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Abstract

Based upon the fact that a constant long-term mean could not provide a good description
of the term structure of the implied volatility and variance swap curve, as suggested by
Byelkina and Levin (in: Sixth world congress of the Bachelier Finance Society, Toronto,
2010) and Forde and Jacquier (Appl Math Finance 17(3):241-259, 2010), this paper presents
a new stochastic volatility model, by assuming the long-term mean of the volatility in the
Heston model be stochastic. An important feature of our model is that it still preserves the
essential advantage of the Heston model, i.e., the analytic tractability, because a closed-form
pricing formula for European options can be derived, which could not only facilitate the risk
management process but also help save plenty of time in terms of model calibration. The effect
of the newly introduced stochastic long-term mean is demonstrated through the numerical
comparison with the Heston model. It is also shown that the current model can overall lead to
more accurate option prices than the Heston model, through a carefully designed empirical
study.

Keywords Stochastic volatility - Stochastic long-term mean - Closed-form - European
options - Risk management - Empirical studies

JEL Classification G13

1 Introduction

Nowadays, managing risk is becoming increasingly important for market practitioners. To
cope with such an increasing demand, option derivatives are developed, which are very useful
in measuring and managing financial risks, especially the volatility risk. With the sharp
increase in the trading volume being observed, how to accurately and efficiently determine
option prices is a widely pursued topic in quantitative finance and risk management.
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A breakthrough was made in 1973 by Black and Scholes [7] and Merton [33], who
proposed a simple and elegant model for the pricing of options. However, this model results
in some biases in option prices, because some strong assumptions made to achieve analytical
simplicity and tractability are not consistent with the real behavior of financial markets.
In particular, the assumption of “constant volatility” is generally thought to be unsuitable
because the implied volatility extracted from real market data usually exhibits a non-constant
curve across different strike prices, i.e., the well-known “volatility smile” or “volatility smirk™
[17]. In addition, the implied volatility also differs for similar options with different times to
maturity, which is called the “term structure of volatility”. As a result, non-constant volatility
processes are adopted to overcome this particular shortcoming of the Black—Scholes (B—S)
model. Among them, stochastic volatility (SV) models have received the greatest attention.

The first SV model was proposed by Johnson [29]. The price of options was then solved
by Scott [41] with Monte Carlo simulations and Wiggins [44] with the finite difference
method. However, one of the main disadvantages of the very first SV model is the lack of
closed-form solutions for European option prices, which would certainly depress its potential
application to real financial markets because the slow speed in the calculation of option
prices could extremely slow down the parameter determination process. Therefore, further
research interests focus on finding appropriate SV models with analytical achievability. For
instance, Hull and White [25] proposed the so-called Hull-White model, and solved the
price of European options with a power series approximation method. Although their model
was equipped with a semi-closed form pricing formula, it is unsatisfactory due to the zero
correlation assumption, which violates the so-called “leverage effect”, i.e., the underlying
price and the volatility being negatively correlated [3]. Several years later, Stein and Stein [43]
assumed that the volatility follows an Ornstein-Uhlenbeck process [21] and also derived a
closed-form pricing formula. However, this model still suffers from two main disadvantages.
On one hand, this model could not prevent the volatility from going negative. On the other
hand, the assumption of no correlation between the underlying price and volatility is certainly
not realistic.

A nice and elegant model was proposed by Heston [24] with the assumption that the
volatility follows the Feller square-root process [14,19]. This model enjoys a great popularity
even today among market practitioners because of its two main advantages. One is that the
volatility process itself has a wide range of basic properties, including non-negativity and
mean reversion, and the other is that a closed-form analytical solution for European options
can be derived without much effort. With such a solution, the computational accuracy can be
guaranteed when pricing European options because systematical errors would always exist
when numerical methods are adopted. In addition, considerable amount of time and effort
in parameter estimation can be saved, a great advantage that can never be overlooked when
the model is calibrated with real market data [15]. However, it should be pointed out that the
Heston model is not perfect either (there may not even exist a perfect model!), and it also
has some drawbacks. For example, the square root specification is generally rejected when
modeling the returns of the stock index [2,37]. Moreover, it has been pointed out that the
volatility process usually has a non-linear mean-reverting property [4].

