2 (φi
T − Xi

T )2. The actual imbalance mechanism of
electricity markets boils down to applying a L1 penalty function to the terminal imbalance;
however, large imbalances may also create a reputational damage to the producer, thus a
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quadratic penalty, which penalizes large imbalances more strongly, appears appropriate. On
the other hand, the ’hard constraint’ may be recovered from our results by making the penalty
parameter λ tend to infinity.

Our main results hold true under the following assumption.

Assumption 1 The process S is F-adapted and satisfies

E

[

sup
0≤t≤T

S2t

]

< ∞. (2)

and the processes (Xi )Ni=1 are square integrable F-martingales.

Considering the demand forecast as a martingale is natural since it is the best estimate at
time t of what the demand will be at the delivery time T given our current knowledge Ft .

Definition 1 (Admissible strategy) We say that the strategy (φi
t )t∈[0,T ] of the i-th agent is

admissible if φi
0 ∈ F0, the process (φ̇t )t∈[0,T ] is F-adapted and

E

[(
φi
0

)2 +
∫ T

0

(
φ̇i
t

)2
dt
]

< ∞.

Following the discussion above, the objective function maximized by agent i is written as
follows:

J N ,i (φi , φ−i ) := −E

[
φi
0S0︸︷︷︸

Day ahead

+
∫ T

0

{
α(t)

2
φ̇i
t

(
φ̇i
t + b ˙̄φN ,−i

t

)
+ φ̇i

t P
N
t

}

dt
︸ ︷︷ ︸

Intraday

−
(
φi
T − Xi

T

)
ST + λ

2

(
φi
T − Xi

T

)2

︸ ︷︷ ︸
Balancing

]
, (3)

where φ−i := (φ1, . . . , φi−1, φi+1, . . . , φN ) is the vector of positions of all agents except
the i-th one. Here, the first term corresponds to the day-ahead market transaction, the integral
term corresponds to the cost of purchasing electricity in the intraday market, and the term in
the second line corresponds to the imbalance payment.

Because of the price impact, each agent’s gain is affected by the decisions of others and
we thus face a non-cooperative game. The optimal strategy of each player depends on the
other players’ actions and we want to describe the resulting dynamical equilibrium, which
we define formally below.

Definition 2 (Nash equilibrium) We say that (φi∗
t )i=1...N

t∈[0,T ] is a Nash Equilibrium for the N-
player game if it is a vector of admissible strategies, and for each i = 1, . . . , N ,

J N ,i (φi , φ−i∗) ≤ J N ,i (φi∗, φ−i∗) (4)

for any other admissible strategy φi .

The following theoremcharacterizes explicitly theNash equilibriumof the N -player game.

In the theorem and its proof, we denote the average forecast process by X
N
t := 1

N

∑N
i=1 X

i
t

and use the following shorthand notation.

ΔN
s,t :=

∫ t

s

ηN
u,t

α(u)
(
1 + b

2

)du with ηN
s,t = e

− ∫ t
s

(N−1)a

Nα(u)
(
1+ b

2

) du
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Δ̃N
s,t :=

∫ t

s

η̃N
u,t

α(u)
du, with η̃N

s,t = e
∫ t
s

a
Nα(u)

du

I Nt :=
∫ t

0

ηN
s,t

α(s)
(
1 + b

2

) Ssds, Ĩ Nt := E

[∫ T

0

ηN
s,T

α(s)
(
1 + b

2

) Ssds
∣
∣
∣Ft

]

,

S̃t := E[ST |Ft ], X̌ i
t = Xi

t − X
N
t . (5)

The proof of this theorem can be found in Sect. 6.1.

Theorem 1 Under Assumption 1, the unique Nash equilibrium in the N-player game is given
by

φi∗
t = Xi

0 + 1 + a
N ΔN

0,t

1 + a
N ΔN

0,T

(
Ĩ N0 − S̃0Δ

N
0,T

) − (
I Nt − ΔN

0,t S̃0
)

+
∫ t

0
ΔN

s,t

( a
N + λ

)
d Ĩ Ns + λdX

N
s + d S̃s

1 + ( a
N + λ

)
ΔN

s,T

+
∫ t

0
Δ̃N

s,t
λd X̌ i

s

1 + ( a
N + λ

)
Δ̃N

s,T

.

(6)

The equilibrium price has the following form:

PN
t = St + a

a
N ΔN

0,t

1 + a
N ΔN

0,T

(
Ĩ N0 − S̃0Δ

N
0,T

) − a
(
I Nt − ΔN

0,t S̃0
)

+ a
∫ t

0
ΔN

s,t

( a
N + λ

)
d Ĩ Ns + λdX

N
s + d S̃s

1 + ( a
N + λ

)
ΔN

s,T

. (7)

Discussion The day-ahead market position of i-th agent is given by

φi∗
0 = Xi

0 + Ĩ N0 − S̃0ΔN
0,T

1 + a
N ΔN

0,T

.

The agents, therefore, trade in the day-ahead market based on their forecasts at time 0 and
apply a correction for the potential fundamental price trend, which disappears if the funda-
mental price is a martingale.

For nonzero trading costs, the strategies of the agents and thus the price impact have
a finite variation. Hence, the price impact component does not directly induce additional

volatility which may be a weakness of the model. However, the drift ˙̄φN is stochastic and
thus creates additional price variations, making the effective observed volatility larger. We
will investigate this phenomenon in more details in Sect. 4.2.

The aggregate intraday market strategy φ̄N∗ [given by equation (27)] and, consequently,
the equilibrium price have a complex structure because of the generality of our setting; in
particular the fundamental price process (St )0≤t≤T is only assumed to be square integrable.
Undermore stringent assumptions, important simplifications canbeobtained, as the following
examples illustrate.

– Assume that the fundamental price process S is amartingale.Then, Ĩ Nt = − ∫ t
0 SsdΔN

s,T+
StΔN

t,T and d Ĩ Nt = ΔN
t,T dSt . Substituting this into (7), after cancellations, we find that

aggregate strategy does not depend on the fundamental price:

φ̄N∗
t = X

N
0 +

∫ t

0

ΔN
s,tλdX

N
s

1 + ( a
N + λ

)
ΔN

s,T

.
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In the absence of price trend, the trades are therefore only provoked by forecast adjust-
ments.

– Assume now that the fundamental price contains a martingale component M and a deter-
ministic component A: St = At + Mt . The above argument shows that the aggregate
strategy does not depend on the martingale part M . Thus, we can assume that St is deter-
ministic, which means that Ĩ Nt and S̃t are constant, and the aggregate strategy becomes

φ̄N∗
t = X

N
0 + 1 + a

N ΔN
0,t

1 + a
N ΔN

0,T

∫ T

0

ηN
s,T

α(s)
(
1 + b

2

) (As − AT )ds

−
∫ t

0

ηN
s,t

α(s)
(
1 + b

2

) (As − AT )ds +
∫ t

0

ΔN
s,tλdX

N
s

1 + ( a
N + λ

)
ΔN

s,T

If there is a positive trend in the fundamental price (that is, A is increasing), then the
day-ahead position will be below the demand forecast, but there will be a positive trend
in the aggregate strategy: the overall price trend will be amplified by the market impact
component.

