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Abstract
This paper presents several models addressing optimal portfolio choice, optimal portfolio
liquidation, and optimal portfolio transition issues, in which the expected returns of risky
assets are unknown. Our approach is based on a coupling between Bayesian learning and
dynamic programming techniques that leads to partial differential equations. It enables to
recover the well-known results of Karatzas and Zhao in a framework à la Merton, but also to
deal with cases where martingale methods are no longer available. In particular, we address
optimal portfolio choice, portfolio liquidation, and portfolio transition problems in a frame-
work à la Almgren–Chriss, and we build therefore a model in which the agent takes into
account in his decision process both the liquidity of assets and the uncertainty with respect
to their expected return.
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1 Introduction

The modern theory of portfolio selection started in 1952 with the seminal paper [34] of
Markowitz.1 In his paper, Markowitz considered the problem of an agent who wishes to
build a portfolio with the maximum possible level of expected return, given a limit level
of variance. He then coined the concept of efficient portfolio and described how to find
such portfolios. Markowitz paved the way for studying theoretically the optimal portfolio
choice of risk-averse agents. A few years after Markowitz’s paper, Tobin published indeed
his famous research work on the liquidity preferences of agents and the separation theorem
(see [45]), which is based on the ideas developed by Markowitz. A few years later, in the
sixties, Treynor, Sharpe, Lintner, and Mossin introduced independently the Capital Asset
Pricing Model (CAPM) which is also built on top of the ideas of Markowitz. The ubiquitous
notions of α and β owe a lot therefore to Markowitz modern portfolio theory.

Although initially written within a mean-variance optimization framework, the so-called
Markowitz problem can also be written within the Von Neumann-Morgenstern expected util-
ity framework. This was for instance done by Samuelson and Merton (see [36,37,42]), who,
in addition, generalized Markowitz problem by extending the initial one-period framework
to a multi-period one. Samuelson did it in discrete time, whereas Merton did it in continuous
time. It is noteworthy that they both embedded the intertemporal portfolio choice problem
into a more general optimal investment/consumption problem.2

In [36], Merton used partial differential equation (PDE) techniques for characterizing
the optimal consumption process of an agent and its optimal portfolio choices. In particular,
Merton managed to find closed-form solutions in the constant absolute risk aversion (CARA)
case (i.e., for exponential utility functions), and in the constant relative risk aversion (CRRA)
case (i.e., for power and log utility functions). Merton’s problem has then been extended
to incorporate several features such as transaction costs (proportional and fixed) or credit
constraints. Major advances to solve Merton’s problem in full generality have been made in
the eighties by Karatzas et al. using (dual) martingale methods. In [26], Karatzas, Lehoczky,
and Shreve used amartingalemethod to solveMerton’s problem for almost any smooth utility
function and showed how to partially disentangle the consumption maximization problem
and the terminal wealth maximization problem. Constrained problems and extensions to
incomplete markets were then considered—see for instance the paper [11] by Cvitanić and
Karatzas.

In the literature on portfolio selection or in the slightly more general literature onMerton’s
problem, input parameters (for instance the expected returns of risky assets) are considered
known constants, or stochastic processes with known initial values and dynamics. In practice
however, one cannot state for sure that price returns will follow a given distribution. Uncer-
tainty on model parameters is the raison d’être of the celebrated Black–Litterman model (see
[7]), which is built on top of Markowitz model and the CAPM. Nevertheless, like Markowitz
model, Black–Litterman model is a static one. In particular, the agent of Black–Litterman
model does not use empirical returns to dynamically learn the distribution of asset returns.

Generalizations of optimal allocation models (or models dealing with Merton’s problem)
involving filtering and learning techniques in a partial information framework have been
proposed in the literature. The problems that are addressed are of three types depending on
the assumptions regarding the drift: unknown constant drift (e.g. [10,13,28]), unobserved

1 Markowitz was awarded the Nobel Prize in 1990 for his work. For a brief history of portfolio theory, see
[35].
2 This problem in continuous time is now referred to as Merton’s problem.
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drift with Ornstein–Uhlenbeck dynamics (e.g. [8,17,32,41]), and unobserved drift modelled
by a hidden Markov chain (e.g. [9,25,40,43]). In the different models, filtering (or learning)
enables to estimate the unknown parameters from the dynamics of the prices, and sometimes
also from additional information such as analyst views or expert opinions (see [14,18]) or
inside information (see [13,38]).

Most models (see [6,10,13,28–30,38,39]) use martingale (dual) methods to solve opti-
mal allocation problems under partial information. For instance, in a framework similar to
ours, Karatzas and Zhao [28] considered a model where the asset returns are Gaussian with
unknown mean and they used martingale methods under the filtration of observables to com-
pute, for almost any utility function, the optimal portfolio allocation (there is no consumption
in their model).

Somemodels, like ours, use insteadHamilton–Jacobi–Bellman (HJB) equations and there-
fore PDE techniques. Rishel [41] proposed a model with one risky asset where the drift has
an Ornstein–Uhlenbeck dynamics and solved the HJB equation associated with CRRA utility
functions. Interestingly, it is one of the rare references to tackle the question of explosionwhen
Bayesian filtering and optimization are carried out simultaneously. Brendle [8] generalized
the results of [41] to a multi-asset framework and also considered the case of CARA utility
functions. Fouque et al. [17] solved a related problem with correlation between the noise
process of the price and that of the drift and used perturbation analysis to obtain approxima-
tions. Li et al. [32] also studied a similar problem with a mean-variance objective function.
Rieder and Bäuerle [40] proposed a model with one risky asset where the drift is modelled
by a hidden Markov chain and solved it with PDEs in the case of CRRA utility function.

Outside of the optimal portfolio choice literature, several authors proposed financial mod-
els inwhich both online learning and stochastic optimal control coexist. For instance, Laruelle
et al. proposed in [31] a model in which an agent optimizes its execution strategy with limit
orders and simultaneously learns the parameters of the Poisson process modelling the execu-
tion of limit orders. Interesting ideas in the same field of algorithmic trading can also be found
in the work of Fernandez-Tapia (see [16]). An interesting paper is also that of Ekström and
Vaicenavicius [15] who tackled the problem of the optimal time at which to sell an asset with
unknown drift. Recently, Casgrain and Jaimungal [9] also used similar ideas for designing
algorithmic trading strategies.

In this paper, we consider several problems of portfolio choice, portfolio liquidation, and
portfolio transition in continuous time in which the (constant) expected returns of the risky
assets are unknown but estimated online. In the first sections, we consider a multidimensional
portfolio choice problem similar to the one tackled by Karatzas and Zhao in [28] with a rather
general Bayesian prior for the drifts (our family of priors includes compactly supported
and Gaussian distributions).3 For this problem, with general Bayesian prior, we derive HJB
equations and show that, in the CARA and CRRA cases, these equations can be transformed
into linear parabolic PDEs. The interest of the paper lies here in the fact that our framework
is multidimensional and general in terms of possible priors. Moreover, unlike other papers,
we provide a verification result and this is important in view of the explosion occurring for
some couples of priors and utility functions. We then specify our results in the case of a
Gaussian prior for the drifts and recover formulas already present in the literature (see [28]
or limit cases of [8]). The Gaussian prior case is discussed in depth, (i) because the associated
PDEs can be simplified into simple ODEs (at least for CARA and CRRA utility functions)
that can be solved in closed form by using classical tricks, and (ii) because Gaussian priors

3 It is noteworthy that this approach can be carried out in the frequentist case as well.
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provide examples of explosion: the problem may not be well posed in the CRRA case when
the relative risk aversion parameter is too small.

The PDE approach is interesting in itself and we believe that it enables to avoid the
laborious computations needed to simplify the general expressions of Karatzas and Zhao.
However, our message is of course not limited to that one. The PDE approach can indeed be
used in situations where the (dual) martingale approach cannot be used. In the last section of
this paper,we use our approach to solve the optimal allocation problem in a trading framework
à la Almgren–Chriss. The Almgren–Chriss framework was initially built for solving optimal
execution problems (see [1,2]) but it is also very useful outside of the cash-equity world. For
instance, Almgren and Li [3], and Guéant and Pu [22] used it for the pricing and hedging
of vanilla options when liquidity matters.4 The model we propose is one of the first models
that uses the Almgren–Chriss framework for addressing an asset management problem, and
definitely the first paper in this area in which the Almgren–Chriss framework is used in
combination with Bayesian learning techniques.5 We also show how our framework can be
slightly modified for addressing optimal portfolio liquidation and transition issues.

This paper aims at proving that online learning—in our case on-the-fly Bayesian
estimations—combined with stochastic optimal control can be very efficient to tackle a lot
of financial problems. It is essential to understand that online learning is a forward process
whereas dynamic programming classically relies on backward induction. By using these two
classical tools simultaneously, we do not only benefit from the power of online and Bayesian
learning to continuously learn the value of unknown parameters, but we also develop a frame-
work in which agents learn and make decisions knowing that they will go on learning in the
future in the same manner as they have learnt in the past. The same ideas are for instance
at play in the literature on Bayesian multi-armed bandits where the unknown parameters are
the parameters of the prior distributions of the different rewards.

In Sect. 2,we provide themain results related to ourBayesian framework.Wefirst compute
the Bayesian estimator of the drifts entering the dynamics of prices (more precisely the
conditional mean given the prices trajectory and the prior). We then derive the dynamics of
that Bayesian estimator. These results are classical and can be found in [5] or [33], but they
are recalled for the sake of completeness. In Sect. 3, we consider the portfolio allocation
problem of an agent in a context with one risk-free asset and d risky assets, and we show how
the associated HJB equations can be transformed into linear parabolic PDEs in the case of a
CARAutility function and of a CRRAutility function. As opposed tomost of the papers in the
literature, we also provide verification theorems. This is of particular importance because the
Bayesian framework leads to blowups for some of the optimal control problems. In Sect. 4,
we solve the same portfolio allocation problem as in Sect. 3 but in the specific case of a
Gaussian prior. We show that a more natural set of state variables can be used to solve the
same problem.We also provide an example of blowup in the Gaussian case. In Sect. 4, thanks
to closed-form solutions,we also analyze the role of learning on the dynamics of the allocation
process of the agent. In Sect. 5, we introduce liquidity costs through amodelling framework à
la Almgren–Chriss and we use our combination of Bayesian learning and stochastic optimal
control techniques for solving various portfolio choice, portfolio liquidation, and portfolio
transition problems.

4 Guéant et al. also used the Almgren–Chriss framework to tackle the pricing, hedging, and execution issues
of Accelerated Share Repurchase contracts—see [20,23].
5 Almgren and Lorenz used Bayesian techniques in optimal execution (see [4]), but they considered myopic
agents with respect to learning.
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2 Bayesian learning

2.1 Notations and first properties

Weconsider an agent facing a portfolio allocation problemwith one risk-free asset and d risky
assets.

Let
(
�,
(FW

t

)
t∈R+ ,P

)
be a filtered probability space, with

(FW
t

)
t∈R+ satisfying the

usual conditions. Let (Wt )t∈R+ be a d-dimensional Brownian motion adapted to
(FW

t

)
t∈R+ ,

with correlation structure given by d
〈
W i , W j

〉
t = ρi j dt for all i, j in {1, . . . , d}.

The risk-free interest rate is denoted by r . We index by i ∈ {1, . . . , d} the d risky assets.
For i ∈ {1, . . . , d}, the price of the i th asset Si has the classical log-normal dynamics

d Si
t = μi Si

t dt + σ i Si
t dW i

t , (1)

where the volatility vector σ = (σ 1, . . . , σ d)′ satisfies ∀i ∈ {1, . . . , d} , σ i > 0, and where
the drift vector μ = (μ1, . . . , μd)′ is unknown.

We assume that the prior distribution ofμ, denoted by mμ, is sub-Gaussian.6 In particular,
it satisfies the following property:

∃η > 0, E[eη‖μ‖2 ] =
∫

z∈Rd
eη‖z‖2mμ(dz) < +∞. (2)

Throughout,we shall respectively denote byρ = (ρi j )1≤i, j≤d and� = (ρi jσ iσ j )1≤i, j≤d

the correlation and covariance matrices associated with the dynamics of prices.
We also denote by (Yt )t∈R+ the process defined by

∀i ∈ {1, . . . , d} ,∀t ∈ R+, Y i
t = log Si

t . (3)

Remark 1 Both μ and (Wt )t∈R+ are unobserved by the agent, but for each index i ∈
{1, . . . , d}, μi t + σ i W i

t is observed at time t ∈ R+ because

μi t + σ i W i
t = Y i

t − Y i
0 + 1

2
σ i 2t . (4)

The evolution of the prices reveals information to the agent about the true value of the
drift vector μ. In what follows we denote by F S = (F S

t

)
t∈R+ the filtration generated by

(St )t∈R+ or equivalently by (Yt )t∈R+ .

Remark 2 (Wt )t∈R+ is not an F S-Brownian motion, because it is not F S-adapted.

We introduce the process (βt )t∈R+ defined by

∀t ∈ R+, βt = E

[
μ|F S

t

]
. (5)

Remark 3 (βt )t∈R+ is well defined because of the assumption (2) on the prior mμ.

From an investor’s point of view, (βt )t∈R+ is of main concern. It encapsulates the infor-
mation gathered so far about the returns one can expect from the assets.

The first result stated in Theorem 1 is a formula for βt .