In fact, introducing time-dependent parameters or even additional stochastic factors into
SV models has recently attracted lots of attention from researchers and market practitioners.
For example, with the utilization of a small volatility of volatility expansion and Malliavin
calculus techniques, Benhamou et al. [5] derived an analytical approximation for European
option prices under the time-dependent Heston model. Under this particular model, approxi-
mated European option prices are also derived by Mikhailov and Nogel [34] with asymptotic
expansions. Moreover, the time-dependent 3/2 SV models have also been considered by a few
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authors, including Drimus [16] and Goard [22]. On the other hand, adding stochastic factors
into SV models is another main strand, a typical example of which is to include a stochastic
interest rate [39,40]. Furthermore, modeling SV with multiple stochastic factors are also very
popular, and this can be achieved through two main approaches. The first approach intro-
duces additional volatility factors into the dynamics of the underlying price [9,11,35,36].
Being different from the first approach, the underlying price in the second approach remains
a single-factor process, while additional stochastic factors are incorporated into the volatil-
ity process. Belonging to the second category, Elliott and Lian [18] and He and Zhu [23]
introduced the regime-switching factor into the Heston model to provide better market data
fitness.

Motivated by the fact that a time-dependent mean-reversion level for the variance of the
Heston volatility model could provide a better fit into the term structure of implied volatility
and variance swap curve [8,20], in this paper, we propose a new SV model with the constant
long-term mean in the Heston model being replaced by another stochastic process. One of
the main advantages of such a modification is that our model still preserves the analytical
tractability, which could substantially reduce the computational effort in terms of parameter
estimation when this model is applied to real financial markets. It should be remarked here
that the derived characteristic function of our newly proposed model has a similar form as
the one under the Heston model, and one can follow Albrecher et al. [1] to show that our
characteristic function also possesses the property of numerical continuity. It is also possible
to design fast calibration algorithms for our model using the approach developed in [15], and
this is left for future research, as the main focus of this paper is to propose a new multi-factor
SV model. In the following, the closed-form pricing formula for European options will be
derived and verified. In order to show the advantages of our newly proposed model over the
Heston model, at least in certain cases, we also conduct a preliminary empirical study by
comparing the pricing performance of our model and that of the Heston model.

The rest of the paper is organized as follows. In Sect. 2, a brief introduction of our new
model is provided, followed by the derivation of the closed-form pricing formula for European
options under this model. In Sect. 3, numerical experiments and examples are provided. In
Sect. 4, empirical studies are carried out to show the meaning of introducing the stochastic
long-term mean. Concluding remarks are given in the last section.

2 The newly proposed model

In this section, a new SV model will be introduced in detail. A closed-form analytical solution
will then be derived for European call options under this model.
Let {S;,t > 0} and {v;, t > 0} be the underlying price and volatility at the current time
t, respectively. It is known that the Heston SV model under the risk-neutral measure can be
characterized as
d S t 1

s, rdt + /v dW,, o

dv, = k(D — v))dt + o/, dW?,

where W,! and W? are two standard Brownian motions with correlation p. r denotes the
risk-free interest rate, and o is the so-called volatility of volatility. k and v represent the
speed of mean-reversion and the long-term mean, respectively. However, due to the fact that
a constant long-term mean could not fully capture the term structure of implied volatility, we
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introduce a stochastic long-term mean 6; into the Heston model as
d as;
S
dv, = k(6; — v)dt + o1/v,dW?,
db6; = \dt + ord B;.

=rdt + /v, dW,,
(2.2)

In specific, we assume that B; is independent of W,1 and Wtz, while the correlation between
W,1 and W,2 is still p. Note that the values of A and o, are expected to be small, in which case
0; can be viewed as a small perturbation in 6y, and when A and o, take the value of zero, our
model will degenerate to the Heston model because in this case 6; becomes constant.

It should also be remarked that the new pricing dynamics become much more complicated
than the original Heston model after the introduction of the stochastic long-term mean. Very
fortunately, the analytical tractability of the Heston model is still preserved after such a
complicated modification. In particular, an analytical pricing formula for European options
under our newly proposed model can be derived, which can greatly facilitate the application of
this model to real financial markets because the process of model calibration can be very time-
consuming without such kind of analytical solutions. In the following theorem, the pricing
of European call options is formally formulated, from which, the analytical expression of the
option price is derived.