– Consider now the limiting case of infinite penalty: λ → ∞. Then, using the dominated
convergence as needed, we see that the aggregate strategy satisfies:

lim
λ→∞ φ̄N∗

t = X
N
0 + 1 + a

N ΔN
0,t

1 + a
N ΔN

0,T

(
Ĩ N0 − S̃0Δ

N
0,T

)

−
(
I Nt − ΔN

0,t S̃0
)

+
∫ t

0
ΔN

s,t
d Ĩ Ns + dX

N
s

ΔN
s,T

– Finally, let us compute the form of trading strategy in the limit of zero trading costs. To
this end, we assume in addition that the fundamental price process S has a left limit at
every point. Fixing s < t ∈ [0, T ], we have:

ΔN
s,t = N

a(N − 1)

(

1 − e
− ∫ t

s
a(N−1)

α(l)
(
1+ b

2

)
N
dl
)

−→ N

a(N − 1)
:= Δ∗

as α(t) → 0 uniformly in t . From the left limit property of S, it is easy to see that I Nt →
Δ∗St almost surely, for every t . For similar reasons, using the dominated convergence
theorem, Ĩ Nt → Δ∗ S̃t . Finally,

lim‖α‖→0
φ̄N∗
t = X

N
0 + N

a(N − 1)
(S̃t − St ) + λ

a + λ

(
X

N
t − X

N
0

)

Thus, in the absence of trading costs, for N ≥ 2, the aggregate equilibrium strategy iswell
defined, and the gain of each agent remains bounded in expectation. This is in contrast
with the single-agent case, where the gainmay be arbitrarily large, unless the fundamental
price process is a martingale. Indeed, in the single-agent case, without transaction costs
the objective function writes:

J 1,i (φ) = E

[∫ T

0
φt dSt − a

2
(φT − φ0)

2 − λ

2
(XT − φT )2 − XT ST

]

,

and it is clear that unless the fundamental price process is a martingale, this expression
can be made arbitrarily large. This means that the “price of anarchy” in this model is
infinite: if the agents chose the same strategy, they could have all obtained an infinite
gain, but competition between agents limits everybody’s gain to a finite value.
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– Finally, coming back to the form of the individual agent’s strategy φi∗
t , we see that the

dependence on the trading cost α is different for the common part of the strategy and the
individual part of the strategy (the last term of the formula). While the common part of
the strategy depends on the “effective trading cost” α(1 + b/2), taking into account the
crowd behavior, the individual part of the strategy depends only on α. We conclude that
due to additional costs related to crowd behavior of agents, the agents trade less actively
in response to common forecast updates than in response to individual forecast updates.

3.2 Mean-field game setting

In this section, we place ourselves in themean field game limit, that is, we assume the number
of agents in the market, N tends to infinity, while the strategy of each agent remains finite.
We then consider a generic agent and denote by X := (Xt )t∈[0,T ] the demand forecast of
this agent, by φ the agent’s position and by F the filtration which contains the information
available to this agent. In addition we introduce a smaller filtration, containing the common
noise and denoted by F

0. This filtration contains the information about the fundamental
price and potentially some information about the demand forecast but, in general, not the
full individual demand forecast of the generic agent. We decompose the individual demand
forecast as follows: Xt = Xt + X̌t , where Xt = E

[
Xt |F0

t

]
is common for all agents (it can be

seen as a national demand forecast). In this mean field game setting, the average quantities of
the N -agent problem are replaced with conditional expectations with respect to the common
noise filtration F

0.
For any F-adapted process (ζt )t∈[0,T ], we will denote ζ̄t = E[ζt |F0

t ] = ∫
R
xμζ

t (dx)

where: μ
ζ
t := L(ζt |F0

t ). The game is now represented by the interaction of agents through

the conditional distribution flow μ
φ
t := L(φt |F0

t ) of the state process. The price impact
function, defined in the previous section as an expectation with respect to the empirical
measure, is now an integral with respect to the measure flow:

Pt = St + a(φ̄t − φ̄0). (8)

Each individual agent now has a negligible impact on the price, but the aggregate position
of all agents has a nonzero impact. Thus, in the mean-field game setting, we consider that
the market is very large compared to the size of the individual agent, but the immediately
available liquidity in the order book is small, so that even a minor agent pays a non-zero
trading cost.

The objective function for the generic agent is

J MF (φ, φ̄) := − E

[

φ0S0 +
∫ T

0

α(t)

2
φ̇t

(
φ̇t + b ˙̄φt

)
+ φ̇t (St + a(φ̄t − φ̄0))dt

− (φT − XT )ST + λ

2
(φT − XT )2

]

. (9)

As in the previous section, each agent maximizes this functional over the set of strategies
satisfying Definition 1.

We now define the mean field equilibrium.

Definition 3 (mean field equilibrium) An admissible strategy φ∗ := (φ∗
t )t∈[0,T ] is a mean

field equilibrium if for any admissible strategy φ,

J MF (φ, φ̄∗) ≤ J MF (φ∗, φ̄∗).
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In this section, we make the following assumption.

Assumption 2 – The process S is adapted to the filtration F
0 and satisfies (2).

– The process X is a square integrable martingale with respect to the filtration F.
– The process X defined by Xt := E[Xt |F0

t ] for 0 ≤ t ≤ T is a square integrable
martingale with respect to the filtration F.

Note that if X is an F-martingale, then X is by construction an F
0-martingale, but it may not

necessarily be a martingale in the larger filtration F.
The following theorem characterizes the mean field equilibrium in our setting. The state-

ment of the theorem appears similar to that of Theorem 1, modulo replacing X
N
with X and

making N tend to infinity. However, the computation of the strategy and the market price in
the N-player setting requires the knowledge of the sum of forecasts of all agents whereas in
the mean-field setting one needs to know the conditional expectation of the agent’s forecast
with respect to the ’common knowledge’ filtration. Thus, the theoretical price given by this
theorem can be computed by the regulator, and the strategy of this theorem can be com-
puted by an individual player, both of which do not have the complete information about the
forecasts of other players.

In the theorem and its proof, we use the following shorthand notation.

Δs,t :=
∫ t

s

ηu,t

α(u)
(
1 + b

2

)du with ηs,t = e
− ∫ t

s
a

α(u)
(
1+ b

2

) du

,

It :=
∫ t

0

ηs,t

α(s)
(
1 + b

2

) Ssds, Ĩt := E

[∫ T

0

ηs,T

α(s)
(
1 + b

2

) Ssds
∣
∣
∣Ft

]

,

and Δ̃s,t :=
∫ t

s
α−1(u)du. (10)

Theorem 2 Under Assumption 2, the unique mean field equilibrium strategy is given by

φ∗
t = X0 + ( Ĩ0 − S̃0Δ0,T ) − (It − Δ0,t S̃0)

+
∫ t

0
Δs,t

λd Ĩs + λdXs + d S̃t
1 + λΔs,T

+
∫ t

0
Δ̃s,t

λd X̌s

1 + λΔ̃s,T
. (11)

The equilibrium price has the following form:

Pt = St − a(It − Δ0,t S̃0) + a
∫ t

0
Δs,t

λd Ĩs + λdXs + d S̃t
1 + λΔs,T

. (12)

The proof of Theorem 2 follows the lines of that of Theorem 1 with some adjustments, and
is thus omitted to save space.

3.3 Relationship between N-player setting andMFG setting

In this section, we study the relationship between the equilibrium strategies and prices in the
N -agent market and those of the mean field game limit, and prove the following results.

– The market price and the agent’s strategy in the N -agent model converge to their respec-
tive mean field values as N → ∞. This shows that to understand the behavior of agents
and prices in the realistic N -agent market, one can use the mean-field gamemodel, which
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does not require the knowledge of individual forecasts, but only that of the common infor-
mation filtration.

– An approximate equilibrium (ε-Nash equilibrium) in the N -player setting may be con-
structed from the MFG solution. In other words, an agent trading in the N -agent market
may construct a strategy whose gain is sufficiently close to the optimal equilibrium gain
using the mean-field game solution, which does not require the knowledge of the private
forecasts of the other agents.

To address these questions, we need to make more precise assumptions on the probabilistic
setup of the problem. In particular, since we would like to study the convergence of the
N -agent problem as N → ∞, we consider an infinity of agents. In addition, all N -agent
problems and the mean field problem must be defined on the same probability space.

Assumption 3 – The process S adapted to the filtration F
0 and satisfies (2).