6 This assumption can be slightly relaxed, but we consider this simple one to simplify the statement of our
results.

123



666 Mathematics and Financial Economics (2019) 13:661–719

Theorem 1 Let us define

F : (t, y) ∈ R+ × R
d 	→
∫

Rd
exp
(
(z − r�1)′�−1

[
y − Y0 +

(
−r�1 + 1

2
σ � σ

)
t − t

2
(z − r�1)

])
mμ(dz), (6)

where � denotes the element-wise multiplication of vectors.
F is a well-defined finite-valued C∞(R+ × R

d) function.
We have

∀t ∈ R+, βt = �G(t, Yt ) + r�1, (7)

where

G = ∇y F

F
, (8)

and where we denote by �1 the vector (1, . . . , 1)′ ∈ R
d .

Before we prove Theorem 1, let us introduce the probability measure Q defined by

dQ

dP
= exp

(
−α(μ)′ρ−1WT − 1

2
α(μ)′ρ−1α(μ)T

)
, (9)

where α : z = (z1, . . . , zd)′ ∈ R
d 	→
(

z1−r
σ 1 , . . . , zd−r

σ d

)′
and T is an arbitrary constant in

R
∗+.
Girsanov’s theorem implies that the process

(
WQ

t

)
t∈[0,T ] defined by

∀i ∈ {1, . . . , d} ,∀t ∈ [0, T ],
(

WQ

t

)i = W i
t + μi − r

σ i
t, (10)

is a d-dimensional Brownian motion with correlation structure given by ρ under Q and
adapted to the filtration

(F S
t

)
t∈[0,T ]. Moreover

∀i ∈ {1, . . . , d} ,
d Si

t

Si
t

= rdt + σ i
(

dWQ

t

)i
and

dY i
t =
(

r − σ i 2

2

)
dt + σ i

(
dWQ

t

)i
. (11)

The following proposition will be used in the proof of Theorem 1.

Proposition 1 Under the probability measure Q, μ is independent of WQ

t for all t ∈ [0, T ].
Proof Since, for all t ∈ [0, T ], μ is independent of Wt under the probability measure P, we
have, for (t, a, b)∈[0, T ] × R

d × R
d ,

E
Q

[
exp
(

ia′μ + ib′WQ

t

)]

= E

[
exp

(
ia′μ + ib′ (Wt + α(μ)t) − α(μ)′ρ−1WT − 1

2
α(μ)′ρ−1α(μ)T

)]

= E

[
exp

(
ia′μ + ib′α(μ)t − 1

2
α(μ)′ρ−1α(μ)T

)
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E
[
exp
(
ib′Wt − α(μ)′ρ−1WT

)∣∣μ]
]

= E

[
exp

(
ia′μ + ib′α(μ)t − 1

2
α(μ)′ρ−1α(μ)T

)

E
[
exp
(
ib′Wt − α(μ)′ρ−1 (WT − Wt ) − α(μ)′ρ−1Wt

)∣∣μ]
]

= E

[
exp

(
ia′μ + ib′α(μ)t − 1

2
α(μ)′ρ−1α(μ)T

)

exp

(
1

2
α(μ)′ρ−1α(μ)(T − t)

)
exp

(
1

2

(
ib − ρ−1α(μ)

)′
ρ
(
ib − ρ−1α(μ)

)
t

)]

= E
[
exp
(
ia′μ
)]
exp

(
− t

2
b′ρb

)
.

Now, let us notice that

E
Q
[
exp
(
ia′μ
)] = E

[
exp
(
ia′μ
) dQ

dP

]
= E

⎡
⎢⎢⎢⎣exp
(
ia′μ
)
E

[
dQ

dP

∣∣∣∣μ
]

︸ ︷︷ ︸
=1

⎤
⎥⎥⎥⎦ = E

[
exp
(
ia′μ
)]

and exp
(− t

2b′ρb
)
is the Fourier transform of WQ

t under the probability measure Q.
Therefore,

E
Q

[
exp
(

ia′μ + ib′WQ

t

)]
= E

Q
[
exp
(
ia′μ
)]
E
Q

[
exp
(

ib′WQ

t

)]
,

hence the result. ��
We are now ready to prove Theorem 1.

Proof of Theorem 1. Let us first show that F is a well-defined finite-valued C∞(R+ × R
d)

function.
We have

∀(t, y, z) ∈ R+ × R
d × R

d , exp

(
(z − r�1)′�−1

[
y − Y0 +

(
−r�1 + 1

2
σ � σ

)
t − t

2
(z − r�1)

])

≤ exp

(
(z − r�1)′�−1

[
y − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

])
.

Therefore, to show that F takes finite values, we just need to prove that for a ∈ R
d ,

∫

Rd
exp(a′z)mμ(dz) = E

[
exp(a′μ)

]
< +∞.

Thanks to condition (2) on the prior, there exists η > 0 such thatE
[
exp
(
η ‖μ‖2)] < +∞.

Therefore,

∀a ∈ R
d , E
[
exp
(
μ′a
)] =E

[
exp
(
a′μ − η ‖μ‖2) exp (η ‖μ‖2)]

≤ exp

(
sup
z∈Rd

a′z − η ‖z‖2
)
E
[
exp
(
η ‖μ‖2)]
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≤ exp

(
‖a‖2
4η

)
E
[
exp
(
η ‖μ‖2)]

< + ∞.

Consequently, F is well defined and takes finite values.
For proving that F is in fact a C∞(R+ × R

d) function, we see by formal derivation that
it is sufficient to prove that, for all n ∈ N,

a ∈ R
d 	→
∫

Rd
‖z‖n exp(a′z)mμ(dz) = E

[‖μ‖n exp(a′μ)
]

is bounded over all compact sets of Rd . We have

∀a ∈ R
d ,∀n ∈ N, E

[‖μ‖n exp
(
a′μ
)] =E
[‖μ‖n exp

(
a′μ − η ‖μ‖2) exp (η ‖μ‖2)]

≤ sup
z∈Rd

(‖z‖n exp
(
a′z − η ‖z‖2))E [exp (η ‖μ‖2)]

≤ sup
z∈Rd

‖z‖n (exp (‖z‖ ‖a‖ − η ‖z‖2))

E
[
exp
(
η ‖μ‖2)] < +∞,

hence the result.
We are now ready to prove the formula for βt .
By Bayes’ theorem we have, for all t in [0, T ],

βt =
E
Q

[
μ dP

dQ

∣∣∣F S
t

]

EQ

[
dP
dQ

∣∣∣F S
t

] .

Since

dP

dQ
= exp

(
α(μ)′ρ−1WQ

T − T

2
α(μ)′ρ−1α(μ)

)
,

we have

βt =
E
Q

[
μ exp
(
α(μ)′ρ−1WQ

T − T
2 α(μ)′ρ−1α(μ)

)
|F S

t

]

EQ

[
exp
(
α(μ)′ρ−1WQ

T − T
2 α(μ)′ρ−1α(μ)

)
|F S

t

] .

Proposition 1 now yields

βt =
E
Q

[
μ exp
(
α(μ)′ρ−1WQ

t − t
2α(μ)′ρ−1α(μ)

)
|F S

t

]

EQ

[
exp
(
α(μ)′ρ−1WQ

t − t
2α(μ)′ρ−1α(μ)

)
|F S

t

]

=

∫

Rd

z exp

(
α(z)′ρ−1WQ

t − t

2
α(z)′ρ−1α(z)

)
mμ(dz)

∫

Rd

exp

(
α(z)′ρ−1WQ

t − t

2
α(z)′ρ−1α(z)

)
mμ(dz)
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=

∫

Rd

z exp

(
(z − r�1)′�−1

(
Yt − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

)
− t

2
α(z)′ρ−1α(z)

)
mμ(dz)

∫

Rd

exp

(
(z − r�1)′�−1

(
Yt − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

)
− t

2
α(z)′ρ−1α(z)

)
mμ(dz)

.

Consequently

�−1
(
βt − r�1

)

=

∫

Rd

�−1(z − r�1) exp
(

(z − r�1)′�−1
(

Yt − Y0 +
(

−r�1 + 1

2
σ � σ

)
t

)
− t

2
α(z)′ρ−1α(z)

)
mμ(dz)

∫

Rd

exp

(
(z − r�1)′�−1

(
Yt − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

)
− t

2
α(z)′ρ−1α(z)

)
mμ(dz)

= ∇y F

F
(t, Yt )

= G(t, Yt ).

Therefore, and because T is arbitrary, we have

∀t ∈ R+, βt = �G(t, Yt ) + r�1.
��

Throughout this article, we assume that the prior mμ is such that G has the following
Lipschitz property with respect to y:

∀T > 0, ∃KT > 0,∀t ∈ [0, T ],∀y ∈ R
d ,
∥∥Dy G(t, y)

∥∥ ≤ KT . (12)

As we shall see below, this assumption is verified if mμ has a compact support. It is also
verified for mμ Gaussian (see Proposition 12 for instance).7 However, it is not true in general
for all sub-Gaussian priors.

2.2 Dynamics of (ˇt)t∈R+

Let us define the process
(
Ŵt
)

t∈R+ by

∀i ∈ {1, . . . , d} ,∀t ∈ R+, Ŵ i
t = W i

t +
∫ t

0

μi − β i
s

σ i
ds. (13)

Remark 4 The process (Ŵt )t∈R+ is called the innovation process in filtering theory. As shown
below for the sake of completeness, it is classically known to be a Brownian motion (see for
instance [5] on continuous Kalman filtering).

Proposition 2
(
Ŵt
)

t∈R+ is a d-dimensional Brownian motion adapted to
(F S

t

)
t∈R+ , with the

same correlation structure as (Wt )t∈R+ , i.e.,

∀i, j ∈ {1, . . . , d} , d〈Ŵ i , Ŵ j 〉t = d〈W i , W j 〉t = ρi j dt .

7 Because we are dealing with asset returns, the class of compactly supported distributions is sufficient,
from a financial point of view, to deal with almost all relevant cases. Gaussian distributions are not in that
class but Gaussian priors are approximations of real-life beliefs that are used mainly for their convenience in
computations.
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Proof To prove this result, we use Lévy’s characterization of a Brownian motion.
Let t ∈ R+. By definition, we have

∀i ∈ {1, . . . , d} , Ŵ i
t = 1

σ i

(
log

(
Si

t

Si
0

)
+ 1

2
σ i 2t

)
−
∫ t

0

β i
s

σ i
ds,

hence the F S
t -measurability of Ŵt .

Let s, t ∈ R+, with s < t . For i ∈ {1, . . . , d},

E

[
Ŵ i

t − Ŵ i
s

∣∣∣F S
s

]
= E

[
W i

t − W i
s

∣∣∣F S
s

]
+ E

[∫ t

s

1

σ i
(μi − β i

u)du

∣∣∣∣F S
s

]
.

For the first term, the increment W i
t − W i

s is independent of FW
s and independent of μ.

Therefore, it is independent of F S
s and we have

E

[
W i

t − W i
s

∣∣∣F S
s

]
= E[W i

t − W i
s ] = 0.

Regarding the second term, we have

E

[∫ t

s

1

σ i
(μi − β i

u)du

∣∣∣∣F S
s

]
=
∫ t

s
E

[
1

σ i
(μi − β i

u)

∣∣∣∣F S
s

]
du

=
∫ t

s
E

[
E

[
1

σ i
(μi − β i

u)

∣∣∣∣F S
u

]∣∣∣∣F S
s

]
du

= 0,

by definition of β i
u .

We obtain that
(
Ŵt
)

t∈R+ is an F S-martingale.

Since (Ŵt )t∈R+ has continuous paths and d〈Ŵ i , Ŵ j 〉t = ρi j dt , we conclude that
(Ŵt )t∈R+ is a d-dimensional F S-Brownian motion with correlation structure given
by ρ. ��

We are now ready to state the dynamics of (βt )t∈R+ .

Theorem 2 (βt )t∈R+ has the following dynamics:

dβt = �Dy G(t, Yt )
(
σ � dŴt

)
. (14)

Proof By Itō’s formula and Theorem 1, we have

�−1dβt

= ∂t G(t, Yt )dt +
d∑

i=1

∂yi G(t, Yt ) dY i
t + 1

2

d∑
i, j=1

ρi jσ iσ j∂2yi y j
G(t, Yt )dt

= ∂t G(t, Yt )dt +
d∑

i=1

∂yi G(t, Yt )

(
β i

t dt + σ i dŴ i
t − σ i 2

2
dt

)

+1

2

d∑
i, j=1

ρi jσ iσ j∂2yi y j
G(t, Yt )dt

=
(

∂t G(t, Yt ) +
d∑

i=1

∂yi G(t, Yt )

(
r + (�G)i (t, Yt ) − σ i 2

2

)
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+ 1

2

d∑
i, j=1

ρi jσ iσ j∂2yi y j
G(t, Yt )

⎞
⎠ dt +

d∑
i=1

σ i∂yi G(t, Yt )dŴ i
t .

Because (βt )t∈R+ is a martingale under (P,F S), we have

dβt =
d∑

i=1

σ i�∂yi G(t, Yt )dŴ i
t = �Dy G(t, Yt )

(
σ � dŴt

)
.

��

The results obtained above (Theorems 1, 2) will be useful in the next section on optimal
portfolio choice. The process (βt )t∈R+ indeed represents the best estimate of the drift in the
dynamics of the prices.