Theorem 1 Let U(S, v, 0, t) be the European call option price with S;, v, and 6, following
(2.2). Then

UGS, v,0,t) =SP, — Ke 70D p,, (2.3)

where K is the strike price, and

—quln(K)f .
- + f/ A, f; = CEOTDEOVHE@OO+iSx ;1 3

. d — (ippo —k—i—bj,oal) 1 — et
D(‘E, ¢7) - 02 1— gedr ’
1

k 1— ge”
E@¢) = — {[d — (i¢poy —k +bjpo)] T —21n (%)}
1

C(t;¢) =irgt + %/1 022E2(s; ¢)ds + /t ME(s; ¢)ds,
0 0

_ (i¢gpor —k+b;po1) —d
(i¢ppor —k +bjpor) +d’

1
= \/<z‘¢po~1 —k+bjpor)? — 207 (iqbuj ~ §¢2>,

1 1
U = E,uzz—i,bl =1,bp=0,7=T —1t.
Proof Since the martingale pricing theory requires that the discounted asset price be a mar-
tingale, implying that e~"'U, is a martingale, we obtain the following partial differential
equation (PDE) governing the price of a European call option U (S, v, 9, t)

1523U+128U+1282U+ Sa2U
—v o —0H —F= o1V
2V 552 TV 2 T 2% 02 TP G
U U U AU
S k- 2 L Ly =o, 2.4
trSgs TRO— v AT g T 24)
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with the terminal condition as U (S, v, 8, T) = max(S — K, 0). We remark that the boundary
conditions along the S and v directions are the same as those under the Heston model. For
the boundary conditions along the 6 direction, when 6 approaches infinity, the option price
is nothing but the underlying price, because in this case, v approaches infinity as well. On
the other hand, when 6 is very close to zero, the option price is constant with respect to this
parameter, as suggested by the empirical evidence.

According to the risk-neutral pricing rule, we have

—+00
US,v,0,1) =e " TDE[(ST — K)T|S]=e T / (St — K)ps;1s,dSt
K

- +00 St T +00
=5 |:e—r( _t)/ 3 pST|5rdSTj| — Ke_’( _t)f pST\StdST»(z-S)
K t K

where pg, s, denotes the probability density function of S7 conditional upon S;. Now, we
assume that the solution to PDE (2.4) is in the form of

U=SP(S,v,0,t) — Ke "I P,(S,v,0,1). (2.6)

Substituting (2.6) into (2.4) and applying the transforms x = InS and 7 = T — ¢, we find
that P; satisfies

13 +1282Pj+128Pj+ 32p;
V— + —0jv—5 + = o1v
2% 9x2 T2 2 T 2% 502 TP Gy
+ o+ um +[k(6 —v)+b ]ap" YL L N PR
uiv)—= — v 001V | —= — — — =0, =1,
7% 7P TSy 30 ot J
2.7)
with the initial condition
Pj(x,v,0,1) = E [l p>ini)lx = x] = P(xj,r > InK|x, = x), (2.8)

where I(.) is the identity function, P (-) represents the probability and x; 7, j = 1, 2 follows

dxj = (r +ujv)dt + Jvd W/,
dv = [k(® — v) + bjporv]dt + o1 vd W7, (2.9)
df = rdt + 0,d B

Now, define f;(x, v, 8, T; ¢) as the conditional characteristic function of the underlying log-
price, x7. According to the Gil-Pelaez theorem, the relationship between P; and f; can be

found as
7z¢ln(K)f
,+f/ dé, j=1,2. (2.10)

Therefore, if we are able to derive the analytical expression of f;, we can finally obtain the
desired solution P;. In the following, we shall concentrate on deriving f; first.

According to the relationship between P; and f;, it is not difficult to show that
fi(x,v,0, t; @) satisfies the same PDE as P; (x v, 0, t; In[K]) does, but with a different
initial condition f;(x,v,0,0;¢) = &' Now we assume that fi(x,v,0,7;¢) is in the
form of

fj — eC(T;¢)+D(t;¢)v+E(r;¢)0+i¢x’ (2.11)
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with C(0; ¢) = D(0;¢) = E(0;¢) = 0 and i being the imaginary unit. Through the
substitution of (2.11) into (2.7) together with some algebraic manipulations, the equation
containing C, D and E can be found as

aD I 5 5 . . 1,
_371—’_ EO'ID +(l¢p01—k+bj,00’1)D+l¢uj—§¢ v

aC 1 5, 5 .