– The processes (Xi )∞i=1 are square integrable F-martingales.
– There exists a square intergrableF-martingale X , such that for all i ≥ 1, and all t ∈ [0, T ],

almost surely, E[Xi
t |F0

t ] = Xt .
– The processes (X̌ i )∞i=1 defined by X̌ i

t = Xi
t − Xt for t ∈ [0, T ], are orthogonal square

integrable F-martingales, such that the expectation E[(X̌ i
T )2] does not depend on i .

Let us fix N < ∞, and consider a market with N agents. For a given i ≤ N , we may define
the "mean-field" strategy for the i-th agent as follows.

φ
MF,i∗
t =Xi

0 + ( Ĩ0 − S̃0Δ0,T ) − (It − Δ0,t S̃0)

+
∫ t

0
Δs,t

λd Ĩs + λdXs + d S̃t
1 + λΔs,T

+
∫ t

0
Δ̃s,t

λd X̌ i
s

1 + λΔ̃s,T
(13)

Unlike the true optimal strategy of the i-th agent, this strategy is computed using only the
common information and the individual information of the i-th agent, it does not require
the knowledge of the private forecasts of the other agents. Moreover, this strategy does not
depend on N . The following two results show that, on the one hand, the true optimal strategy
of the i-th agent in the N -player game converges to this mean-field strategy as N → ∞, and
on the other hand, that this mean-field strategy, if used by all agents in the N -player game,
constitutes an ε-Nash equilibrium. Proofs of these results can be found in Appendix 6.2.

Proposition 1 Let Assumption 3 holds true, and let φi∗ denote the optimal position of the
i-th agent in the N-player setting, given by (6), and by φMF,i∗ the optimal position in the
mean field setting, given by (13). Then, for all N ≥ 1, the differences between the strategy
of a single agent, the aggregate strategy and the equilibrium price in the N-agent model and
the corresponding quantities in the mean-field model can be bounded as follows.

sup
0≤t≤T

E

[(
φi∗
t − φ

MF,i∗
t

)2] + sup
0≤t≤T

E

[(
φ
N∗
t − φ

∗
t

)2] + sup
0≤t≤T

E

[(
PN
t − Pt

)2]

+ sup
0≤t≤T

E

[(

φ̇
N∗
t − φ̇

∗
t

)2
]

≤ C

N 2 E

[

sup
0≤t≤T

S2t

]

+ C

N 2 E

[(
XT

)2] + C

N
E

[(
X̌ i
T

)2]

,

where the constant C depends only on the coefficients α, b, λ and a.

Proposition 2 Under Assumption 3, consider the vector of admissible strategies for the N-
player game defined by equation (13) for i = 1, . . . , N. Then, there is a constant C <
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∞ which does not depend on N, such that for any other vector of admissible strategies
(φi

t )
i=1...,N
t∈[0,T ] for the N-player game,

J N ,i (φi , φMF,−i∗) − C

N
1
2

≤ J N ,i (φMF,i∗, φMF,−i∗), ∀i ∈ {1, . . . , N }, ∀t ∈ [0, T ].

In other words, the vector of strategies (φ
MF,i∗
t )

i=1...,N
t∈[0,T ] is an ε-Nash equilibrium for the

N-player game with ε = C

N
1
2
.

4 Intraday electricity prices: theoretical insights

In this section we show through theoretical analysis how the main empirically documented
features of electricity markets appear naturally as the result of our model. Empirical illustra-
tions of these features are provided in the following section. We analyze the effect of market
structure (number of participants, terminal penalty, trading costs and market impact parame-
ters) on the overall costs/gains of participants as well as on the aggregate market parameters
such as price volatility, the correlation between forecast and price and the impact of forecast
adjustments on market prices. We consider the N -agent framework and make the following
additional assumptions to simplify computations.

– The fundamental price process S is a martingale orthogonal to the forecast processes of
the agents, with 〈S〉t = σ 2

S t .
– The trading cost parameter α is constant.
– The forecast processes of agents satisfy

〈XN 〉t = σ 2
X t, 〈X̌ i 〉t = σ̌ 2

X t, and 〈XN
, X̌ i 〉t = 0 ∀ i,

for some constants σX and σ̌X , where X̌ i
t = Xi

t − X
N
t .

In addition, to make the notation more compact throughout this section we write α̃ :=
α(1 + b/2).

Under these assumptions, the coefficients ηN
s,t and ΔN

s,t depend only on t − s and not on s
and t separately. We shall therefore write them as ηN

t−s and ΔN
t−s , and similarly for the other

coefficients, from now and until the end of this section. The aggregate position of N agents
in equilibrium therefore writes:

φ̄N
t = X

N
0 +

∫ t

0
ΔN

t−s
λdX

N
s

1 + ( a
N + λ

)
ΔN

T−s

.

4.1 Price impact of forecast adjustments

Due to the non-storability of electricity, the prices of this commodity are strongly affected by
demand and supply shocks.While for regular commodities these shocksmay be compensated
by changes in reserves, for electricity this is not possible.As a result, supply shocks caused, for
instance, by thepower plant breakdowns, anddemand shocksoften causedbyweather forecast
changes have a lasting impact on the price. In ourmodel, themarket impact of demand/supply
shocks can be represented through a jump in the forecast process. An idiosyncratic supply
shock may correspond to a jump in the individual forecast process Xi , while a generalized
demand shock caused by weather forecast update may correspond to a jump in the aggregate
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Fig. 1 Price impact of an aggregate demand forecast adjustment at t = 0 (delivery time is t = 5). Parameter
values: a = 1, N = 100, α = 0.5, b = 0, forecast adjustment size: 1 MW

forecast process X
N
. Consider for instance a jump ΔX

N
in the aggregate forecast occurring

at time t∗. The impact of this jump on the aggregate strategy φ̄N
t , defined as the difference

of the strategies with and without the forecast adjustment, is given by

δφ̄N
t = 1t≥t∗

λΔN
t−t∗ΔX

N

1 + ( a
N + λ

)
ΔN

T−t∗
.

For example, after a positive demand shock, the agents will need to purchase the missing
electricity in the market, creating a permanent price impact given by a positive increasing
continuous function of time (see Fig. 1).

4.2 Volatility and Samuelson’s effect

We have seen that since the strategy φ̄N is differentiable, the quadratic variation of the equi-
librium price PN

t coincides with the quadratic variation of the fundamental price. However,
the actual observed volatility, which is estimated from discretely observed prices, may be
different. The standard estimator of integrated variance by discrete quadratic variation over
the interval [t, t + h] with M steps is given by

QM (t, t + h) =
M−1∑

i=0

(
Pt+ i+1

M h − Pt+ i
M h

)2

To focus on the average behavior of volatility rather than on individual random trajectories,
we consider the expectation of this estimator. Finally, to estimate the expected instantaneous
variance, it seems natural to consider this estimator over one time step and normalize it by
the step size. Thus, the expression

1

h
E

[(
PN
t+h − PN

t

)2]

represents the average instantaneous price variance, estimated over time step h.
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The following lemma quantifies the behavior of this expression for small values of h.

Lemma 1 As h → 0, the equilibrium price satisfies

1

h
E
[(
PN
t+h − PN

t

)2] = σ 2
S + hVt + O(h2), (14)

where

Vt = a2λ2σ 2
X

α̃2

∫ t

0

(
ηN
t−s

)2

(
1 + ( a

N + λ
)
ΔN

T−s

)2 ds. (15)

Proof The expected squared change in the price process satisfies:

E
[(
PN
t+h − PN

t

)2] = σ 2
S h + 2aE

[(
St+h − St

)(
φ̄N
t+h − φ̄N

t

)] + a2E
[(

φ̄N
t+h − φ̄N

t

)2]

Since the fundamental process S is orthogonal to the forecast process, the second term in the
right-hand side above is zero. The third term satisfies:

E
[(

φ̄N
t+h − φ̄N

t

)2] =σ 2
Xλ2

∫ t

0

(
ΔN

t−s − ΔN
t+h−s

)2

(
1 + ( a

N + λ
)
ΔN

T−s

)2 ds

+ σ 2
Xλ2

∫ t+h

t

(
ΔN

t+h−s

)2

(
1 + ( a

N + λ
)
ΔN

T−s

)2 ds.