2.3 A few remarks on the compact support case

The results presented in the next sections of this paper are valid for sub-Gaussian prior distri-
butions mμ satisfying (12). A special class of such prior distributions is that of distributions
with compact support.

We have indeed the following proposition:

Proposition 3 If mμ has a compact support, then G and all its derivatives are bounded over
R+ × R

d .

Proof Let us consider i ∈ {1, . . . , d}. By definition, the i th coordinate of G is Gi = ∂yi F

F .
Therefore, by immediate induction,

∀n ∈ N,∀ j1, . . . , jn ∈ {1, . . . , d},∀n′ ∈ N, ∂n′
t ···t∂n

y j1 ···y jn Gi

is the sum and product of terms of the form

∂m′
t ···t∂m

yk1 ···ykm
F

F
, for m, m′ ∈ N, k1, . . . , km ∈ {1, . . . , d}.

Now, for (t, y) ∈ R+ × R
d , and for m, m′ ∈ N, k1, . . . , km ∈ {1, . . . , d},

∂m′
t ···t∂m

yk1 ···ykm
F(t, y)

F(t, y)

=

∫

Rd

(
(z − r�1)′�−1

(
−r�1 + 1

2
σ � σ

)
− 1

2
α(z)′ρ−1α(z)

)m′ m∏
p=1

(z − r�1)′�−1ekp f (t, y, z)mμ(dz)

∫

Rd

f (t, y, z)mμ(dz)
,
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where

f (t, y, z) = exp

(
(z − r�1)′�−1

(
y − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

)
− t

2
α(z)′ρ−1α(z)

)
,

and where (ek)1≤k≤d is the canonical basis of Rd .
Therefore∣∣∣∣∣∣

∂m′
t ···t∂m

yk1 ···ykm
F(t, y)

F(t, y)

∣∣∣∣∣∣

≤ sup
z∈support(mμ)

∣∣∣∣∣
(

(z − r�1)′�−1
(

−r�1 + 1

2
σ � σ

)
− 1

2
α(z)′ρ−1α(z)

)m′

m∏
p=1

(z − r�1)′�−1ekp

∣∣∣∣∣∣
< +∞,

hence the result. ��
In addition to showing that the Lipschitz hypothesis (12) is true when mμ has a compact

support, Proposition 3 will be useful in Sect. 3 to provide a large class of priors for which
there is no blowup phenomenon in the equations characterizing the optimal portfolio choice
of an agent.

3 Optimal portfolio choice

In this section we proceed with the study of optimal portfolio choice. For that purpose, let us
set an investment horizon T ∈ R

∗+.
Let us also introduce the notion of “linear growth” for a process in our d-dimensional

context. This notion plays an important part in the verification theorems.

Definition 1 Let us consider t ∈ [0, T ]. AnRd -valued, measurable, andF S-adapted process
(ζs)s∈[t,T ] is said to satisfy the linear growth condition with respect to ξ = (ξs)s∈[t,T ] if,

∃CT > 0,∀s ∈ [t, T ], ‖ζs‖ ≤ CT

(
1 + sup

τ∈[t,s]
‖ξτ‖
)

.

The first subsection is devoted to the CARA case, and the second one focuses on the
CRRA case.

3.1 CARA case

We consider the portfolio choice of the agent in the CARA case. We denote by γ > 0 his
absolute risk aversion parameter.

We define, for t ∈ [0, T ] the set
At =
{
(Ms)s∈[t,T ] ,R

d -valued F S-adapted process

satisfying the linear growth condition with respect to (Ys)s∈[t,T ]
}
.
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We denote by (Mt )t∈[0,T ] ∈ A = A0 the Rd -valued process modelling the strategy of the
agent. More precisely, ∀i ∈ {1, . . . , d}, Mi

t represents the amount invested in the i th asset
at time t . The resulting value of the agent’s portfolio is modelled by a process (Vt )t∈[0,T ]
with V0 > 0. The dynamics of (Vt )t∈[0,T ] is given by the following stochastic differential
equation (SDE):

dVt =
(

M ′
t

(
μ − r�1

)
+ r Vt

)
dt + M ′

t (σ � dWt ) . (15)

With the notations introduced in Sect. 2, we have

dVt =
(

M ′
t

(
βt − r�1

)
+ r Vt

)
dt + M ′

t

(
σ � dŴt

)

= (M ′
t�G(t, Yt ) + r Vt

)
dt + M ′

t

(
σ � dŴt

)
,

and

dYt =
(

r�1 + �G (t, Yt ) − 1

2
σ � σ

)
dt + σ � dŴt .

Given M ∈ At and s ≥ t , we define therefore

Y t,y
s = y +

∫ s

t

(
r�1 + �G(τ, Y t,y

τ ) − 1

2
σ � σ

)
dτ + σ � (Ŵs − Ŵt ), (16)

V t,V ,y,M
s = V +

∫ s

t

(
M ′

τ�G(τ, Y t,y
τ ) + r V t,V ,y,M

τ

)
dτ +
∫ s

t
M ′

τ (σ � dŴτ ). (17)

For an arbitrary initial state (V0, y0), the agent maximizes, over M in the set of admissible
strategies A, the expected utility of his portfolio value at time T , i.e.,

E

[
− exp
(
−γ V 0,V0,y0,M

T

)]
.

The value function v associated with this problem is then defined by

v : (t, V , y) ∈ [0, T ] × R × R
d 	→ sup

(Ms )s∈[t,T ]∈At

E

[
− exp
(
−γ V t,V ,y,M

T

)]
. (18)

The HJB equation associated with this problem is

∂t u + r V ∂V u + (∇yu
)′ (

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ sup
M∈Rd

{
∂V uM ′�G + 1

2
M ′�M∂2V V u + M ′�∂V ∇yu

}
= 0, (19)

with terminal condition

∀(V , y) ∈ R × R
d , u(T , V , y) = − exp(−γ V ). (20)

To solve the HJB equation, we use the following ansatz:

u (t, V , y) = − exp
[
−γ
(

er(T −t)V + φ (t, y)
)]

. (21)

Proposition 4 Suppose there exists φ ∈ C1,2
(
[0, T ] × R

d
)

satisfying

∂tφ + (∇yφ
)′ (

r�1 − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ 1

2γ
G ′�G = 0, (22)
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with terminal condition

∀y ∈ R
d , φ (T , y) = 0. (23)

Then u defined by (21) is solution of the HJB equation (19) with terminal condition (20).
Moreover, the supremum in (19) is achieved at:

M�(t, y) = e−r(T −t)
(

G(t, y)

γ
− ∇yφ(t, y)

)
. (24)

Proof Let us consider φ ∈ C1,2([0, T ] × R
d) solution of (22) with terminal condition (23).

For u defined by (21) and by considering M̃ = Mer(T −t), we have

∂t u + r V ∂V u + (∇yu
)′ (

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ sup
M∈Rd

{
∂V uM ′�G + 1

2
M ′�M∂2V V u + M ′�∂V ∇yu

}

= − γ u
(
−r V er(T −t) + ∂tφ

)
− γ uer(T −t)r V − γ u

(∇yφ
)′ (

r�1 + �G − 1

2
σ � σ

)

− γ u

2

(
−γTr
(
�∇yφ(∇yφ)′

)+ Tr
(
�∇2

yyφ
))

− γ u sup
M̃∈Rd

{
M̃ ′�G − γ

2
M̃ ′�M̃ − γ M̃ ′�∇yφ

}
.

The supremum in the above expression is reached at

M̃� = G

γ
− ∇yφ,

corresponding to

M�(t, y) = e−r(T −t)
(

G(t, y)

γ
− ∇yφ(t, y)

)
. (25)

Plugging this expression in the partial differential equation, we get:

∂t u + r V ∂V u + (∇yu
)′ (

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ sup
M∈Rd

{
∂V uM ′�G + 1

2
M ′�M∂2V V u + M ′�∂V ∇yu

}

= − γ u

[
− r V er(T −t)+ ∂tφ + er(T −t)r V + (∇yφ

)′ (
r�1+ �G − 1

2
σ � σ

)

−γ

2

(∇yφ
)′

�∇yφ + 1

2
Tr
(
�∇2

yyφ
)
+ γ

2

[
G

γ
− ∇yφ

]′
�

[
G

γ
− ∇yφ

] ]

= − γ u

[
∂tφ + (∇yφ

)′ (
r�1 + �G − 1

2
σ � σ − �G

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ 1

2γ
G ′�G

]

= 0.

As it is straightforward to verify that u satisfies the terminal condition (20), the result is
proved. ��
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From the previous proposition, we see that solving the HJB equation (19) with terminal
condition (20) boils down to solving (22) with terminal condition (23). Because (22) is a
simple parabolic PDE, we can easily build a strong solution.

Proposition 5 Let us define

φ : (t, y) ∈ [0, T ] × R
d 	→ E

Q

[∫ T

t

1

2γ
G(s, Y t,y

s )′�G(s, Y t,y
s )ds

]
, (26)

where ∀(t, y) ∈ [0, T ] × R
d , ∀s ∈ [t, T ],

Y t,y
s = y +

(
r�1 − 1

2
σ � σ

)
(s − t) + σ �

(
WQ

s − WQ

t

)
.

Then φ is a C1,2([0, T ] × R
d) function, solution of (22) with terminal condition (23).

Furthermore,

∃AT > 0,∀t ∈ [0, T ],∀y ∈ R
d ,∀i ∈ {1, . . . , d}, ∥∥∇yφ(t, y)

∥∥ ≤ AT (1 + ‖y‖). (27)

Proof Because of the assumption (12) on G, the first part of the proposition is a consequence
of classical results for parabolic PDEs and of the classical Feynman–Kac representation (see
for instance [19,27]).

For the second part, we notice first that

∀(t, y) ∈ [0, T ] × R
d ,∇yφ(t, y) = E

Q

[∫ T

t

1

γ
DY G(s, Y t,y

s )�G(s, Y t,y
s )ds

]
.

Therefore, by (12), there exists a constant C ≥ 0 such that

∀(t, y) ∈ [0, T ] × R
d ,
∥∥∇yφ(t, y)

∥∥ ≤ C sup
s∈[t,T ]

E
Q

[∥∥∥G(s, Y t,y
s )

∥∥∥
]
. (28)

By (12) again, there exists a constant C ′ ≥ 0 such that
∥∥∥G(s, Y t,y

s )

∥∥∥ ≤
∥∥∥G(s, Y t,y

s ) − G(t, y)

∥∥∥+ ‖G(t, y)‖
≤
∥∥∥G(s, Y t,y

s ) − G(t, y)

∥∥∥+ C ′(1 + ‖y‖) (29)

Now, by Theorem 2, ∀s ∈ [t, T ],

G(s, Y t,y
s ) − G(t, y) =

∫ s

t
DY G(τ, Y t,y

τ )(σ � dŴτ ).

Therefore,

E
Q

[∥∥∥G(s, Y t,y
s ) − G(t, y)

∥∥∥
]

= E

[∥∥∥∥
∫ s

t
DY G(τ, Y t,y

τ )(σ � dŴτ )

∥∥∥∥
dQ

dP

]
.

Now, for p ≥ 1, we have

E

[(
dQ

dP

)p]
= E

[
exp
(
−pα(μ)′ρ−1WT − p

2
α(μ)′ρ−1α(μ)T

)]

= E

[
exp

(
p(p − 1)

2
α(μ)′ρ−1α(μ)T

)]
.
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Because mμ is sub-Gaussian, there exists p > 1 such that dQ
dP ∈ L p(�,P). Because of

the Lipschitz assumption on G, we have for any q > 1, and in particular for q such that
1
p + 1

q = 1, that

sup
(t,y)∈[0,T ]×Rd

sup
s∈[t,T ]

E

[∥∥∥∥
∫ s

t
DY G(τ, Y t,y

τ )(σ � dŴτ )

∥∥∥∥
q]

< +∞.

Therefore,

sup
(t,y)∈[0,T ]×Rd

sup
s∈[t,T ]

E

[∥∥∥∥
∫ s

t
DY G(τ, Y t,y

τ )(σ � dŴτ )

∥∥∥∥
dQ

dP

]
< +∞.

We can conclude thatEQ[
∥∥∥G(s, Y t,y

s ) − G(t, y)

∥∥∥] is bounded uniformly, and therefore using

Eqs. (28) and (29) that
∥∥∇yφ
∥∥ is indeed at most linear in y uniformly in t ∈ [0, T ]. ��

Using the above results, we know that there exists a C1,2,2([0, T ] × R × R
d) function

u solution of the HJB equation (19) with terminal condition (20). By using a verification
argument, we can show that u is in fact the value function v defined in Eq. (18) and then
solve the problem faced by the agent. This is the purpose of the following theorem.

Theorem 3 Let us consider the C1,2([0, T ] × R
d) function φ defined by (26). Let us then

consider the associated function u defined by (21).
For all (t, V , y) ∈ [0, T ] × R × R

d and M = (Ms)s∈[t,T ] ∈ At , we have

E

[
− exp
(
−γ V t,V ,y,M

T

)]
≤ u (t, V , y) . (30)

Moreover, equality in (30) is obtained by taking the optimal control (M�
s )s∈[t,T ] ∈ At given

by (24), i.e.,

∀s ∈ [t, T ], M�
s = e−r(T −s)

(
G(s, Y t,y

s )

γ
− ∇yφ(s, Y t,y

s )

)
.

In particular u = v.