+ —E—}-E%E +AE +ir¢
oE

+ (—8— —I—kD)9 =0. (2.12)
T

According to the arbitrariness of the variables 6 and v, it is not difficult to derive the following
three coupled ordinary differential equations (ODEs)

aD 1 , . 1

5= E<712D2 + (igpo —k+bjpo))D +igu; — 54)2,

0E

= _ kb, (2.13)
at

aC

= Lo2E? 4 aE v irg
ar 2 ° ’

Consequently, once D(t; ¢) is determined, C(t; ¢) and E(t; ¢) can be worked out straight-
forwardly with direct integration. In fact, the ODE governing D(t; ¢) is a Riccati equation,
which can be transformed into a second-order linear ODE as

%y BY 4 amy =0 (2.14)
dt? dt y==u '

with the initial condition d—y| =0 if we make the transformation of
=

T

1 dy
D=———. (2.15)
Ay drt
L, . . L, . .
Here, A = 501 ,B=i¢poy—k+bjpo1, M =idu;— §¢) . Obviously, (2.14) is a second-
order linear ODE with constant coefficients, the general solution to which can be written
as

y=Cred T+ Cret T, (2.16)
with d* and d~ being two real roots of
d* — Bd + AM =0. (2.17)

C +
With the initial condition presented above, we also obtain el - - Substituting (2.16)

2
into (2.15) yields
1 Crd*ted™™ + Crd=e? *
A Cred™t 4 CredT
_d—(igpoyr —k +bjpor) < 1 — edt )

(2.18)

012 1 — gedt
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With D(z; ¢) available, simply integrating on both sides of the ODE governing E(t; ¢)
yields the final representation of E(t; ¢), through which the expression of C(7; ¢) can also
be obtained. This has completed the proof. O

It should be remarked that if the newly added parameters o, and A are deterministic
functions of ¢ instead of being constant, the pricing formula would not be changed except
o7 and A being replaced by time-dependent functions 02 (T — s) and A(T — ), respectively.
This time homogeneous property has of course added flexibility to our formula.

On the other hand, once a formula has been derived, itis natural for us to check its validity. A
common approach is to compare the calculated option prices with some benchmark solutions.
Moreover, one may also be interested in the difference between the current model and the
Heston model. These issues are discussed in the next section.

3 Numerical experiments and examples

In this section, the comparison of European call option prices calculated from our formula
will be made with those obtained directly through the Monte Carlo simulation to verify the
correctness of our formula. Our results are then compared with those of the Heston model to
show their difference. In the following work, unless otherwise stated, values of parameters
used are listed as follows. The long-term mean v under the Heston model and the initial value
of the long-term mean under our model 8y are both set to 0.2 for comparison purposes. The
default values for A and o> in our model are set to 0.1 and 0.01, respectively. The rest of the
parameters under the two models are set to the same. In specific, the risk-free interest rate
r is 0.01, the mean-reversion speed k is chosen to be 5, the correlation p takes the value of
—0.5, the volatility of volatility o1 is 0.1, and the initial value of the volatility is 0.1. The
underlying price Sp and the strike price K are both equal to 100, while the time to expiry ©
is 0.5. Note that the current time is 0.

Depicted in Fig. 1 is the comparison of our price with the Monte Carlo price, i.e., the
option price calculated with the Monte Carlo simulation. From Fig. 1a, it is clear that the
European call option price calculated from our model is a monotonic increasing function of
the underlying price, which is consistent with financial intuition. Moreover, our price agrees
well with the Monte Carlo price, with the on-dot maximum relative error being less than
0.8%, as shown in Fig. 1b. All of these have already demonstrated the validity of our newly
derived formula.

As pointed out previously, our model is identical to the Heston model when both A and
o7 are zero. In order to investigate such a degeneration, we introduce a scale parameter z,
such that . = 0o = 0.2 % z with z varying within [0,1]. The results are shown in Fig. 2. As
expected, our price is exactly the same as the Heston price when z is set to zero. Moreover,
when z is enlarged, which is equivalent to increasing both A and o3, one can observe that
our price keeps increasing and is always higher than that of the Heston model. At this stage,
two natural questions may be raised. The first one is whether there are some times when our
price is lower than the Heston price, while the second one is how our price changes with
respect to A and o, when all the other parameters are kept unchanged. The answers to these
two questions will be mentioned in the following discussions.