From the explicit form of ΔN
t , it is clear that the second term above is of order of O(h3), and

the first term equals

h2σ 2
Xλ2

∫ t

0

((
ΔN

t−s

)′)2
(
1 + ( a

N + λ
)
ΔN

T−s

)2 ds,

up to terms of order of h3. ��
As expected, as h → 0, the expression (14) converges to the variance of the fundamental
price σ 2

S . However, an agent using volatility estimator with time step h on the fundamental
price process, will find an extra variance of approximately hVt (on average). For a given
fixed time step, the function V can thus be used as a proxy of the additional volatility of the
equilibrium prices.

In this section we draw conclusions about the behavior of price volatility by analyzing
this proxy, and in Section 5 we will show in numerical examples that the actual volatility,
estimated from discrete observations of simulated market price exhibits similar behavior.

– First of all, since ΔN
t is increasing in t , the observed price volatility increases at the

approach of the delivery date in our model (see Fig. 2). This phenomenon, well docu-
mented in electricity futures and other futures markets [24] is known as the Samuelson
effect and we also illustrate it empirically in Sect. 5.

– The observed price volatility is increasing in λ: stronger imbalance penalties lead to
higher volatility in the intraday market (see Fig. 2). Moreover,

lim
λ→∞Vt = a2σ 2

X

α̃2

∫ t

0

(
ηN
t−s

)2

(
ΔN

T−s

)2 ds,

and the latter expression explodes for t → T . Thus, we conclude that the Samuelson
effect is also stronger for higher imbalance penalties.
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Fig. 2 Proxy of expected observed volatility as function of time (delivery time is t = 2). Parameter values:
a = 1, N = 100, α = 0.5, b = 0, σX = 50

– In the small liquidity cost regime (α̃ → 0), for 0 < t < T , ΔN
t−s → N

(N−1)a uniformly
on s ∈ [0, t]. Therefore, for N > 1,

Vt ∼ a2λ2σ 2
X

α̃2

(a + λ)2N 2

a2(N − 1)2

∫ t

0

(
ηN
t−s

)2
ds ∼ λ2σ 2

X

α̃

(a + λ)2

2a

N

N − 1

This shows that with decreasing trading costs extra variance of the equilibrium price
grows like 1

α̃
. Lower transaction costs allow the agents to follow the forecasts more

closely, leading to a higher volatility of the aggregate position and of the market price.
On the other hand, since the function N �→ N

N−1 is decreasing in N , we conclude that
price volatility in the small liquidity cost regime is decreasing with the number of agents:
in our model, competition between agents increases market frictions and leads to reduced
volatility.

– In the large liquidity cost regime (α̃ → ∞), ηN
t → 1 and ΔN

t ∼ t
α̃
, so that

Vt ∼ a2λ2σ 2
X t

α̃2 .

Higher liquidity costs decrease the trading rate of agents and lead to a lower overall
market volatility.

4.3 Price-forecast covariance

To understand how the forecast updates influence prices, we compute the covariance of the
increment of the aggregate strategy over an interval of length h with the increment of the
aggregate forecast over the same interval. Using the explicit form of the strategy, we easily
obtain,

Cov
[
φ̄N
t+h − φ̄N

t , X
N
t+h − X

N
t

] = λ(σX )2
∫ t+h

t

ΔN
t+h−s

1 + ( a
N + λ)ΔN

T−s

ds.
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From this expression, we conclude that the covariance of equilibrium price with forecast
updates increases when the terminal penalty λ increases, and when the time t approaches the
delivery date .

4.4 Trading costs

In our model, the agents face three types of costs: the trading costs, the market impact costs,
and the balancing costs. Using the martingale property of S and other assumptions of this
section, these costs are evaluated as follows:

CN ,i
tra = E

[∫ T

0

α

2
φ̇i
t

(
φ̇i
t + b ˙̄φN ,−i

t

)
dt

]

= α(1 + b))

2
E

[∫ T

0

( ˙̄φN
t

)2
dt

]

+ α

2

N − 1 − b

N − 1
E

[∫ T

0

( ˙̌
φN
t

)2
dt

]

CN ,i
imp = E

[∫ T

0
aφ̇i

t
(
φ̄N
t − φ̄N

0

)
dt

]

= a

2
E

[(
φ̄N
T − φ̄N

0

)2]

CN ,i
bal = λ

2
E

[(
φi
T − Xi

T

)2] = λ

2
E

[(
φ̄N
T − X

N
T

)2] + λ

2
E

[(
φ̌i
T − X̌ i

T

)2]

After some tedious but straightforward computations, these costs are found to have the
following integral form:

CN ,i
tra = 1 + b

1 + b
2

λ2σ 2
X

4

∫ T

0
dt

(
1 + ηN

T−t

)
ΔN

T−t
(
1 + ( a

N + λ
)
ΔN

T−t

)2

+ N − 1 − b

N − 1

λ2σ̌ 2
X

4

∫ T

0
dt

(
η̃N
T−t + 1

)
Δ̃N

T−t
(
1 + ( a

N + λ)Δ̃N
T−t

)2

CN ,i
imp = aσ 2

Xλ2

2

∫ T

0

(
ΔN

T−t

)2

(
1 + ( a

N + λ
)
ΔN

T−t

)2 dt

CN ,i
bal = λσ 2

X

2

∫ T

0

(
1 + a

N ΔN
T−t

)2

(
1 + ( a

N + λ
)
ΔN

T−t

)2 dt + λσ̌ 2
X

2

∫ T

0

(
1 + a

N Δ̃N
T−t

)2

(
1 + ( a

N + λ
)
Δ̃N

T−t

)2 dt,

which leads to the following conclusions:

– Trading costs are proportional to forecast variances: more precise forecasts lead to lower
trading costs. However, while the trading costs and the balancing costs depend both on
the volatility of aggregate forecast and that of the individual forecast, the market impact
costs only depend on the volatility of the aggregate forecast. Thus, an agent who has a
better individual forecast will pay lower trading and balancing costs but the same market
impact costs.

– Since bothCN ,i
tra andCN ,i

imp are increasing in λ, stronger imbalance penalties lead to higher

trading and market impact costs. The balancing cost CN ,i
bal is increasing in λ for small

values of λ, but may become decreasing for large λ. When λ → ∞, the market impact
costs and the balancing costs remain bounded, however it can be shown that the single
agent trading cost tends to +∞ at the rate of log λ, thus very high imbalance penalties
lead to prohibitive trading costs and are therefore detrimental for market liquidity.
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– In the case of small liquidity costs (α → 0), each component of the cost converges to a
nonzero limit:

CN ,i
tra → 1 + b

1 + b
2

λ2σ 2
XT

4

(N − 1)a

N (a + λ)2
+ N − 1 − b

N − 1

λ2σ̌ 2
XT

4

aNT

(a + λN )2

CN ,i
imp → aσ 2

Xλ2T

2(a + λ2)

CN ,i
bal → λσ 2

XT

2

a2

(a + λ)2
+ λσ̌ 2

XT

2

a2

(a + λN )2
.

As the cost per trade decreases, the agents trade more actively so that the overall trading
cost does not tend to zero.

5 Empirical results and numerical illustrations

In this section our objective is to analyze the empirically observed features of intradaymarket
prices, demonstrate that these features are reproduced by our model, and illustrate other
properties of our model, such as the convergence of the N -agent model to the mean-field
limit, with numerical examples.