Proof From the Lipschitz property of G stated in Eq. (12) and the property of φ stated in
Eq. (27), we see that (M�

s )s∈[t,T ] is indeed admissible (i.e., (M�
s )s∈[t,T ] ∈ At ).

Let us then consider (t, V , y) ∈ [0, T ] × R × R
d and M = (Ms)s∈[t,T ] ∈ At .

By Itō’s formula, we have for all s ∈ [t, T ]
du
(

s, V t,V ,y,M
s , Y t,y

s

)

= ∂t u
(

s, V t,V ,y,M
s , Y t,y

s

)
ds + ∂V u

(
s, V t,V ,y,M

s , Y t,y
s

)
dV t,V ,y,M

s

+∇yu
(

s, V t,V ,y,M
s , Y t,y

s

)′
dY t,y

s

+ 1

2
∂2V V u
(

s, V t,V ,y,M
s , Y t,y

s

)
M ′

s�Msds + 1

2
Tr
(
�∇2

yyu
(

s, V t,V ,y,M
s , Y t,y

s

))
ds

+ M ′
s�∂V ∇yu

(
s, V t,V ,y,M

s , Y t,y
s

)
ds

= LM u
(

s, V t,V ,y,M
s , Y t,y

s

)
ds

+
(
∂V u
(

s, V t,V ,y,M
s , Y t,y

s

)
Ms + ∇yu

(
s, V t,V ,y,M

s , Y t,y
s

))′ (
σ � dŴs

)
,
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where

LM u(s, V t,V ,y,M
s , Y t,y

s )

= ∂t u
(

s, V t,V ,y,M
s , Y t,y

s

)
+ ∂V u

(
s, V t,V ,y,M

s , Y t,y
s

)
(r V t,V ,y,M

s + M ′
s�G(s, Y t,y

s ))

+∇yu
(

s, V t,V ,y,M
s , Y t,y

s

)′ (
r�1 + �G(s, Y t,y

s ) − 1

2
σ � σ

)

+ 1

2
∂2V V u
(

s, V t,V ,y,M
s , Y t,y

s

)
M ′

s�Ms + 1

2
Tr
(
�∇2

yyu
(

s, V t,V ,y,M
s , Y t,y

s

))

+ M ′
s�∂V ∇yu

(
s, V t,V ,y,M

s , Y t,y
s

)′

Note that we have

∂V u
(

s, V t,V ,y,M
s , Y t,y

s

)
Ms + ∇yu

(
s, V t,V ,y,M

s , Y t,y
s

)

= − γ u
(

s, V t,V ,y,M
s , Y t,y

s

) (
er(T −s)Ms + ∇yφ(s, Y t,y

s )
)

.

Let us subsequently define, for all s ∈ [t, T ],

κM
s = −γ

(
er(T −s)Ms + ∇yφ(s, Y t,y

s )
)

,

and

ξ M
t,s = exp

(∫ s

t
κM
τ

′ (
σ � dŴτ

)− 1

2

∫ s

t
κM
τ

′
�κM

τ dτ

)
.

We have

dξ M
t,s = ξ M

t,sκ
M
s

′ (
σ � dŴs

)

and

d
(
ξ M

t,s

)−1 = −
(
ξ M

t,s

)−1
κM

s

(
σ � dŴs

)+
(
ξ M

t,s

)−1
κM

s
′
�κM

s ds.

Therefore

d

(
u
(

s, V t,V ,y,M
s , Y t,y

s

) (
ξ M

t,s

)−1
)

= u
(

s, V t,V ,y,M
s , Y t,y

s

)(
−
(
ξ M

t,s

)−1
κM

s
′ (

σ � dŴs
)+
(
ξ M

t,s

)−1
κM

s
′
�κM

s ds

)

+
(
ξ M

t,s

)−1 (
LM u
(

s, V t,V ,y,M
s , Y t,y

s

)
ds + u

(
s, V t,V ,y,M

s , Y t,y
s

)
κM

s
′ (

σ � dŴs
))

−
(
ξ M

t,s

)−1
u
(

s, V t,V ,y,M
s , Y t,y

s

)
κM

s
′
�κM

s ds

=
(
ξ M

t,s

)−1
LM u
(

s, V t,V ,y,M
s , Y t,y

s

)
ds.
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By definition of u, LM u
(

s, V t,V ,y,M
s , Y t,y

s

)
≤ 0 and LM u

(
s, V t,V ,y,M

s , Y t,y
s

)
= 0 if

Ms = M�
s . As a consequence,

(
u
(

s, V t,V ,y,M
s , Y t,y

s

) (
ξ M

t,s

)−1
)

s∈[t,T ] is nonincreasing, and
therefore

u(T , V t,V ,y,M
T , Y t,y

T ) ≤ u(t, V , y)ξ M
t,T ,

with equality when (Ms)s∈[t,T ] = (M�
s )s∈[t,T ].

Subsequently,

E

[
− exp
(
−γ V t,V ,y,M

T

)]
= E

[
u(T , V t,V ,y,M

T , Y t,y
T )
]

≤ u(t, V , y)E
[
ξ M

t,T

]
,

with equality when (M�
s )s∈[t,T ] = (Ms)s∈[t,T ].

To conclude the proof let us show that E
[
ξ M

t,T

]
= 1. To do so, we will use the fact that

ξ M
t,t = 1 and prove that

(
ξ M

t,s

)
s∈[t,T ] is a martingale under

(
P,
(F S

s

)
s∈[t,T ]
)
.

Because M ∈ At , and because of Eq. (27), we know that there exists a constant C such
that

sup
s∈[t,T ]

∥∥∥κM
s

∥∥∥
2 ≤ C

(
1 + sup

s∈[t,T ]

∥∥∥Y t,y
s

∥∥∥
2
)

.

By definition of (Y t,y
s )s∈[t,T ], there exists therefore a constant C ′ such that

sup
s∈[t,T ]

∥∥∥κM
s

∥∥∥
2 ≤ C ′

(
1 + ‖μ‖2 + sup

s∈[t,T ]
‖Ws − Wt‖2

)
.

Now, by using the above inequality along with Eq. (2) and classical properties of the
Brownian motion, we easily prove that

∃ε > 0,∀s ∈ [t, T ], E

[
exp

(
1

2

∫ (s+ε)∧T

s
κM

s
′
�κM

s ds

)]
< +∞. (31)

FromNovikov’s condition (ormore exactly one of its corollary—see for instanceCorollary

5.14 in [27]), we see that
(
ξ M

t,s

)
s∈[t,T ] is a martingale under

(
P,
(F S

s

)
s∈[t,T ]
)
, hence the result

E

[
− exp
(
−γ V t,V ,y,M

T

)]
≤ u(t, V , y),

with equality when (M�
s )s∈[t,T ] = (Ms)s∈[t,T ]. Therefore,

u(t, V , y) = v(t, V , y) = sup
(Ms )s∈[t,T ]∈At

E

[
− exp
(
−γ V t,V ,y,M

T

)]

= E

[
− exp
(
−γ V t,V ,y,M�

T

)]
.

��

The optimal portfolio choice of an agent with a CARA utility function is therefore fully
characterized. Let us now turn to the case of an agent with a CRRA utility function.
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3.2 CRRA case

We consider the portfolio choice of the agent in the CRRA case. We denote by γ > 0 the
relative risk aversion parameter.

We denote by U γ the utility function of the agent, i.e.,

U γ : V ∈ R
∗+ 	→
⎧⎨
⎩

V 1−γ

1 − γ
if γ �= 1

log (V ) if γ = 1.

If γ < 1, we define for t ∈ [0, T ] the set

Aγ
t =
{
(θs)s∈[t,T ] , R

d -valued F S-adapted process, E

[∫ T

t
θ2s ds

]
< +∞

}
.

If γ ≥ 1, we define for t ∈ [0, T ] the set
Aγ

t =
{
(θs)s∈[t,T ] ,R

d -valued F S-adapted process

satisfying the linear growth condition with respect to (Ys)s∈[t,T ]
}
.

We denote by (θt )t∈[0,T ] ∈ Aγ = Aγ
0 theRd -valued process modelling the strategy of the

agent. More precisely, ∀i ∈ {1, . . . , d}, θ i
t represents the part of the wealth invested in the

i th risky asset at time t . The resulting value of the agent’s portfolio is modelled by a process
(Vt )t∈[0,T ] with V0 > 0. The dynamics of (Vt )t∈[0,T ] is given by the following stochastic
differential equation (SDE):

dVt =
(
θ ′

t

(
μ − r�1

)
+ r
)

Vt dt + Vtθ
′
t (σ � dWt ) . (32)

With the notations introduced in Sect. 2, we have

dVt =
(
θ ′

t

(
βt − r�1

)
+ r
)

Vt dt + Vtθ
′
t

(
σ � dŴt

)

= (θ ′
t �G(t, Yt ) + r

)
Vt dt + Vtθ

′
t

(
σ � dŴt

)
,

and

dYt =
(

r�1 + �G (t, Yt ) − 1

2
σ � σ

)
dt + σ � dŴt .

Given θ ∈ Aγ
t and s ≥ t , we define

Y t,y
s = y +

∫ s

t

(
r�1 + �G(τ, Y t,y

τ ) − 1

2
σ � σ

)
dτ + σ � (Ŵs − Ŵt ), (33)

V t,V ,y,θ
s = V +

∫ s

t

(
θ ′
τ�G(τ, Y t,y

τ ) + r
)

V t,V ,y,θ
τ dτ +

∫ s

t
V t,V ,y,θ

τ θ ′
τ (σ � dŴτ ). (34)

For an arbitrary initial state (V0, y0), the agent maximizes, over θ in the set of admissible
strategies Aγ , the expected utility of his portfolio value at time T , i.e.,

E

[
U γ
(

V 0,V0,y0,θ
T

)]
.

The value function v associated with this problem is then defined by

v : (t, V , y) ∈ [0, T ] × R
∗+ × R

d 	→ sup
(θs )s∈[t,T ]∈Aγ

t

E

[
U γ
(

V t,V ,y,θ
T

)]
. (35)
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The HJB equation associated with this problem is given by

∂t u + (∇yu)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ r V ∂V u

+ sup
θ∈Rd

{
V ∂V uθ ′�G + V 2

2
θ ′�θ∂2V V u + V θ ′�∂V ∇yu

}
= 0, (36)

with terminal condition

∀V ∈ R
∗+,∀y ∈ R

d , u(T , V , y) = U γ (V ). (37)

To solve the HJB equation and then solve the optimal portfolio choice problem, we need
to consider separately the cases γ = 1 and γ �= 1.

3.2.1 The � �= 1 case

To solve the HJB equation when γ �= 1, we use the following ansatz:

u (t, V , y) = U γ
(

er(T −t)V
)

φ(t, y)γ . (38)

Proposition 6 Suppose there exists a positive function φ ∈ C1,2
(
[0, T ] × R

d
)

satisfying

∂tφ + (∇yφ)′
(

r�1 + 1

γ
�G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ φ
(1 − γ )

2γ 2 G ′�G = 0,(39)

with terminal condition

∀y ∈ R
d , φ (T , y) = 1. (40)

Then u defined by (38) is solution of the HJB equation (36) with terminal condition (37).
Moreover, the supremum in (36) is achieved at

θ�(t, y) = G(t, y)

γ
+ ∇yφ(t, y)

φ(t, y)
. (41)

Proof Let us consider φ ∈ C1,2
(
[0, T ] × R

d
)
, positive solution of (39) with terminal con-

dition (40). For u defined by (38), we have:

∂t u + (∇yu)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ r V ∂V u

+ sup
θ∈Rd

{
V ∂V uθ ′�G + V 2

2
θ ′�θ∂2V V u + V θ ′�∂V ∇yu

}

= γ u

φ
∂tφ + γ u(∇yφ)′

φ

(
r�1 + �G − 1

2
σ � σ

)
+ γ u

2φ
Tr
(
�∇2

yyφ
)

+ γ (γ − 1)u

2φ2 Tr
(
�∇yφ(∇yφ)′

)

+ (1 − γ )u sup
θ∈Rd

{
θ ′�G − γ

2
θ ′�θ + γ θ ′�

∇yφ

φ

}
.

The supremum in the above expression is reached at

θ�(t, y) = G(t, y)

γ
+ ∇yφ(t, y)

φ(t, y)
.
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Plugging this expression in the partial differential equation, we get:

∂t u + (∇yu)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ r V ∂V u

+ sup
θ∈Rd

{
V ∂V uθ ′�G + V 2

2
θ ′�θ∂2V V u + V θ ′�∂V ∇yu

}

= γ u

φ

[
∂tφ + (∇yφ)′

(
r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ (γ − 1)

2φ
(∇yφ)′�∇yφ + (1 − γ )

φ

2

(
G

γ
+ ∇yφ

φ

)′
�

(
G

γ
+ ∇yφ

φ

)]

= γ u

φ

[
∂tφ + (∇yφ)′

(
r�1 + 1

γ
�G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ (1 − γ )φ

2γ 2 G ′�G

]

= 0.

As it is straightforward to verify that u satisfies the terminal condition (37), the result is
proved. ��

For solving our problem, we would like to prove that there exists a (positive)
C1,2
(
[0, T ] × R

d
)
function φ solution of (39) with terminal condition (40) such that ∇yφ

φ
is

at most linear in y. However, unlike what happened in the CARA case, there is no guarantee,
in general, that such a function exists. We will even show in Sect. 4 that there are blowup
cases for some Gaussian priors in the case γ < 1.