In Fig. 3, the influence of the parameter A is investigated. One can clearly observe from
this figure that our price is always higher than the Heston price for positive A, but lower when
A is negative. This is mainly because when A is positive (negative), the chance for the long
term-mean to increase (decrease) will be higher, resulting in a higher (lower) option price.
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(a) Comparison of our price with Monte Carlo price.
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(b) Relative difference between our price and Monte Carlo price.

Fig. 1 Our price versus Monte Carlo price with different underlying prices

In addition, this figure also suggests that our price is quite close to the corresponding Heston
price for small time to expiry, and the difference between the two becomes larger as the time
to expiry increases. This is indeed reasonable because when the time to expiry of the option
becomes larger, there will be more chances for the long-term mean to change, resulting in
the option price of the two models being “more different”.

It is also interesting to investigate the sensitivity of the option price with respect to A, and
the results are displayed in Fig. 4. From this figure, it is clear that the option price under our
model is an increasing function of . Financially, a larger A can lead to a larger level of the
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Fig.3 Our price versus Heston price with different times to expiry

long-term mean, resulting in a larger average value of the volatility of the underlying. In this
situation, a higher risk is expected and thus the premium of buying the option to against the
risk would certainly become larger as well. With the same reason, one can also understand
the fact that our price is positively correlated with the initial value of the long-term mean 6.
Interestingly, the option price as a function of A becomes flatter when 6y becomes larger.

In Fig. 5, the influence of o on the option price is investigated. From this figure, it is
clear that our price is a monotonic decreasing function of o>, implying that the more volatile
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the long-term mean is, the lower the option price will be. A possible explanation for this is
that an increase in the volatility of the stochastic long-term mean makes it possible for the
volatility of the underlying to attain a lower level, leading to a lower option price. It should
also be noticed from this figure that our price is an increasing function of the initial level of
the volatility vg. This can be understood by the fact that a higher volatility implies higher risk
in investing money, resulting in a higher premium to compensate the risk. At this stage, some
people may argue that the addition of o, will not cause much difference to option prices, as
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shown in Fig. 5. However, one should not forget that while all the other parameters are set
to the same in this example for comparison purposes, the parameters need to be extracted
form market data when both models are applied to real financial markets. In this situation,
the corresponding parameters under both models will not necessarily be the same, which
may cause a large pricing difference.

It should be remarked that the difference between our newly proposed model and the Hes-
ton model can never guarantee a better performance of our model. Whether it is meaningful
to introduce a stochastic long-term mean and whether its form makes sense need to be further
investigated with real market data. We have thus conducted empirical studies by calibrating
our model and the Heston model to the same set of real market data, the results of which are
presented in the next section.

4 Empirical studies

In this section, empirical studies are carried out with the Heston model taken as a benchmark
to show the influence of the stochastic long-term mean, and to assess the performance of
the newly proposed model applied to real financial data. We shall first describe the data
and several important filters used for model calibration, and then introduce the method for
parameter estimation in detail. The empirical results are provided at last, with which, the
performance of these two models applied to real financial data is clear.

4.1 Data description

A data set of the S&P 500 Index and European call options written on it from Jan 2012 to
June 2012 is chosen as an example to conduct the empirical study. As usual, mid-prices,
which are equal to the average value of bid and ask prices, are used as option prices in
our study. However, it should be noted that those raw data could not be adopted directly
in parameter estimation as sample noise should be eliminated. Therefore, some appropriate
filters are applied to the raw data before they can be safely used.