5.1 Stylized features of intraday electricity market prices

A brief description of our dataset To compute the empirical price analyzed in the following
sections, we used the limit order book data provided by EPEX electricity market for the
Germany delivery zone for the 1st quarter of 2015 and January 2017. Although in the market
it is possible to trade in quarter-hours, in this studywe focus on the full hours only. The dataset
contains full information about sell and buy orders recorded on any given day, whether they
result in a transaction or not. From this data we reconstruct the state of the order book, which
allows us in turn to derive the mid-quote price and the bid-ask spread.
Market liquidity In Fig. 3, we plot the distribution of the times of orders and transactions as
function of time to delivery computed over all orders and transactions in February 2015. We
observe that the liquidity starts to appear only 5–6h before delivery, and grows very quickly
at the approach of the delivery date.

We also performed an estimation of the bid-ask spread in the German intraday electricity
market for January 2017 for different delivery times. For each delivery time, Fig. 4, shows
that the spread averaged over each hour and over all days in January 2017 decreases as we
approach the end of the trading period. This is consistent with the assumption that the market
is used by the renewable energy producers to adjust their positions when precise forecasts
become available.
Price volatility To estimate the empirical volatility, we consider mid-quote prices recon-
structed from the limit order book data of the Germany delivery zone for January 2017, as
explained above. The mid-quote price was computed on a uniform grid with a time step
of 1min. In January 2017 the market was already relatively liquid: the average number of
daily price changes for a given delivery hour varied between approximately 3400 for the
least liquid delivery hour (2 AM to approximately 5800 for the most liquid delivery hour (6
PM). Given that, as we observed above, liquidity is concentrated in the last 5–6h, a 1-min

123



Mathematics and Financial Economics (2022) 16:205–237 223

Fig. 3 Distribution of times orders and transactions in February 2015

Fig. 4 Average spread per hour as a function of time to delivery over January 2017

interval during this time contains many price changes and the market microstructure effects
are limited.

The observed midquote price is denoted (P̃t )t∈[0,T ]. We denote by n the number of obser-
vations in the data of January 2017 and by {t0, . . . , ti , . . . , tn} the (uniform) time grid over
which the observations are available. In contrast with the integrated volatility whose estima-

tor is generally given by
̂∫ T
0 σ 2

s ds = ∑n
i=1 ΔP̃2

ti−1
, estimating the instantaneous volatility is

less straightforward. Following [28], we use a kernel-based non parametric estimator of the
instantaneous volatility:

σ̂ 2
t =

∑n
i=1 Kh(ti−1 − t)ΔP̃2

ti−1∑n
i=1 Kh(ti−1 − t)(ti − ti−1)

, (16)
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Fig. 5 Instantaneous market volatility for different delivery hours

where K (.) is the Epanechnikov kernel: K (x) = 3
4 (1− x2)1[−1,1](x) and Kh(x) = 1

h K ( xh ).
The parameter h was taken equal to 0.08h (≈ 5m in) after performing some cross-validation
analyses and sensitivity tests. The paths of the estimated volatility as function of time to
delivery for different delivery hours are given in Fig. 5.We observe that the volatility increases
as delivery time draws near and market participants trade more actively, giving an empirical
evidence of the presence of the Samuelson effect in electricity market.
Correlation between price and renewable indeed forecasts We finally study the empirical
correlation between the intraday market prices and the renewable wind production forecasts.
Unlike the rest of the paper, here we use actual wind infeed forecasts, not the demand
forecasts. To compute empirical correlation estimates, we use the limit order book data from
the intraday EPEX market of the first three months of 2015 for the Germany delivery zone,
fromwhich, as before,we compute themid-quote prices. The production forecasts correspond
to the same period and are updated every 15min for each delivery hour. In Fig. 6, we plot the
correlation between the increments of the market price and the increments of the production
forecasts for the delivery time 12 h (averaged over 90 days in the dataset), together with the
2-standard deviation bounds. To match the forecast update frequency, the mid-quote price is
also sampled at 15-min intervals here.

We find that the correlation between the price increments and those of the production
forecast is negative and increases in absolute value as we approach the delivery time.

5.2 Numerical illustration of our model

Model specificationWenowdefine the dynamics for the fundamental price and for the demand
forecasts used in the simulations. We also give the chosen values of the different parameters.
Our objective here is to illustrate the features of the model and show that it reproduces the
stylized facts of the market prices. Therefore, the majority of the parameters are not precisely
estimated, but are given plausible values.

The evolution of the fundamental price is described as follows:

dSt = σSdWt (17)
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Fig. 6 Correlation between the market price increments and the renewable production forecast increments for
the German delivery zone in winter 2015

where σS is a constant and (Wt )t∈[0,T ] is Brownian motion. We also assume that the liquidity
function α(.) is given by

α(t) = α × (T − t) + β, ∀t ∈ [0, T ] (18)

where α and β are strictly positive constants. The liquidity function is decreasing with time.
This assumption relies on the fact that, as we observed in Sect. 5.1, the market becomes more
liquid as we get closer to the delivery time and it is less costly to trade when the market is
liquid.

To simulate demand forecasts, we assume the following dynamics:

d X̄ N
t = σXd B̄t (19)

d X̌ i
t = σ̌XdB

i
t , i ∈ {1, . . . , N } (20)

where σX and σ̌X are constants and (B̄t )t∈[0,T ], (Bi
t )t∈[0,T ] are independent Brownian

motions, also independent from (Wt )t∈[0,T ].
In this illustration, we choose the same parameters for the dynamics of the common and

the individual demand forecasts (that is, σX = σ̌X ). The common volatility is calibrated to
wind energy forecasts in Germany over January 2015 during the last quotation hour, by using
the classical volatility estimator

σX = σ̌X =
√

Δt

n′ − 1

n′
∑

i=1

Y 2
i (21)

with Δt the time step between two observations, Yi = Xti − Xti−1 the increment between
two successive observations and n′ the total number of observed increments. As the forecasts
are updated every 15min, there are three increments during the last trading hour, available
on each day from the 3rd of January to the 31th of January. Thus, for each delivery hour we
dispose of n′ = 87 increments points to estimate the volatility. The volatility, as well as the
other model parameters are specified in Table 1.
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Table 1 Parameters of the model Parameter Value Parameter Value

S0 40 e/MWh a 1 e/MWh2

σS 10 e/MWhh1/2 λ 100 e/MWh2

X0, X̌ i
0 0 MWh N 100

σX ,σ̌X 73 MWh/h1/2 α 0.14 e/MW2 h

b 0 β 0.06 e/MW2

Fig. 7 Model price trajectories (left) associated to a given common demand forecast trajectory (right) in
different settings

Price trajectories. In Fig. 7, we plot a simulated trajectory of the fundamental price S starting
6h before the delivery time (corresponding to t = 0), up to the time T of delivery, together
with the market price P associated with the different settings studied in this paper: the N -
player Nash equilibrium with N = 100 players, the mean field and the ε-Nash equilibrium.
Graphs were all simulated with the same demand forecasts, initial values, volatilities and
parameters as specified in Table 1.

In all settings, the model reflects the price impact of the positions taken by the agents. This
price impact is influenced by the market price and the demand forecasts. If agents anticipate
to have overestimated the demand (negative values of the demand process), there is an excess
of supply in the market, thus the price impact is negative and the market price decreases.
On the contrary, if they anticipate to have underestimated the demand (positive values of the
demand forecast process), there is a lack of supply and the market price increases.

In Fig. 7, the parameters are as specified in Table 1, with b = 0. To emphasize the impact
of crowd behavior on the cost of trading and the strategy, we display in Fig. 8 the trajectory of
the mean field at the equilibrium for different values of the parameter b. This is sufficient to
capture the effect of a possible synchronization between agents since, from the discussion in
Sect. 3.1, only the common part of the strategy is impacted by the effective cost α(1+ b/2).