Even though there is no general result, we can state for instance a result in the case of a
prior distribution mμ with compact support.

Proposition 7 Let us suppose that the prior distribution mμ has compact support.
Let us define

φ : (t, y) ∈ [0, T ] × R
d 	→ E

[
exp

(
(1 − γ )

2γ 2

∫ T

t
G(s, Zt,y

s )′�G(s, Zt,y
s )ds

)]
, (42)

where ∀(t, y) ∈ [0, T ] × R
d , we introduce for s ∈ [t, T ],

d Z t,y
s =
(

r�1 + 1

γ
�G(t, Zt,y

s ) − 1

2
σ � σ

)
ds + σ � dWs, Zt,y

t = y.

Furthermore, in that case

∃AT > 0,∀t ∈ [0, T ],∀y ∈ R
d ,∀i ∈ {1, . . . , d},

∥∥∥∥
∇yφ(t, y)

φ(t, y)

∥∥∥∥ ≤ AT . (43)

Proof By using Theorem 1 and Proposition 3, we easily see that formal differentiations
are authorized. Therefore φ is a C1,2

(
[0, T ] × R

d
)
function solution of (39) with terminal

condition (40).
For the second point, we write, for (t, y) ∈ [0, T ] × R

d ,

∇yφ(t, y)

= E

[
(1 − γ )

γ 2

∫ T

t
Dy Zt,y

s DZ G(s, Zt,y
s )�G(s, Zt,y

s )ds

exp

(
(1 − γ )

2γ 2

∫ T

t
G(s, Zt,y

s )′�G(s, Zt,y
s )ds

)]
.
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We have

d Dy Zt,y
s = 1

γ
�DZ G(t, Zt,y

s )Dy Zt,y
s ds, Dy Zt,y

t = Id .

Because of the Lipschitz property of G and Grönwall inequality, sups∈[t,T ]
∥∥∥Dy Zt,y

s

∥∥∥ is
uniformly bounded on [0, T ]×R

d . By Proposition 3, we then deduce that there exists C ≥ 0
such that

∀(t, y) ∈ [0, T ] × R
d , sup

s∈[t,T ]

∥∥∥Dy Zt,y
s DZ G(s, Zt,y

s )�G(s, Zt,y
s )

∥∥∥ ≤ C .

Therefore,

∥∥∇yφ(t, y)
∥∥ ≤ E

[ |1 − γ |
γ 2 C(T − t) exp

(
(1 − γ )

2γ 2

∫ T

t
G(s, Zt,y

s )′�G(s, Zt,y
s )ds

)]

≤ |1 − γ |
γ 2 CT φ(t, y).

Hence the result. ��

We now write a verification theorem and provide a result for solving the problem faced
by the agent under additional hypotheses.

Theorem 4 Let us suppose that there exists a positive function φ ∈ C1,2([0, T ]×R
d) solution

of (39) with terminal condition (40). Let us also suppose that

∃AT > 0,∀t ∈ [0, T ],∀y ∈ R
d ,∀i ∈ {1, . . . , d},

∥∥∥∥
∇yφ(t, y)

φ(t, y)

∥∥∥∥ ≤ AT (1 + ‖y‖). (44)

Let us then consider the function u defined by (38).
For all (t, V , y) ∈ [0, T ] × R

∗+ × R
d and θ = (θs)s∈[t,T ] ∈ Aγ

t , we have

E

[
U γ
(

V t,V ,y,θ
T

)]
≤ u(t, V , y) (45)
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Moreover, equality in (45) is obtained by taking the optimal control (θ�
s )s∈[t,T ] ∈ Aγ

t given
by (41), i.e.,

∀s ∈ [t, T ], θ�
s = G(s, Y t,y

s )

γ
+ ∇yφ(s, Y t,y

s )

φ(s, Y t,y
s )

. (46)

In particular u = v.

Proof The proof is similar to that of the CARA case, therefore we do not detail all the
computations.

From the Lipschitz property of G stated in Eq. (12) and assumption (44) on φ, we see that
(θ�

s )s∈[t,T ] is indeed admissible (i.e., (θ�
s )s∈[t,T ] ∈ Aγ

t ).
Let us then consider (t, V , y) ∈ [0, T ] × R

∗+ × R
d and θ = (θs)s∈[t,T ] ∈ Aγ

t .
By Itō’s formula, we have for all s ∈ [t, T ]

d
(

u
(

s, V t,V ,y,θ
s , Y t,y

s

))

= Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)
ds

+
(
∂V u
(

s, V t,V ,y,θ
s , Y t,y

s

)
θs V t,V ,y,θ

s + ∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

))′ (
σ � dŴs

)
,

where

Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)

= ∂t u
(

s, V t,V ,y,θ
s , Y t,y

s

)
+ ∂V u

(
s, V t,V ,y,θ

s , Y t,y
s

) (
θ ′

s�G(s, Y t,y
s ) + r

)
V t,V ,y,θ

s

+∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

)′ (
r�1 + �G(s, Y t,y

s ) − 1

2
σ � σ

)

+ 1

2
V t,V ,y,θ

s ∂V ∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

)′
�θs

+ 1

2
∂2V V u
(

s, V t,V ,y,θ
s , Y t,y

s

) (
V t,V ,y,θ

s

)2
θ ′

s�θs

+ 1

2
Tr
(
�∇2

yyu
(

s, V t,V ,y,θ
s , Y t,y

s

))
.

Note that we have

∂V u
(

s, V t,V ,y,θ
s , Y t,y

s

)
θs V t,V ,y,θ

s + ∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

)

= u
(

s, V t,V ,y,θ
s , Y t,y

s

)⎛
⎝(1 − γ )θs + γ

∇yφ
(

s, Y t,y
s

)

φ
(

s, Y t,y
s

)
⎞
⎠ .

Let us subsequently define, for all s ∈ [t, T ],

κθ
s = (1 − γ )θs + γ

∇yφ
(

s, Y t,y
s

)

φ
(

s, Y t,y
s

) ,

and

ξθ
t,s = exp

(∫ s

t
κθ
τ

′ (
σ � dŴτ

)− 1

2

∫ s

t
κθ
τ

′
�κθ

τ dτ

)
.
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We have

d
(

u
(

s, V t,V ,y,θ
s , Y t,y

s

) (
ξθ

t,s

)−1
)

= (ξθ
t,s

)−1 Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)
ds.

By definition of u, Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)
≤ 0 and Lθ u

(
s, V t,V ,y,θ

s , Y t,y
s

)
= 0 if θs =

θ�
s . As a consequence,

(
u
(

s, V t,V ,y,θ
s , Y t,y

s

) (
ξθ

t,s

)−1
)

s∈[t,T ] is nonincreasing, and therefore

u
(

T , V t,V ,y,θ
T , Y t,y

T

)
≤ u (t, V , y) ξ θ

t,T , (47)

with equality when (θs)s∈[t,T ] = (θ�
s

)
s∈[t,T ].

Subsequently,

E

[
U γ
(

V t,V ,y,θ
T

)]
= E

[
u(T , V t,V ,y,θ

T , Y t,y
T )
]

≤ u(t, V , y)E
[
ξθ

t,T

]
,

with equality when (θ�
s )s∈[t,T ] = (θs)s∈[t,T ].

Using the same method as in the proof of Theorem 3, we see that E[ξθ�

t,T ] = 1. Therefore,

u(t, V , y) = E

[
U γ
(

V t,V ,y,θ�

T

)]
.

We have just shown the second part of the theorem. For the first part, we consider the
cases γ ≥ 1 and γ < 1 separately because the set of admissible strategies is larger in the
second case.

(a) If γ ≥ 1, (θs)s∈[t,T ] ∈ Aγ
t verifies the linear growth condition. Therefore, using the

assumption on
∇yφ

φ
and the same argument as in Theorem 3, we see that

(
ξθ

t,s

)
s∈[t,T ] is

a martingale with E
[
ξθ

t,s

] = 1 for all s ∈ [t, T ].
We obtain

E

[
U γ
(

V t,V ,y,θ
T

)]
≤ u (t, V , y) .

(b) If γ < 1, then we define the stopping time

τn = T ∧ inf
{
s ∈ [t, T ] ,

∥∥κθ
s

∥∥ ≥ n
}
.

We use this stopping time in order to localize Eq. (47)

u
(
τn, V t,V ,y,θ

τn
, Y t,y

τn

)
≤ ξθ

t,τn
u (t, V , y) .

By taking the expectation, we have, for all n ∈ N,

E

[
u
(
τn, V t,V ,y,θ

τn
, Y t,y

τn

)]
≤ u (t, V , y) .

As u is nonnegative when γ < 1, we can apply Fatou’s lemma

E

[
lim inf
n→+∞ u

(
τn, V t,V ,y,θ

τn
, Y t,y

τn

)]
≤ lim inf

n→+∞ E

[
u
(
τn, V t,V ,y,θ

τn
, Y t,y

τn

)]

≤ u (t, V , y) .

Because (θs)s∈[t,T ] ∈ Aγ
t , τn →n→+∞ T almost surely. Therefore

E

[
U γ
(

V t,V ,y,θ
s

)]
≤ u (t, V , y) .
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In both cases, we conclude that

u(t, V , y) = v(t, V , y) = sup
(θs )s∈[t,T ]∈Aγ

t

E

[
U γ
(

V t,V ,y,θ
T

)]
= E

[
U γ
(

V t,V ,y,θ�

T

)]
.

��
The above verification theorem can be used for instance when mμ has a compact support

because of (43). In the next section, we address the case of Gaussian priors and we shall
see that there is a blowup phenomenon associated with the solution of the partial differential
equation (39) with terminal condition (40) when γ is too small.

Before we turn to the Gaussian case, let us consider the specific case γ = 1.

3.2.2 The � = 1 case

To solve the HJB equation when γ = 1, we use the following ansatz:

u (t, V , y) = r(T − t) + log(V ) + φ(t, y). (48)

Proposition 8 Suppose there exists a function φ ∈ C1,2
(
[0, T ] × R

d
)

satisfying

∂tφ + (∇yφ)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ 1

2
G ′�G = 0, (49)

with terminal condition

∀y ∈ R
d , φ (T , y) = 0. (50)

Then u defined by (48) is solution of the HJB equation (36) with terminal condition (37).
Moreover, the supremum in (36) is achieved at

θ�(t, y) = G(t, y). (51)

Proof Let us consider φ ∈ C1,2
(
[0, T ] × R

d
)
, solution of (49) with terminal condition (50).

For u defined by (48), we have:

∂t u + (∇yu)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ r V ∂V u

+ sup
θ∈Rd

{
V ∂V uθ ′�G + V 2

2
θ ′�θ∂2V V u + V θ ′�∂V ∇yu

}

= − r + ∂tφ + (∇yφ)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ r + sup
θ∈Rd

{
θ ′�G − 1

2
θ ′�θ

}
.

The supremum in the above expression is reached at

θ�(t, y) = G(t, y).

Therefore

∂t u + (∇yu)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyu
)

+ r V ∂V u
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+ sup
θ∈Rd

{
V ∂V uθ ′�G + V 2

2
θ ′�θ∂2V V u + V θ ′�∂V ∇yu

}

= ∂tφ + (∇yφ)′
(

r�1 + �G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ 1

2
G ′�G

= 0.

As it is straightforward to verify that u satisfies the terminal condition (37), the result is
proved. ��

From the previous proposition, we see that solving the HJB equation (36) with terminal
condition (37) boils down to solving (49) with terminal condition (50). Because (49) is a
simple parabolic PDE, we can easily build a strong solution.

Proposition 9 Let us define

φ : (t, y) ∈ [0, T ] × R
d 	→ E

[∫ T

t

1

2
G(s, Y t,y

s )′�G(s, Y t,y
s )ds

]
, (52)

where ∀(t, y) ∈ [0, T ] × R
d , ∀s ∈ [t, T ],

Y t,y
s = y +

∫ s

t

(
r�1 + �G(τ, Y t,y

τ ) − 1

2
σ � σ

)
dτ + σ � (Ŵs − Ŵt ).

Then φ is a C1,2([0, T ] × R
d) function, solution of (49) with terminal condition (50). Fur-

thermore,

∃AT > 0,∀t ∈ [0, T ],∀y ∈ R
d ,∀i ∈ {1, . . . , d}, ∥∥∇yφ(t, y)

∥∥ ≤ AT (1 + ‖y‖). (53)

Proof Because of the assumption (12) on G, the first part of the proposition is a consequence
of classical results for parabolic PDEs and of the classical Feynman–Kac representation (see
for instance [19,27]).

For the second part, we notice first that

∀(t, y) ∈ [0, T ] × R
d ,∇yφ(t, y) = E

[∫ T

t

1

γ
DyY t,y

s DY G(s, Y t,y
s )�G(s, Y t,y

s )ds

]
.

We have

d DyY t,y
s = �DY G(t, Y t,y

s )DyY t,y
s ds, DyY t,y

t = Id .