First of all, only Wednesday and Thursday option prices are adopted with Wednesday
option data used in parameter estimation and Thursday data served as market prices to be
compared with the theoretical option prices calculated with the estimated parameters. This is
indeed a common practice in model calibration [3,13], and is reasonable in two main aspects.
One one hand, using one-day option data a week in parameter estimation enables us to study
a relatively longer time series so that the obtained results are more reliable due to the time-
intensiveness of model calibration processes. On the other hand, the chosen two days are
least likely to be holidays in a week and less likely to be affected by the “day-of-the-week”
effect than Monday and Friday. Secondly, we also need to remove options with the time to
expiry being less than 30 days and more than 120 days because the former ones have small
time values and their prices could be very volatile, and the latter ones usually have liquidity
problems due to their high premiums [31]. Thirdly, options with the absolute moneyness
being higher than 10% are excluded as well. In this way, very deep in-the-money and very
deep out-of-money options are not considered because they also have liquidity problems

[42]. Note that the absolute moneyness here is defined as the relative difference between the
. . . S—K
S&P 500 Index value and the corresponding strike price, i.e., moneyness = —x
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In addition to the careful choice of the option data, the risk-free interest rate also needs to
be determined in advance. Here, we choose the three-month daily U.S. Treasury Bill Rate as
a proxy of the risk-free interest rate [6,42]. The length of this rate is enough because the time
to expiry of the selected options is less than 120 days. With all the data needed available,
some optimization methods for parameter estimation can be applied, the details of which are
illustrated in the next subsection.

4.2 Parameter estimation

In this section, we shall first review the parameters of both models that need to be deter-
mined, and then a particular global optimization method is introduced, with which all model
parameters are finally obtained.

Recall the dynamics of the Heston model given in (2.1). It is clear that five parameters
need to be estimated, i.e., the mean-reversion speed k, the constant long-term mean v, the
volatility of volatility o, the correlation factor p and the initial value of volatility vg. On
the other hand, the dynamics of our newly proposed model, (2.2), clearly show that seven
parameters should be determined before model assessment takes place. Four are the same as
those in the Heston model, including k, o, p, vo, while the other three are the initial value
of the long-term mean 6y and the two parameters, i.e., A and o, controlling the stochastic
process governing the long-term mean 6;.

Having known all the needed parameters, we can now proceed to the estimation part. One
of the most popular methods in determining model parameters is to find a set of “optimal”
parameters that minimizes the “distance” between market and model prices. Therefore, we
need to choose an appropriate definition for such a distance. In fact, a common approach is
to take the relative mean squared error (RMSE)

N CzM arket __ C[Mode]

2
1
RMSE = > <ClM°df’1> : “.1)

i=1

as the objective function to measure the distance, with CMa*et and CModel being the market
price of an option and the price of the same option calculated from our pricing formula with
a particular set of parameters, respectively. N is the total number of observations selected in
a single estimation. However, the RMSE is not adopted in the current study due to one of its
main drawbacks that a cheap option (i.e., low CM&*¢) would bring in an abnormally high
amount of weight, resulting in the inaccuracy of the estimated parameters. Instead, following
Christoffersen and Jacobs [12] and Lim and Zhi [32], the dollar mean squared error (MSE)
is used, i.e.,
| v ke Model)2
MSE = — 3 (1t — ¢todel)”, (4.2)
i=1

as the objective function.

Another issue is to choose an appropriate method to minimize the selected objective
function, which is a minimization problem. In the literature, local minimization is a first choice
as it is easy to implement and fast to produce a result. Unfortunately, the objective function
(4.2) is not necessarily convex and thus there exist several local minima. An appropriate initial
guess of the solution is usually very crucial for the local minimization method to be safely
used as it would otherwise be easily stuck in a local minimum and produce unreliable results.
Therefore, in this case, global optimization is much favored because a properly designed
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Table 1 Estimated parameters

Parameters k o P Vo v (2] A (<)
Our model 43067 0.8557 —0.5203  0.0253 0.1505 —0.2522  0.1224
Heston model  6.7078  0.9720 —0.5508  0.0230  0.1050
Table 2\ In- and out-of-sample Error Tn-sample Out-of-sample
errors for the two models

Our model 0.0758 2.5875

Heston model 0.1156 4.8938

global optimization algorithm is able to skip local minima and correctly identifies the global
minimum in an efficient way.