As we saw in Sect. 3.1, higher crowd trading parameter b leads to increased trading costs
and therefore reduced volatility of the aggregate strategy, which therefore follows the forecast
updates less closely.
Volatility and correlation In this paragraphwe compare the price volatility and the correlation
between price and renewable infeed forecasts in our model with the empirical ones. We have
already seen through theoretical analysis in Sect. 4.2 that our model reproduces the observed
features of the volatility; the goal of this paragraph is to confirm this using simulated prices.
We once again highlight the fact that the market impact can induce an increase in the price
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Fig. 8 Mean-field trajectories and demand forecasts as function of the impact of the crowd on the cost of
trading

Table 2 Calibrated volatility of
the production forecast for
different delivery hours

Hour Volatility (MWh/h1/2)

2h00 67

8h00 81

12h00 73

18h00 73

variations but no changes in the quadratic variation since the price impact, though it is
stochastic, has a finite quadratic variation. However, the volatility estimated from discrete
price observations, which is the only quantity relevant in practice, does increase in our model,
as we shall see below.

We focus on hourly products and on several different delivery hours: 2 AM, 8 AM, 12
PM and 6 PM to include both peak (high electricity demand) and off-peak (low electricity
demand) times. The volatility of the fundamental price S is assumed to be constant, (σS = 10
e/MWhh1/2) to ensure that the observed volatility changes are only due to the stochastic
drift of the market price, i.e., the aggregate trading rates of the agents. The volatility of the
production forecasts for the different delivery hours has been calibrated using the estimator
defined in (21) and is shown in Table 2.

During peak hours, both market activity and liquidity are higher. To account for this
phenomenon in our model, we chose different levels of the liquidity coefficients α and β

defined in (18) and presented in Table 3.
Since calibrating the model to market data is not the purpose of this study, we chose

plausible values for these coefficients in an ad hoc manner with lower trading costs corre-
sponding to delivery hours for which the market is more liquid. All other model parameters
are specified in Table 1.

Figure 9 shows the estimatedvolatility of the simulatedmodel price P in theNash N -player
game setting with N = 100, averaged over 1000 simulations. The volatility was computed
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Table 3 Liquidity coefficients
used for different delivery hours

Hours Coefficients
α (e/h.MW2) β (e/MW2)

2h00 0.24 0.10

8h00 0.10 0.04

12h00 0.06 0.02

18h00 0.14 0.06

Fig. 9 Simulated model volatility for different delivery hours

using the estimator (16), with the same window width and time step as in the empirical
analysis. From this graph we can see that the model is able to reproduce the increasing shape
of the empiricalmarket price volatility at the approach of the delivery time, and that it captures
the different levels of volatility corresponding to the different delivery hours.
Correlation between price and renewable infeed An important stylized feature of intraday
market prices, observed empirically in [27] is the correlation between the price and the
renewable production forecasts. Figure 10 plots the correlation between 15-min increments of
the simulated market price and the 15-min increments of the simulated renewable production
forecasts as function of time. For each time step, the correlation ρt = corr(ΔYt ,ΔPt ) is
computed by Monte Carlo using the following estimator:

ρ̂t =
∑Nsim

k=1

(
ΔY k

t − ΔY t
)(

ΔPk
t − ΔPt

)

√∑Nsim
k=1

(
ΔY k

t − ΔY t
)2∑Nsim

k=1

(
ΔPk

t − ΔPt
)2

,

with Nsim stands for number of simulations (we considered Nsim = 50,000), ΔY k
t =

−(X
N ,k
t+dt − X

N ,k
t ), ΔPk

t = PN ,k
t+dt − PN ,k

t and N = 100. Notice that we use the minus
sign in front of the forecast increment to plot the correlation of production forecasts, whereas
X stands for the demand forecast.

We first note that the correlation is negative: an expected increase of the renewable pro-
duction is correlated to a decrease in the market price and an expected lack of renewable
production is correlated to an increase in the price. As we get closer to the delivery date, the
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Fig. 10 Correlation between the simulated market price increments and the renewable production forecast
increments in the model during the last 6h of trading

Fig. 11 Aggregate position in different settings with N = 5 (left) and N = 100 (right) agents

agents trade more actively as new forecast information becomes available, and the market
price becomes more strongly dependent on the forecast updates. The model outputs qualita-
tively match the results observed empirically. However, the strength of the correlation seems
to be greater in the model than in reality. This can be explained by the fact that the model
does not take into account other renewable means of production such as the solar energy.
The slight increase of the correlation for longer times to delivery (the right-hand side of
the graph) may be explained by the fact that the correlation is computed as the ratio of the
covariance to the square root of the product of variances. While both quantities decrease for
longer times to delivery, the denominator may decrease faster, explaining the slight increase
in the correlation values.
Convergence and approximations In Fig. 11 we plot the mean field position, the aggregate
N -player Nash equilibrium position and the aggregate position for the ε-Nash equilibrium
(respectively given by Theorem 1, Theorem 2 and Proposition 2) for a model with N = 5
players and N = 100 players. The trajectories were computed with the same simulated
fundamental price, common production forecast and parameters as the Fig. 7 above, over
the 6h preceding the delivery time. The left graph (N = 5) shows a big difference between
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the Nash equilibrium and ε-Nash approximation on one hand, and the mean field on the
other hand. This is explained by the individual production forecast taken into account in
the Nash and ε-Nash equilibria. When we consider a larger number of players, N = 100,
the three position trajectories are much closer to each other. This confirms the asymptotic
convergence to the mean field discussed in Sect. 3.3 for the N -player Nash equilibrium and
ε-Nash equilibrium.
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6 Appendix

6.1 Proof of Theorem 1

Proof Step 1. First order condition of optimality for a single agent In this step, we are going
to show that for fixed φ−i∗, the strategy φi∗ satisfies (4) if and only if E[φi∗

T − Xi
T |F0] = 0

and there exists a square integrable F-martingale Y i such that, almost surely,

Y i
t + α(t)

{

φ̇i∗
t

(

1 − bN
N

)

+ bN
˙̄φN∗
t

}

+ St + a
(
φ̄N∗
t − φ̄N∗

0

) − a

N

(
φi∗
t − φi∗

0

) = 0, 0 ≤ t ≤ T ,

Y i
T = a

N

(
φi∗
T − φi∗

0

) + λ
(
φi∗
T − Xi

T

) − ST , (22)

with the shorthand notation bN = N
N−1

b
2 . Assume thatφi∗ satisfies (4). Then, for any adapted

square integrable process (νt )0≤t≤T , and for any δ ∈ F0,

J N ,i
(

φi∗ + δ +
∫ ·

0
νsds, φ

−i∗
)

≤ J N ,i (φi∗, φ−i∗).

Developing the expressions, this is equivalent to

E

[ ∫ T

0
νt

{
α(t)

[
φ̇i∗
t

(
1 − bN

N

)
+ bN

˙̄φN∗
t

]
+ St + a(φ̄N∗

t − φ̄N∗
0 )− a

N

(
φi∗
t − φi∗

0

)}
dt

+
( a

N

(
φi∗
T − φi∗

0

) + λ
(
φi∗
T − Xi

T

) − ST
) ∫ T

0
νt dt + λ

(
φi∗
T − Xi

T

)
δ
]

+ E

[1

2

∫ T

0
α(t)ν2t dt +

( a

N
+ λ

2

)( ∫ T

0
νt dt

)2 + λ

2
δ2
]

≥ 0,
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and since ν and δ are arbitrary, we see that optimality is equivalent to

E

[ ∫ T

0
νt

{
α(t)

[
φ̇i∗
t

(
1 − bN

N

)
+ bN

˙̄φN∗
t

]
+ St + a

(
φ̄N∗
t − φ̄N∗

0

)− a

N

(
φi∗
t − φi∗

0

)}
dt

+
( a

N

(
φi∗
T − φi∗

0

) + λ
(
φi∗
T − Xi

T

) − ST
) ∫ T

0
νt dt

]
= 0, (23)

for any adapted square integrable ν, together with the condition that E[φi∗
T − Xi

T |F0] = 0.
Now, assume that Y i is a square integrable martingale satisfying (22). Then, by integration
by parts, the expression in the previous line equals

E

[
−
∫ T

0
νt Yt dt + YT

∫ T

0
νt dt

]
= E

[ ∫ T

0

( ∫ t

0
νsds

)
dYt

]
= 0,

and we see that the optimality condition is satisfied. Conversely, assume that (23) is satisfied
for any adapted square integrable process ν, and let Y i be a martingale such that

Y i
T = a

N

(
φi∗
T − φi∗

0

) + λ
(
φi∗
T − Xi

T

) − ST .