Because of the Lipschitz property of G and Grönwall inequality, sups∈[t,T ]
∥∥∥DyY t,y

s

∥∥∥ is
uniformly bounded on [0, T ] × R

d . Therefore, by (12), there exists a constant C ≥ 0 such
that

∀(t, y) ∈ [0, T ] × R
d ,∀s ∈ [t, T ]

∥∥∥DyY t,y
s DY G(s, Y t,y

s )�G(s, Y t,y
s )

∥∥∥
≤ C
∥∥∥G(s, Y t,y

s )

∥∥∥ . (54)

By (12) there exists a constant C ′ ≥ 0 such that
∥∥∥G(s, Y t,y

s )

∥∥∥ ≤
∥∥∥G(s, Y t,y

s ) − G(t, y)

∥∥∥+ C ′(1 + ‖y‖). (55)

But, by using Theorem 2

G(s, Y t,y
s ) − G(t, y) =

∫ s

t
DY G(τ, Y t,y

τ )(σ � dŴτ ).
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Therefore, using the Lipschitz property of G we see that E
[∥∥∥G(s, Y t,y

s ) − G(t, y)

∥∥∥
]
is

bounded by a constant that depends on T only. Combining this result with Eqs. (54) and (55),
we obtain the property (53). ��

We now write a verification theorem and provide a result for solving the problem faced
by the agent.

Theorem 5 Let us consider the function φ ∈ C1,2([0, T ] × R
d) defined by (52). Let us then

consider the function u defined by (48).
For all (t, V , y) ∈ [0, T ] × R

∗+ × R
d and θ = (θs)s∈[t,T ] ∈ A1

t , we have

E

[
log
(

V t,V ,y,θ
T

)]
≤ u(t, V , y) (56)

Moreover, equality in (45) is obtained by taking the optimal control (θ�
s )s∈[t,T ] ∈ A1

t given
by (51), i.e.,

∀s ∈ [t, T ], θ�
s = G(s, Y t,y

s ). (57)

In particular u = v.

Proof The proof is similar to that of the γ > 1 case, therefore we do not detail all the
computations.

From the Lipschitz property of G stated in Eq. (12), we see that (θ�
s )s∈[t,T ] is indeed

admissible (i.e., (θ�
s )s∈[t,T ] ∈ A1

t ).
Let us then consider (t, V , y) ∈ [0, T ] × R

∗+ × R
d and θ = (θs)s∈[t,T ] ∈ A1

t .
By Itō’s formula, we have for all s ∈ [t, T ]

d
(

u
(

s, V t,V ,y,θ
s , Y t,y

s

))

= Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)
ds

+
(
∂V u
(

s, V t,V ,y,θ
s , Y t,y

s

)
θs V t,V ,y,θ

s + ∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

))′ (
σ � dŴs

)
,

where

Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)

= ∂t u
(

s, V t,V ,y,θ
s , Y t,y

s

)
+ ∂V u

(
s, V t,V ,y,θ

s , Y t,y
s

) (
θ ′

s�G(s, Y t,y
s ) + r

)
V t,V ,y,θ

s

+∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

)′ (
r�1 + �G(s, Y t,y

s ) − 1

2
σ � σ

)

+ 1

2
V t,V ,y,θ

s ∂V ∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

)′
�θs

+ 1

2
∂2V V u
(

s, V t,V ,y,θ
s , Y t,y

s

) (
V t,V ,y,θ

s

)2
θ ′

s�θs

+ 1

2
Tr
(
�∇2

yyu
(

s, V t,V ,y,θ
s , Y t,y

s

))
.

Note that we have

∂V u
(

s, V t,V ,y,θ
s , Y t,y

s

)
θs V t,V ,y,θ

s + ∇yu
(

s, V t,V ,y,θ
s , Y t,y

s

)

= θs + ∇yφ
(

s, Y t,y
s

)
.
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Let us subsequently define, for all s ∈ [t, T ],

κθ
s = θs + ∇yφ

(
s, Y t,y

s

)
,

and

ξθ
t,s = exp

(∫ s

t
κθ
τ

′ (
σ � dŴτ

)− 1

2

∫ s

t
κθ
τ

′
�κθ

τ dτ

)
.

We have

d
(

u
(

s, V t,V ,y,θ
s , Y t,y

s

) (
ξθ

t,s

)−1
)

= (ξθ
t,s

)−1 Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)
ds.

By definition of u, Lθ u
(

s, V t,V ,y,θ
s , Y t,y

s

)
≤ 0 and Lθ u

(
s, V t,V ,y,θ

s , Y t,y
s

)
= 0 if θs =

θ�
s . As a consequence,

(
u
(

s, V t,V ,y,θ
s , Y t,y

s

) (
ξθ

t,s

)−1
)

s∈[t,T ] is nonincreasing, and therefore

u
(

T , V t,V ,y,θ
T , Y t,y

T

)
≤ u (t, V , y) ξ θ

t,T , (58)

with equality when (θs)s∈[t,T ] = (θ�
s

)
s∈[t,T ].

Subsequently,

E

[
log
(

V t,V ,y,θ
T

)]
= E

[
u(T , V t,V ,y,θ

T , Y t,y
T )
]

≤ u(t, V , y)E
[
ξθ

t,T

]
,

with equality when (θs)s∈[t,T ] = (θ�
s )s∈[t,T ].

(θs)s∈[t,T ] ∈ A1
t verifies the linear growth condition. Therefore, using Eq. (53) and the

same argument as in Theorem 3, we see that
(
ξθ

t,s

)
s∈[t,T ] is a martingale with E

[
ξθ

t,s

] = 1
for all s ∈ [t, T ].

We obtain

E

[
log
(

V t,V ,y,θ
T

)]
≤ u (t, V , y) ,

with equality when (θs)s∈[t,T ] = (θ�
s

)
s∈[t,T ].

We conclude that

u(t, V , y) = v(t, V , y) = sup
(θs )s∈[t,T ]∈A1

t

E

[
log
(

V t,V ,y,θ
T

)]
= E

[
log
(

V t,V ,y,θ�

T

)]
.

��

4 Optimal portfolio choice in the Gaussian case: a tale of two routes

We showed in Sect. 3 that solving the optimal portfolio choice problem boils down to solving
linear parabolic PDEs in the CARA and CRRA cases. One important case in which these
PDEs can be solved in closed form is that of a Gaussian prior. Moreover, in the Gaussian
prior case, there are two routes to solve the problem with PDEs because, as we shall see
below, β appears to be a far more natural state variable than y. In this section, we solve the
optimal portfolio choice problem in the case of a Gaussian prior using these two different
routes and we discuss two essential points: (i) the influence of online learning on the optimal
investment strategy, and (ii) the occurrence of blowups in some CRRA cases.
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4.1 Bayesian learning in the Gaussian case

Let us consider a non-degenerate multivariate Gaussian prior mμ, i.e.,

mμ(dz) = 1

(2π)
d
2 |�0| 12

exp

(
−1

2
(z − β0)

′�−1
0 (z − β0)

)
dz, (59)

where β0 ∈ R
d and �0 ∈ S++

d (R).
Our first goal is to obtain closed-form expressions for F and G in the Gaussian case. In

order to obtain these expressions we shall use the following lemma:

Lemma 1

∀M ∈ S++
d (R),

∀N ∈ R
d ,

∫

Rd
exp
(−x ′Mx + x ′N

)
dx = π

d
2 |M |− 1

2 exp

(
1

4
N ′M−1N

)
.

Proof Using the canonical form of a polynomial of degree 2, we get

−x ′Mx + x ′N = −
(

x − 1

2
M−1N

)′
M

(
x − 1

2
M−1N

)
+ 1

4
N ′M−1N .

Therefore,
∫

Rd
exp
(−x ′Mx + x ′N

)
dx

=
∫

Rd
exp

(
−
(

x − 1

2
M−1N

)′
M

(
x − 1

2
M−1N

)
+ 1

4
N ′M−1N

)
dx

= (2π)
d
2 |(2M)−1| 12 exp

(
1

4
N ′M−1N

)

= π
d
2 |M |− 1

2 exp

(
1

4
N ′M−1N

)
.

��
We are now ready to derive the expressions of F and G.

Proposition 10 For the multivariate Gaussian prior mμ given by (59), F and G are given
by: ∀t ∈ R+,∀y ∈ R

d ,

F(t, y) =
∣∣∣�−1

0 + t�−1
∣∣∣
− 1

2

|�0| 12
exp

{
−r�1′�−1

[
y − Y0 + t

2
σ � σ

]
+ t

2
r2�1�−1�1

−1

2
β ′
0�

−1
0 β0 + 1

2

[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]′ (
�−1
0 + t�−1

)−1

×
[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]}
, (60)

G(t, y) = −r�−1�1 + �−1
(
�−1
0 + t�−1

)−1
[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]
.

(61)
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Proof ∀t ∈ R+,∀y ∈ R
d ,

F(t, y) =
∫

Rd
exp

(
(z − r�1)′�−1

(
y − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

)

−1

2
(z − r�1)′�−1(z − r�1)t

)
mμ(dz).

Therefore,

F(t, y) = 1

(2π)
d
2 |�0| 12

∫

Rd
exp

{
(z − r�1)′�−1

[
y − Y0 +

(
−r�1 + 1

2
σ � σ

)
t

]

−1

2
(z − r�1)′�−1(z − r�1)t − 1

2
(z − β0)

′�−1
0 (z − β0)

}
dz

= exp (D)

(2π)
d
2 |�0| 12

∫

Rd
exp
(−z′Mz + z′N

)
dz,

where

M = 1

2

(
�−1
0 + t�−1

)
,

N = �−1
[

y − Y0 +
(

−r�1 + 1

2
σ � σ

)
t

]
+ r�−1�1t + �−1

0 β0

= �−1
[

y − Y0 + t

2
σ � σ

]
+ �−1

0 β0,

and

D = −r�1′�−1
[

y − Y0 +
(

−r�1 + 1

2
σ � σ

)
t

]
− t

2
r2�1′�−1�1 − 1

2
β ′
0�

−1
0 β0

= −r�1′�−1
[

y − Y0 + t

2
σ � σ

]
+ t

2
r2�1′�−1�1 − 1

2
β ′
0�

−1
0 β0

Thanks to the above lemma, we have

F(t, y) = exp (D)

(2π)
d
2 |�0| 12

π
d
2 |M |− 1

2 exp

(
1

4
N ′M−1N

)

=
∣∣∣�−1

0 + t�−1
∣∣∣
− 1

2

|�0| 12
exp

{
−r�1′�−1

[
y − Y0 + t

2
σ � σ

]
+ t

2
r2�1�−1�1 − 1

2
β ′
0�

−1
0 β0

+1

2

[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]′ (
�−1
0 + t�−1

)−1

[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]}
.
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Differentiating log F brings

G(t, y) = −r�−1�1 + �−1
(
�−1
0 + t�−1

)−1
[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]
.

��
Using Theorems 1 and 2, we now deduce straightforwardly the value of βt and its dynam-

ics.

Proposition 11

βt = �t

(
�−1
(

Yt − Y0 + t

2
σ � σ

)
+ �−1

0 β0

)
, (62)

dβt = �t�
−1 (σ � dŴt

)
, (63)

where �t =
(
�−1
0 + t�−1

)−1
.

Remark 5 Classical Bayesian analysis or application of classical filtering tools enables to
prove that the posterior distribution of μ given F S

t is in fact the Gaussian distribution
N (βt , �t ). In particular, it is noteworthy that the covariance matrix process (�t )t∈R+ is
deterministic.

The above analysis shows that, in the Gaussian prior case, the problem can be written
with two different sets of state variables: (y, V ) or (β, V ). We can consider indeed that the
problem is described, as in Sect. 3, by the stochastic differential equations

dYt =
(

r�1 + �G (t, Yt ) − 1
2σ � σ

)
dt + σ � dŴt

dVt = (M ′
t�G(t, Yt ) + r Vt

)
dt + M ′

t

(
σ � dŴt

)
,

(64)

or alternatively by the following stochastic differential equations

dβt = �t�
−1
(
σ � dŴt

)

dVt =
(

M ′
t (βt − r�1) + r Vt

)
dt + M ′

t

(
σ � dŴt

)
.

(65)

Inwhat follows,we are going to solve the optimal portfolio choice problem in theGaussian
prior case by using alternatively the two different routes associated with these two ways of
describing the dynamics of the system.

Remark 6 It is noteworthy that the dynamics of (βt )t∈R+ in the Gaussian case, as written
in Eq. (65), does not involve any term in Y . From Theorem 2, we see that this is related
to the fact that the matrix Dy G(t, ·) is independent of y in the Gaussian case. A natural
question is whether or not this property is specific to a Gaussian prior distribution. In fact, the
answer is positive. If indeed Dy G(t, ·) is independent of y, then log F(t, ·) is a polynomial
of (maximum) degree 2, i.e.,

F(t, y) = exp
(

A(t) + B(t)′y + y′C(t)y
)
,

where A(t) ∈ R, B(t) ∈ R
d , and C(t) ∈ Sd(R). Since

F(0, y) =
∫

Rd
exp
(
(z − r�1)′�−1(y − Y0)

)
mμ(dz) = exp(A(0) + B(0)′y + y′C(0)y),

the Laplace transform of mμ is the exponential of a polynomial of (maximum) degree 2, and
mμ is therefore Gaussian (possibly degenerate, even in the form of a Dirac mass).
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Before we solve the PDEs in the CARA and CRRA cases in the next subsections, let us
state some additional properties that will be useful to simplify future computations.