Simulated annealing (SA) [30] is actually one of the best known global optimization
approaches, which possesses striking positive features. For example, it is very easy to program
and the algorithm typically has few parameters that require tuning. Moreover, its statistical
guarantee of convergence makes SA very appealing. However, its main drawback is the
slow speed in implementation, which makes this method unsuitable for practical purposes.
Therefore, in the current work, adaptive simulated annealing (ASA) is adopted. This method
is actually a variant of SA and was firstly proposed by Ingber [26]. The aim of ASA is to
statistically find the best global fit of a non-linear constrained non-convex cost function over
a D-dimensional space [28]. This improved version makes the algorithm more efficient and
less sensitive to user defined parameters than standard SA does, while it still maintains all
the advantages that SA possesses. In fact, this specific algorithm has already been applied to
different areas [10,45], and has already been adopted by a number of authors in the calibration
of option pricing models, such as Poklewski-Koziell [38], and Mikhailov and Nogel [34].

It should be pointed out that the adopted ASA is realized through the open-source code
provided in [27]. The feedback from many users regularly assesses the source code to ensure
its soundness, which makes this method become even more flexible and powerful. In Table 1,
the estimated daily-averaged parameters extracted from the selected market data for the two
models under consideration are presented.

With all the estimated parameters available, we are now able to assess the performance of
our newly proposed model. This will be the main issue of the next subsection.

4.3 Empirical results

In this subsection, the empirical results of our newly proposed model and the Heston model
are provided based on the same set of option data. In particular, Table 2 exhibits the in- and
out-of-sample errors of the two models.

From Table 2, it is not difficult to find that our newly proposed model greatly outperforms
the Heston model in terms of both in- and out-of-sample errors. In specific, from the perspec-
tive of those in-sample errors, the daily averaged MSE for our model is 0.0758, only around
66% of that displayed by the Heston model. On the other hand, when the out-of-sample errors
are taken into consideration, it is interesting to notice that such errors under both models are
larger than their in-sample counterparts. This can be understood by the fact that in-sample
errors are actually the minimized distance between market prices of a certain data set and
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Table 3 Out-of-sample errors according to moneyness

Moneyness 0.90 < S/K < 0.97(0) 0.97 < S/K < 1.03(A) 1.03 < S/K < 1.10(1)
Our model 4.0505 2.7776 2.4951
Heston model 9.3036 3.0276 2.6117

model prices calculated with the “optimal” set of parameters for the same date set, while
out-of-sample errors are measured by the distance between market prices of another data
set and model prices calculated with parameters derived with the previous date set, which
implies that such a distance is probably not the minimized one. Moreover, the difference
between out-of-sample errors of the two models is even widened, with the MSE under our
model being approximately 50% of that under the Heston model, which also suggests that
our model performs better than the Heston model does. Due to the fact that a model can
certainly be regarded as a better one if both of its in- and out-of-sample errors are lower than
those of the other model, one can reach a conclusion that our newly proposed model serves
as a better choice than the Heston model, at least for the chosen data set.

Another issue with common interest is the behavior of both models across different mon-
eyness. Thus, we also present the out-of-sample errors sorted by moneyness, as shown in
Table 3. While the range of moneyness is indicated on the top row of the table, the abbrevi-
ations “O”, “A” and “I” in the parentheses indicate “out of money”, “at the money” and “in
the money”, respectively.

From this table, it is again clear that our newly proposed model is a better choice than
the Heston model, at least for the adopted data set. In particular, it can be easily observed
that out-of-sample errors associated with out-of-money options are much larger than those
of in-the-money and at-the-money options. Our model works much better than the Heston
model for this category, with the MSE of our model in this case being less than half of that
under the Heston model. The improvement for the other two categories is also significant.
Compared with the Heston model, our model shows 10% and 5% less errors for at-the-money
options and in-the-money options, respectively. Therefore, we can confidently conclude that
our model can of course act as a good competitor to the Heston model in real markets.

5 Conclusion

In this paper, with the long-term mean in the Heston model modeled by another stochastic
process, a new SV model is proposed in order to provide a better fit to real financial data.
After successfully deriving a closed-form pricing formula for European options under the
newly established model, we show numerically the validity of the formula by comparing
our results with those obtained from the Monte Carlo simulation. Moreover, we also make
a comparison of the option prices calculated from the Heston model and and those under
our model to show the difference of the two models from a numerical point of view. Finally,
empirical studies are carried out based on the options written on S&P 500 Index. The results
show that our newly proposed model generally outperforms the Heston model, implying that
our model can be adopted as a better alternative to the Heston model in real financial markets.
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