Then, by integration by parts, (23) is equivalent to

E

[ ∫ T

0
νt

{
α(t)

[
φ̇i∗
t

(
1 − bN

N

)
+ bN

˙̄φN∗
t

]

+St + a
(
φ̄N∗
t − φ̄N∗

0

)− a

N

(
φi∗
t − φi∗

0

) + Y i
t

}
dt
]

= 0,

and since ν is arbitrary, we see that (22) is satisfied.
Step 2. Computing the average position Let (φi∗)i=1,...,N be a Nash equilibrium. We have

seen that this is equivalent to (22) together with the condition that E[φi∗
T − Xi

T |F0] = 0

for i = 1, . . . , N . Summing up these expressions for i = 1, . . . , N and denoting Y
N
t =

1
N

∑N
i=1 Y

i
t , we get

Y
N
t + α(t)

(
1 + b

2

) ˙̄φN∗
t + St + a

N − 1

N

(
φ̄N∗
t − φ̄N∗

0

) = 0, 0 ≤ t ≤ T ,

Y
N
T = a

N

(
φ̄N∗
T − φ̄N∗

0

) + λ
(
φ̄N∗
T − X

N
T

) − ST ,

E
[
φ̄N∗
T − X

N
T |F0

] = 0.

The first equation can be solved explicitly for φ̄N∗:

φ̄N∗
t = φ̄N∗

0 −
∫ t

0
ηN
s,t

Y
N
s + Ss

α(s)
(
1 + b

2

)ds. (24)

Denoting φ̂t := φ̄N∗
t + I Nt , we obtain simplified equations:

φ̂t = φ̄N∗
0 −

∫ t

0
ηN
s,t

Y
N
s

α(s)
(
1 + b

2

)ds,

Y
N
T =

( a

N
+ λ

) (
φ̂T − I NT

) − a

N
φ̄N∗
0 − λX

N
T − ST .
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Substituting φ̂T into the second equation and taking the expectation, we obtain another

linear equation, this time for Y
N
t :

Y
N
T = −

( a

N
+ λ

) ∫ T

0
ηN
s,T

Y
N
s

α(s)
(
1 + b

2

)ds −
( a

N
+ λ

)
IT − λX

N
T + λφ̄N∗

0 − ST ,

Y
N
t = −

( a

N
+ λ

) ∫ t

0
Y
N
s

ηN
s,T

α(s)
(
1 + b

2

)ds −
( a

N
+ λ

)
ΔN

t,T Y
N
t

−
( a

N
+ λ

)
Ĩ Nt − λX

N
t + λφ̄N∗

0 − S̃t .

By integration by parts, this is equivalent to

Y
N
t = −

( a

N
+ λ

) ∫ t

0
ΔN

s,T dY
N
s −

( a

N
+ λ

)
ΔN

0,T Y
N
0

−
( a

N
+ λ

)
Ĩt − λX

N
t + λφ̄N∗

0 − S̃t .

Taking t = 0, we get:

Y
N
0 = − ( a

N + λ
)
Ĩ N0 − λ(X

N
0 − φ̄N∗

0 ) − S̃0

1 + ( a
N + λ

)
ΔN

0,T

On the other hand, in differential form,
{
1 +

( a

N
+ λ

)
ΔN

t,T

}
dY

N
t = −

( a

N
+ λ

)
d Ĩ Nt − λdX

N
t − d S̃t ,

which is solved therefore explicitly by

Y
N
t = − ( a

N + λ
)
Ĩ N0 − λ

(
X

N
0 − φ̄N∗

0

) − S̃0

1 + ( a
N + λ

)
ΔN

0,T

−
∫ t

0

( a
N + λ

)
d Ĩ Ns + λdX

N
s + d S̃t

1 + ( a
N + λ

)
ΔN

s,T

(25)

Finally

φ̄N∗
t = φ̄N∗

0 − I Nt +
∫ t

0
Y
N
s dΔN

s,t = φ̄N∗
0 − I Nt − Y

N
0 ΔN

0,t −
∫ t

0
ΔN

s,t dY
N
s

= φ̄N∗
0 − I Nt + ΔN

0,t

( a
N + λ

)
Ĩ N0 + λ

(
X

N
0 − φ̄N∗

0

) + S̃0

1 + ( a
N + λ

)
ΔN

0,T

+
∫ t

0
ΔN

s,t

( a
N + λ

)
d Ĩ Ns + λdX

N
s + d S̃t

1 + ( a
N + λ

)
ΔN

s,T

.

(26)

It remains to compute φ̄N∗
0 from the condition E[φ̄N∗

T − X
N
T |F0] = 0. Substituting this into

the above expression, we find

φ̄N∗
0 = X

N
0 + Ĩ N0 − ΔN

0,T S̃0

1 + a
N ΔN

0,T

so that

φ
N∗
t = X

N
0 + 1 + a

N ΔN
0,t

1 + a
N ΔN

0,T

(
Ĩ N0 − ΔN

0,T S̃0
)
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− (
I Nt − ΔN

0,t S̃0
) +

∫ t

0
ΔN

s,t

( a
N + λ

)
d Ĩ Ns + λdX

N
s + d S̃t

1 + ( a
N + λ

)
ΔN

s,T

. (27)

Step 3: computing the position of the agent Let φ̌i∗
t := φi∗

t − φ̄N∗
t , X̌ i

t = Xi
t − X

N
t and

Y̌ i
t := Y i

t − Y
N
t . Then, Y̌

i is an F-martingale and satisfies

Y̌ i
T = a

N
φ̌i∗
T + λ

(
φ̌i∗
T − X̌ i

T

)
, Y̌ i

t = −α(t) ˙̌
φi∗
t + a

N
φ̌i∗
t .

together with the additional condition E[φ̌i∗
T − X̌ i

T |Ft ] = 0. Similarly to the second part,
this system admits an explicit solution:

Y̌ i
t = − λ(X̌ i

0 − φ̌i∗
0 )

1 + ( a
N + λ

)
Δ̃N

0,T

−
∫ t

0

λd X̌ i
s

1 + ( a
N + λ

)
Δ̃N

s,T

.

and

φ̌i∗
t = X̌ i

0 +
∫ t

0
Δ̃N

s,t
λd X̌ i

s

1 + ( a
N + λ

)
Δ̃N

s,T

.

��
Remark 1 The optimal strategy is obtained by solving a series of linear equations from an
equivalent characterization of optimality. Since all equations admit unique solutions, the
equilibrium strategy is unique. This is a consequence of the strict concavity of the objective
function in our linear quadratic setting.