Proposition 12 The dynamics of the conditional covariance matrix process (�t )t∈R+ is given
by:

d�t = −�t�
−1�t dt . (66)

The first order partial derivatives of G are given by:
∀t ∈ R+,∀y ∈ R

d ,

Dy G(t, y) = �−1�t�
−1, (67)

∂t G(t, y) = −�−1�t G(t, y) − Dy G(t, y)

(
r�1 − 1

2
σ � σ

)
. (68)

Proof Equation (66) is a simple consequence of the definition of �t .
Equation (67) derives from the differentiation of Eq. (61) with respect to y.
For Eq. (68), we use Eqs. (61) and (66) to obtain

∂t G(t, y)

= −�−1�t�
−1�t

[
�−1
(

y − Y0 + t

2
σ � σ

)
+ �−1

0 β0

]
+ 1

2
�−1�t�

−1σ � σ

= −�−1�t

(
G(t, y) + r�−1�1

)
+ 1

2
�−1�t�

−1σ � σ

= −�−1�t G(t, y) − �−1�t�
−1
(

r�1 − 1

2
σ � σ

)

= −�−1�t G(t, y) − Dy G(t, y)

(
r�1 − 1

2
σ � σ

)
.

��
Remark 7 From Eq. (67), we see that

sup
(t,y)∈[0,T ]×Rd

∥∥Dy G(t, y)
∥∥ ≤ sup

t∈[0,T ]
∥∥�−1�t�

−1
∥∥ < +∞.

Therefore Gaussian priors satisfy (12) as announced in Sect. 2.

We are now ready to solve the PDEs and derive the optimal portfolios in the CARA and
CRRA cases.

4.2 Portfolio choice in the CARA case

4.2.1 The general method with y

Following the results of Sect. 3, solving the optimal portfolio choice of the agent in the CARA
case boils down to solving the linear parabolic PDE (22) with terminal condition (23).

Because G(t, ·) is affine in y for all t ∈ [0, T ] in the Gaussian case, we easily see from
the Feynman–Kac representation (26) that for all t ∈ [0, T ], φ(t, ·) is a polynomial of degree
2 (in y). However looking for that polynomial of degree 2 in y by using the PDE (22) or
Eq. (26) is cumbersome. As we shall see, the main reason for this is that β is in fact a more
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natural variable to solve the problem than y. In fact, a better ansatz than a general polynomial
of degree 2 in y is the following:

φ(t, y) = a(t) + 1

2
G(t, y)′ B(t)G(t, y), (69)

where a(t) ∈ R and B(t) ∈ Sd(R).
We indeed have the following proposition:

Proposition 13 Assume there exists a ∈ C1 ([0, T ]) and B ∈ C1 ([0, T ] , Sd (R)) satisfying
the following system of linear ODEs (for t ∈ [0, T ]):

ȧ (t) + 1

2
Tr
(
�t�

−1B (t) �−1�t�
−1
) = 0

Ḃ (t) − �t�
−1B (t) − B (t)�−1�t + 1

γ
� = 0,

(70)

with terminal condition

a (T ) = 0
B (T ) = 0.

(71)

Then, the function φ defined by (69) satisfies (22) with terminal condition (23).

Proof Let us consider (a, B) solution of (70) with terminal condition (71). For φ defined by
(69), we have, by using the formulas of Proposition 12 that

∂tφ + (∇yφ
)′ (

r�1 − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ 1

2γ
G ′�G

= ȧ + 1

2
G ′ ḂG + 1

2
∂t G

′ BG + 1

2
G ′ B∂t G + (Dy G BG)′

(
r�1 − 1

2
σ � σ

)

+ 1

2
Tr
(
�Dy G B Dy G

)+ 1

2γ
G ′�G

= ȧ + 1

2
G ′ ḂG − 1

2
G ′�t�

−1BG − 1

2
G ′ B�−1�t G + 1

2
Tr
(
�t�

−1B�−1�t�
−1)

+ 1

2γ
G ′�G

=
(

ȧ + 1

2
Tr
(
�t�

−1B�−1�t�
−1)
)

+ 1

2
G ′
(

Ḃ − �t�
−1B − B�−1�t + 1

γ
�

)
G

= 0.

Therefore φ is solution of the PDE (22) and it satisfies obviously the terminal condition (23).
��

The system of linear ODEs (70) with terminal condition (71) can be solved in closed form.
This is the purpose of the following proposition.

Proposition 14 The functions a and B defined (for t ∈ [0, T ]) by

a (t) = 1

2γ

∫ T

t
Tr
(
�−1 (�s − �T )

)
ds

B (t) = 1

γ
�
(
�−1

t − �−1
t �T �−1

t

)
�

satisfy the system (70) with terminal condition (71).
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Wrapping up our results, we can state the optimal portfolio choice of an agent with a
CARA utility function in the case of the Gaussian prior (59).

Proposition 15 In the case of the Gaussian prior (59), the optimal strategy (M�
t )t∈[0,T ] of

an agent with a CARA utility function is given by

M�
t = e−r(T −t) 1

γ
�−1�T �−1

t �G(t, Yt ). (72)

Proof Let us consider a and B as defined in Proposition 14. Then, let us define φ by (69).
We know from the verification theorem (Theorem 3) and especially from Eq. (24) that

M�
t = e−r(T −t)

(
G(t, Yt )

γ
− ∇yφ(t, Yt )

)

= e−r(T −t)
(

G(t, Yt )

γ
− Dy G(t, Yt )B(t)G(t, Yt )

)

= e−r(T −t) 1

γ

(
Id − �−1�t�

−1�
(
�−1

t − �−1
t �T �−1

t

)
�
)

G(t, Yt )

= e−r(T −t) 1

γ
�−1�T �−1

t �G(t, Yt ).

��
We see from the form (69) of the solution φ and from Eq. (72) that G(t, Yt ) rather than Yt

itself is the driver of the optimal behavior of the agent at time t . Because of Eq. (7), this means
that β rather than y is the natural variable for addressing the problem. In what follows, we
solve the optimal portfolio choice problem in the case of a Gaussian prior by taking another
route, on which the dynamics of the system is given by the stochastic differential equations
(65) rather than (64).

4.2.2 Solving the problem usingˇ

On our first route for solving the above optimal portfolio choice problem, the central equation
was the HJB equation (19) associated with the stochastic differential equations (64). Instead
of using the stochastic differential equations (64), we now reconsider the problem in the
Gaussian prior case by using the stochastic differential equations (65).8

The value function ṽ associated with the problem is now given by

ṽ : (t, V , β) ∈ [0, T ] × R × R
d 	→ sup

M∈Ãt

E

[
− exp
(
−γ V t,V ,β,M

T

)]
,

where the set of admissible strategies is

Ãt =
{
(Ms)s∈[t,T ] ,R

d -valued F S-adapted process

satisfying the linear growth condition with respect to (βs)s∈[t,T ]
}
,

and where, ∀t ∈ [0, T ],∀(V , β, M) ∈ R × R
d × Ãt ,∀s ∈ [t, T ],

β t,β
s = β +

∫ s

t
�τ�

−1 (σ � dŴτ

)
, (73)

8 We omit the proofs in this subsection. They are similar to those presented in Sect. 3.
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V t,V ,β,M
s = V +

∫ s

t

(
M ′

τ (β
t,β
τ − r�1) + r V t,V ,β,M

τ

)
dτ +
∫ s

t
M ′

τ (σ � dŴτ ). (74)

It is noteworthy that for all t ∈ [0, T ], Ãt = At . There is indeed no difference between
the linear growth condition with respect to β and the linear growth condition with respect
to Y in the Gaussian prior case. This is easy to see on Eq. (62), recalling that β0 and Y0 are
known constants.

The HJB equation associated with this optimization problem is

0 = ∂t ũ (t, V , β) + 1

2
Tr
(
�t�

−1�t∇2
ββ ũ (t, V , β)

)

+ sup
M∈Rd

{(
M ′ (β − r�1

)
+ r V
)

∂V ũ (t, V , β)

+ 1

2
M ′�M∂2V V ũ (t, V , β) + M ′�t∂V ∇β ũ (t, V , β)

}
, (75)

with terminal condition

∀V ∈ R,∀β ∈ R
d , ũ (T , V , β) = − exp (−γ V ) . (76)

By using the ansatz

ũ (t, V , β) = − exp
[
−γ
(

er(T −t)V + φ̃ (t, β)
)]

, (77)

we obtain the following proposition:

Proposition 16 Suppose there exists φ̃ ∈ C1,2
(
[0, T ] × R

d
)

satisfying
∀(t, β) ∈ [0, T ] × R

d ,

∂t φ̃ (t, β) + 1

2
Tr
(
�t�

−1�t∇2
ββφ̃ (t, β)

)
+ 1

2γ

(
β − r�1
)′

�−1
(
β − r�1
)

−
(
�t∇βφ̃ (t, β)

)′
�−1
(
β − r�1
)

= 0, (78)

with terminal condition

∀β ∈ R
d , φ̃ (T , β) = 0. (79)

Then ũ defined by (77) is solution of the HJB equation (75) with terminal condition (76).
Moreover, the supremum in (75) is achieved at

M�(t, β) = e−r(T −t)�−1

⎛
⎝
(
β − r�1
)

γ
− �t∇βφ̃ (t, β)

⎞
⎠ . (80)

For solving Eq. (78) with terminal condition (79), it is natural9 to consider the following
ansatz:

φ̃ (t, β) = ã (t) + 1

2

(
β − r�1
)′

B̃ (t)
(
β − r�1
)

, (81)

where ã(t) ∈ R and B̃(t) ∈ Sd(R).
The next proposition states the ODEs that ã and B̃ must satisfy.

9 It is clear from the form of Eq. (78) that the solution is a polynomial of degree 2 in β − r�1.
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Proposition 17 Assume there exists ã ∈ C1 ([0, T ]) and B̃ ∈ C1 ([0, T ] , Sd (R)) satisfying
the following system of linear ODEs (for t ∈ [0, T ]):

˙̃a (t) + 1

2
Tr
(
�t�

−1�t B̃ (t)
)

= 0

˙̃B (t) − �−1�t B̃ (t) − B̃ (t) �t�
−1 + 1

γ
�−1 = 0,

(82)

with terminal condition

ã (T ) = 0
B̃ (T ) = 0.

(83)

Then, the function φ̃ defined by (81) satisfies (78) with terminal condition (79).

The system of linear ODEs (82) with terminal condition (83) can be solved in closed form.
This is the purpose of the following proposition.

Proposition 18 The functions ã and B̃ defined, for t ∈ [0, T ] by

ã (t) = 1

2γ

∫ T

t
Tr
(
�−1 (�s − �T )

)
ds

B̃ (t) = 1

γ

(
�−1

t − �−1
t �T �−1

t

)

satisfy the system (82) with terminal condition (83).

We are now ready to state the main result of this subsection, whose proof is similar to that
of Theorem 3.

Theorem 6 Let us consider ã and B̃ as defined in Proposition 18. Let us then define φ̃ by
(81) and, subsequently, ũ by (77).

For all (t, V , β) ∈ [0, T ] × R × R
d and M = (Ms)s∈[t,T ] ∈ Ãt , we have

E

[
− exp
(
−γ V t,V ,β,M

T

)]
≤ ũ (t, V , β) . (84)

Moreover, equality in (84) is obtained by taking the optimal control (M�
s )s∈[t,T ] ∈ Ãt given

by

∀s ∈ [t, T ], M�
s = e−r(T −s) 1

γ
�−1�T �−1

s (βs − r�1). (85)

In particular ũ = ṽ.

4.2.3 Comments on the results: understanding the learning-anticipation effect

In the case of an agent maximizing an expected CARA utility objective function, the optimal
portfolio allocation is given by

∀t ∈ [0, T ], M�
t = e−r(T −t) 1

γ
�−1�T �−1

t

(
βt − r�1

)
. (86)

Of course, if μ was known, the optimal strategy would be

∀t ∈ [0, T ], M�,μknown
t = e−r(T −t) 1

γ
�−1
(
μknown − r�1

)
. (87)
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It is essential to notice that the optimal strategy does not boil down (except at time t = T )
to the naive strategy

∀t ∈ [0, T ], Mt,naive = e−r(T −t) 1

γ
�−1
(
βt − r�1

)
, (88)

which consists in replacing, at time t , μknown by the current estimator βt in Eq. (87).
The sub-optimality of the naive strategy comes from the fact that the agent does not only

learn but knows that he will go on learning in the future, and uses that knowledge to design
his investment strategy. We call this effect the learning-anticipation effect.

To better understand this learning-anticipation effect, it is interesting to study the case
d = 1. In that case, let us denote by σ the volatility of the risky asset and let us assume that
the prior distribution for μ is N (β0, ν

2
0 ), where ν0 > 0. The agent following the optimal

strategy invests at time t the amount

M�
t = e−r(T −t) σ 2 + ν20 t

σ 2 + ν20T

βt − r

γ σ 2

in the risky asset, whereas the naive strategy would consist instead in investing the amount

Mt,naive = e−r(T −t) βt − r

γ σ 2 .

The magnitude of the learning-anticipation effect can be measured by the multiplier χ =
σ 2+ν20 t

σ 2+ν20T
. χ ∈ [0, 1], and the further from 1 the multiplier (i.e., the smaller in this case), the

larger the learning-anticipation effect.
χ is an increasing function of t withχ = 1 at time t = T . This means that the agent invests

less (in absolute value) in the risky asset than he would if he opted for the naive strategy,
except at time T because there is nothing more to learn. In other words, he is prudent and
waits for more precise estimates of the drift.