6.2 Proofs of Propositions 1 and 2

Proof of Proposition 1. For all t ∈ [0, T ], we define:

gNs,t = ΔN
s,t(

1 + ( a
N + λ

)
ΔN

s,T

) , gs,t = Δs,t(
1 + λΔs,T

) ,

g̃Ns,t = Δ̃N
s,t(

1 + ( a
N + λ

)
Δ̃N

s,T

) , g̃s,t = Δ̃s,t(
1 + λΔ̃s,T

) ,

so that, for some constant C depending only on the parameters a, b, α and λ, but not on other
ingredients of the model,

|ΔN
s,t − Δs,t | + |gNs,t − gs,t | + |g̃Ns,t − g̃s,t | ≤ C

N
.

for all s, t ∈ [0, T ]. Now, let us consider the optimal strategies (φi∗
t )t∈[0,T ] and

(φ
MF,i∗
t )t∈[0,T ] of the generic agent i respectively in the N -player setting and the mean

field setting. Fix t ∈ [0, T ]. Then,

φi∗
t − φ

MF,i∗
t = a

N

ΔN
0,t − ΔN

0,T

1 + a
N ΔN

0,T

(
Ĩ N0 − S̃0Δ

N
0,T

) + Ĩ N0 − Ĩ0 + S̃0
(
Δ0,T − ΔN

0,T

)

− I Nt + It + S̃0
(
ΔN

0,t − Δ0,t
) +

∫ t

0

(
gNs,t − gs,t

)

{( a

N
+ λ

)
d Ĩ Ns + λdX

N
s + d S̃s

}
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+ λ

∫ t

0
gt (s)d

(
Ĩ Ns − Ĩs + X

N
s − Xs

)

+
∫ t

0
λ
(
g̃Ns,t − g̃s,t

)
d
(
Xi
s − X

N
s

) + λ

∫ t

0
g̃s,t d

(
Xs − X

N
s

)

Therefore, for some constant C depending only on the parameters a, b, α and λ, but not on
other ingredients of the model,

E
[(

φi∗
t − φ

MF,i∗
t

)2] ≤ C

N 2 E
[(
Ĩ N0

)2] + C

N 2 E
[(
S̃0
)2] + E

[(
Ĩ N0 − Ĩ0

)2] + E
[(
I Nt − It

)2]

+ C

N 2 E[( Ĩ Nt )2] + CE
[(
Ĩ Nt − Ĩt

)2] + C

N 2 E
[
S̃2t
]

+ C

N 2 E
[(
X

N
t

)2] + CE
[(
X

N
t − Xt

)2] + C

N 2 E
[(
X̌ i
t

)2]

≤E
[(
I Nt − It

)2] + C

N 2 E
[(
I NT

)2] + CE
[(
I NT − IT

)2]

+ C

N 2 E[S2T ] + C

N 2 E
[(
Xt
)2] + C

N 2

N∑

i=1

E
[(
X̌ i
t

)2]

≤ C

N 2 E

[

sup
0≤s≤T

S2s

]

+ C

N 2 E
[(
Xt
)2] + C

N
E
[(
X̌ i
t

)2]
.

where the estimate for the first line above is obtained through Jensen’s inequality. The other
estimates of the proposition are obtained in a similar way. ��

Proof of Proposition 2. To lighten notation, and since we now have only one strategy, we omit
in this proof the superscriptMF in the candidate strategyφMF,i∗. The "distance to optimality"
for this strategy is estimated as follows.

J N ,i (φi , φ−i∗) − J N ,i (φi∗, φ−i∗)

= J N ,i (φi , φ−i∗) − J MF (φi , φ̄∗) + J MF (φi , φ̄∗) − J MF (φi∗, φ̄∗)

+ J MF (φi∗ , φ̄∗) − J N ,i (φi∗, φ−i∗)

≤ J N ,i (φi , φ−i∗) − J MF (φi , φ̄∗) + J MF (φi∗ , φ̄∗) − J N ,i (φi∗, φ−i∗).

The second difference is estimated as follows:

J MF (φi∗ , φ̄∗) − J N ,i (φi∗, φ−i∗)

= −E

[ ∫ T

0
φ̇i∗
t

{
a
(
φ̄∗
t − φ̄N∗

t − φ̄∗
0 + φ̄N∗

0

)+α(t)b

2

( ˙̄φ∗
t − ˙̄φN ,−i∗

t
)}
dt
]

(28)

Since

˙̄φ∗
t − ˙̄φN ,−i∗

t = ˙̄φ∗
t − ˙̄φN∗

t + φ̇i∗ − ˙̄φN∗

N − 1
, (29)

it follows from the Cauchy–Schwarz inequality and Proposition 1 that

∣
∣J MF (φi∗ , φ̄∗) − J N ,i (φi∗, φ−i∗)∣∣ ≤ C√

N
. (30)
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The first difference admits the following estimate.

J N ,i (φi , φ−i∗) − J MF (φi , φ̄∗) = aE

[ ∫ T

0
φ̇i
t

(
φ̄∗
t − φ̄N∗

t − φ̄∗
0 + φ̄N∗

0

)
dt
]

− a

N
E

[ ∫ T

0
φ̇i
t

(
φi
t − φi∗

t − φi
0 + φi∗

0

)
dt
]

+ bE

[ ∫ T

0
α(t)φ̇i

t

( ˙̄φ∗
t − ˙̄φN ,−i∗

t
)
dt
]

≤ E

[ ∫ T

0

(
φ̇i
t

)2
dt
] 1
2
{
aE

[ ∫ T

0

(
φ̄∗
t − φ̄N∗

t − φ̄∗
0 + φ̄N∗

0

)2
dt
] 1
2

+ a

N
E

[ ∫ T

0

(
φi∗
t − φi∗

0

)2
dt
] 1
2 + b

N − 1
E

[ ∫ T

0
α2(t)

(
φ̇i∗
t − ˙̄φN∗)2dt

] 1
2

+ bE

[ ∫ T

0
α2(t)

( ˙̄φ∗
t − ˙̄φN ,∗

t
)2]

1
2
}

≤ C0√
N

E

[ ∫ T

0
(φ̇i

t )
2dt

] 1
2

(31)

for some constant C0 < ∞, which does not depend on φi , in view of Proposition 1 and (29).
On the other hand, the following estimate also holds true.

J N ,i (φi , φ−i∗) = − E

[ ∫ T

0

{α(t)

2
φ̇i
t

(
φ̇i
t + b ˙̄φN ,−i∗

t

)
+ φ̇i

t
(
St + a

(
φ̄N∗
t − φ̄N∗

0

)}
dt

+ a

N

∫ T

0
φ̇i
t

(
φi
t − φi

0 − φi∗
t + φi∗

0

)
dt + φi

0S0

− (
φi
T − Xi

T

)
ST + λ

2

(
φi
T − Xi

T

)2]
,

≤ − ᾱ

2
E

[ ∫ T

0

(
φ̇i
t

)2
dt
]

− λ

2
E
[(

φi
T

)2] + C1E

[ ∫ T

0

(
φ̇i
t

)2
dt
] 1
2

+ C2E
[(

φi
T

)2] 1
2 + C3, (32)

where ¯̄α = max0≤t≤T α(t) and

C1 = b

2
E

[ ∫ T

0
α2(t)

( ˙̄φN ,−i∗
t

)2
dt
] 1
2 + aE

[ ∫ T

0
(φ̄N∗

t − φ̄N∗
0 )2dt

] 1
2

+ a

N
E

[ ∫ T

0

(
φ̄i∗
t − φ̄i∗

0

)2
dt
] 1
2 + E

[ ∫ T

0

(
St − S0

)2]
1
2
,

C2 = E
[
(ST − S0)

2] 1
2 + 2E

[(
Xi
T

)2] 1
2 , C3 = ∣

∣E
[
Xi
T ST

]∣∣.

Thus, there exists a constant C∗ < ∞, which does not depend on φi , such that if

E

[ ∫ T

0

(
φ̇i
t

)2
dt
]

+ E
[(

φi
T

)2]
> C∗,

then

J N ,i (φi , φ−i∗) − J N ,i (φi∗, φ−i∗) < 0.

Therefore, from (30) and (31) it follows that for any admissible strategy φi ,

J N ,i (φi , φ−i∗) − J N ,i (φi∗, φ−i∗)

≤ 1
E[∫ T

0 (φ̇i
t )
2dt]+E[(φi

T )2]≤C∗
{ C√

N
+ C0√

N
E

[ ∫ T

0

(
φ̇i
t

)2
dt
] 1
2
}
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≤ C√
N

+ C0
√
C∗

√
N

.

��
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