χ is also an increasing function of σ . The smaller σ , the more important the learning-
anticipation effect. When volatility is low, it is really valuable to wait for a good estimate of
μ before investing.

χ is a decreasing function of ν0 and T . The longer the investment horizon and the higher
the uncertainty about the value of the drift, the stronger the incentive of the agent to start
with a small exposure (in absolute value) in the risky asset and to observe the behavior of the
risky asset before adjusting his exposure, ceteris paribus.

4.3 Portfolio choice in the CRRA case

4.3.1 The general method with y

In Sect. 3, and more precisely in Theorem 5, we have seen that an agent with a log utility
function has an optimal investment strategy that depends on the prior only through G. There
is therefore no need to solve PDEs.

In the CRRA case, when γ �= 1, following the results of Sect. 3, we see that solving the
optimal portfolio choice of the agent boils down to solving the linear parabolic PDE (39)
with terminal condition (40).
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In order to solve this equation, we consider the following ansatz:

φ(t, y) = exp

(
a(t) + 1

2
G(t, y)′ B(t)G(t, y)

)
, (89)

where a(t) ∈ R and B(t) ∈ Sd(R).
We have the following proposition:

Proposition 19 Assume there exists a ∈ C1 ([0, T ]) and B ∈ C1 ([0, T ] , Sd (R)) satisfying
the following system of linear ODEs (for t ∈ [0, T ]):

ȧ (t) + 1

2
Tr
(
�t �

−1B (t) �−1�t �
−1
)

= 0

Ḃ (t) + 1−γ
γ �t �

−1B (t) + 1−γ
γ B (t) �−1�t + B(t)�−1�t �

−1�t �
−1B(t) + 1 − γ

γ 2 � = 0,
(90)

with terminal condition

a (T ) = 0
B (T ) = 0.

(91)

Then, the function φ defined by (89) satisfies (39) with terminal condition (40).

Proof Let us consider (a, B) solution of (90) with terminal condition (91). For φ defined by
(89), we have, by using the formulas of Proposition 12,

∂tφ + (∇yφ
)′ (

r�1 + 1

γ
�G − 1

2
σ � σ

)
+ 1

2
Tr
(
�∇2

yyφ
)

+ 1 − γ

2γ 2 G ′�Gφ

=
(

ȧ + 1

2
G ′ ḂG + 1

2
∂t G

′ BG + 1

2
G ′ B∂t G

)
φ

+ (Dy G BG)′
(

r�1 + 1

γ
�G − 1

2
σ � σ

)
φ

+1

2
Tr
(
�Dy G B Dy G

)
φ + 1

2
Tr
(
�(Dy G BG)(Dy G BG)′

)
φ + 1 − γ

2γ 2 G ′�Gφ

=
(

ȧ + 1

2
G ′ ḂG − 1

2
G ′�t�

−1BG − 1

2
G ′ B�−1�t G

)
φ + 1

γ
G ′ B�−1�t Gφ

+ 1

2
Tr
(
�t�

−1B�−1�t�
−1)φ + 1

2
G ′ B�−1�t�

−1�t�
−1BGφ + 1 − γ

2γ 2 G ′�Gφ

=
(

ȧ + 1

2
Tr
(
�t�

−1B�−1�t�
−1)
)

φ

+ 1

2
G ′
(

Ḃ − �t�
−1B − B�−1�t + 1

γ
B�−1�t + 1

γ
�t�

−1B

+ B�−1�t�
−1�t�

−1B + 1 − γ

γ 2 �

)
Gφ

= 0.

Therefore φ is solution of the PDE (39) and it satisfies obviously the terminal condition (40).
��

The system of ODEs (90) is not a system of linear ODEs. The equation for B is indeed
a Riccati equation. Luckily, t 	→ − 1

γ
��−1

t � is a trivial solution of the second differential
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equation of the system (90). Therefore, using a classical trick of Riccati equations, we can
look for a solution B of the form

B(t) = − 1

γ
��−1

t � + E(t)−1, ∀t ∈ [0, T ]

where E ∈ C1([0, T ], Sd(R)).
With this ansatz, looking for a solution B to the above Riccati equation boils down to

solving the linear ODE

∀t ∈ [0, T ], Ė(t) = �−1�t�
−1�t�

−1 − (�−1�t E(t) + E(t)�t�
−1) ,

E(T ) = γ�−1�T �−1, (92)

and verifying that for all t ∈ [0, T ], E(t) is invertible.
The unique solution to Eq. (92) is given in the following straightforward proposition:

Proposition 20 The function E defined by

∀t ∈ [0, T ], E(t) = �−1
(
�t + (γ − 1)�t�

−1
T �t

)
�−1 (93)

is the unique solution of the Cauchy problem (92).

Regarding the invertibility of E(t) for all t ∈ [0, T ], we have the following result:

Proposition 21 Let us consider E as defined by Eq. (93).
E(t) is invertible for all t ∈ [0, T ] if and only if (i) γ > 1 or (ii) γ < 1 and T <

γ
1−γ

λmin

(
�

1
2 �−1

0 �
1
2

)
, where the function λmin(·) maps a symmetric matrix to its lowest

eigenvalue.

Proof Let us consider t ∈ [0, T ]. E(t) is invertible if and only if �t + (γ − 1)�t�
−1
T �t is

invertible.
If γ > 1, then�t +(γ −1)�t�

−1
T �t is the sumof two positive definite symmetricmatrices.

It is therefore an invertible matrix.
If γ < 1, then, using the definition of (�t )t∈[0,T ], we have

�t + (γ − 1)�t�
−1
T �t

= �t

(
�−1

t + (γ − 1)�−1
T

)
�t

= �t

(
γ�−1

0 + (t + (γ − 1)T )�−1
)

�t

= γ�t�
− 1

2

(
�

1
2 �−1

0 �
1
2 + t + (γ − 1)T

γ
Id

)
�− 1

2 �t .

Therefore E(t) is invertible if and only if − t+(γ−1)T
γ

is not eigenvalue of �
1
2 �−1

0 �
1
2 , hence

the result. ��
The above result is very important. It means that when γ < 1 the solution of (90) with

terminal condition (91) blows up in finite time, in the sense that the solution can only be
defined on an interval of the form (τ, T ]. If T is small enough so that τ < 0, then the solution
exists on [0, T ]. Otherwise, we are enable to solve (90)with terminal condition (91) on [0, T ].
When d = 1, B(t) is a scalar and it goes to +∞ as t → τ . In particular, this means that the
value function stops to be defined because it becomes infinite.

We are now ready to solve (90) with terminal condition (91).
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Proposition 22 Let us assume that either (i) γ > 1 or (ii) γ < 1 and T <
γ

1−γ
λmin

(
�

1
2 �−1

0 �
1
2

)
.

Then, the functions a and B defined (for t ∈ [0, T ]) by

a (t) = 1

2

∫ T

t
Tr

(
�−1
(

− 1

γ
�s +
(
�−1

s + (γ − 1)�−1
T

)−1
))

ds

B (t) = �

((
�t + (γ − 1)�t�

−1
T �t

)−1 − 1

γ
�−1

t

)
�

satisfy the system (90) with terminal condition (91).

Wrapping up our results, we can state the optimal portfolio choice of an agent with a
CRRA utility function with γ �= 1 in the case of the Gaussian prior (59).

Proposition 23 Let us consider the Gaussian prior (59). Let us assume that either (i) γ > 1

or (ii) γ < 1 and T <
γ

1−γ
λmin

(
�

1
2 �−1

0 �
1
2

)
.

Then, the optimal strategy (θ�
t )t∈[0,T ] of an agent with a CRRA utility function with γ �= 1

is given by

θ�
t = �−1

(
�−1

t + (γ − 1) �−1
T

)−1
�−1

t �G(t, Yt ). (94)

Proof Let us consider a and B as defined in Proposition 22. Then let us define φ by (89). It
is straightforward to see that φ satisfies (44). Consequently, we know from the verification
theorem (Theorem 4) and especially from Eq. (46) that

θ�
t = G(t, Yt )

γ
+ ∇yφ(t, Yt )

φ(t, Yt )

= G(t, Yt )

γ
+ Dy G(t, Yt )B(t)G(t, Yt )

=
(
1

γ
Id + �−1�t�

−1�

((
�t + (γ − 1)�t�

−1
T �t

)−1 − 1

γ
�−1

t

)
�

)
G(t, Yt )

= �−1
(
�−1

t + (γ − 1)�−1
T

)−1
�−1

t �G(t, Yt ).

��
Remark 8 It is noteworthy that when γ → 1, we recover the result of Theorem 5, i.e.
θ�

t = G(t, Yt ).

As in the CARA case, we see from the form (89) of the solution φ and from Eq. (94)
that G(t, Yt ) rather than Yt itself is the driver of the optimal behavior of the agent at time
t . Because of Eq. (7), this means that β rather than y is the natural variable for addressing
the problem. In what follows, we solve the optimal portfolio choice problem in the case of a
Gaussian prior by taking another route, on which the dynamics of the system is given by the
stochastic differential equations (65) rather than (64).

4.3.2 Solving the problem usingˇ

On our first route for solving the above optimal portfolio choice problem, the central equation
was the HJB equation (36) associated with the stochastic differential equations (64). Instead
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of using the stochastic differential equations (64), we now reconsider the problem in the
Gaussian prior case by using the stochastic differential equations (65).10

If γ < 1, we define for t ∈ [0, T ] the set

Aγ
t =
{
(θs)s∈[t,T ] ,R

d -valued F S-adapted process,E

[∫ T

t
θ2s ds

]
< +∞

}
.

If γ > 1, we define for t ∈ [0, T ] the set
Ãγ

t =
{
(θs)s∈[t,T ] ,R

d -valued F S-adapted process

satisfying the linear growth condition with respect to (βs)s∈[t,T ]
}
.

As in the CARA case, we have in fact Ãγ
t = Aγ

t ,∀γ > 0.
The value function ṽ associated with the problem is now given by

ṽ : (t, V , β) ∈ [0, T ] × R
∗+ × R

d 	→ sup
θ∈Ãγ

t

E

[
U γ
(

V t,V ,β,θ
T

)]
,

where, ∀t ∈ [0, T ],∀(V , β, θ) ∈ R
∗+ × R

d × Ãt ,∀s ∈ [t, T ],

β t,β
s = β +

∫ s

t
�τ�

−1 (σ � dŴτ

)
, (95)

V t,V ,β,θ
s = V +

∫ s

t

(
θ ′
τ (β

t,β
τ − r�1) + r

)
V t,V ,β,θ

τ dτ +
∫ s

t
θ ′
τ V t,V ,β,θ

τ (σ � dŴτ ). (96)

The HJB equation associated with this optimization problem is

0 = ∂t ũ (t, V , β) + 1

2
Tr
(
�t�

−1�t∇2
ββ ũ (t, V , β)

)

+ sup
θ∈Rd

{(
θ ′ (β − r�1

)
+ r
)

V ∂V ũ (t, V , β)

+1

2
θ ′�θV 2∂2V V ũ (t, V , β) + θ ′�t V ∂V ∇β ũ (t, V , β)

}
, (97)

with terminal condition

∀V ∈ R
∗+,∀β ∈ R

d , ũ (T , V , β) = U γ (V ) . (98)

By using the ansatz

ũ (t, V , β) = U γ
(

er(T −t)V
)

φ̃ (t, β)γ , (99)

we obtain the following proposition:

Proposition 24 Suppose there exists φ̃ ∈ C1,2
(
[0, T ] × R

d
)

satisfying
∀(t, β) ∈ [0, T ] × R

d ,

∂t φ̃ (t, β) + 1

2
Tr
(
�t�

−1�t∇2
ββφ̃ (t, β)

)
+ 1 − γ

2γ 2

(
β − r�1
)′

�−1
(
β − r�1
)

+1 − γ

γ

(
�t∇βφ̃ (t, β)

)′
�−1
(
β − r�1
)

= 0, (100)

10 We omit the proofs in this subsection. They are similar to those presented in Sect. 3.
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with terminal condition

∀β ∈ R
d , φ̃ (T , β) = 1. (101)

Then ũ defined by (99) is solution of the HJB equation (97) with terminal condition (98).
Moreover, the supremum in (97) is achieved at

θ�(t, β) = �−1

⎛
⎝
(
β − r�1
)

γ
+ �t

∇βφ̃ (t, β)

φ̃ (t, β)

⎞
⎠ . (102)

For solving Eq. (100) with terminal condition (101), we consider the following ansatz:

φ̃ (t, β) = exp

(
ã (t) + 1

2

(
β − r�1
)′

B̃ (t)
(
β − r�1
))

, (103)

where ã(t) ∈ R and B̃(t) ∈ Sd(R).
The next proposition states the ODEs that ã and B̃ must satisfy.

Proposition 25 Assume there exists ã ∈ C1 ([0, T ]) and B̃ ∈ C1 ([0, T ] , Sd (R)) satisfying
the following system of linear ODEs (for t ∈ [0, T ]):

˙̃a (t) + 1

2
Tr
(
�t�

−1�t B̃ (t)
)

= 0

˙̃B (t) + 1−γ
γ

�−1�t B (t) + 1−γ
γ

B (t) �t�
−1 + B(t)�t�

−1�t B(t) + 1 − γ

γ 2 �−1 = 0,
(104)

with terminal condition

ã (T ) = 0
B̃ (T ) = 0.

(105)

Then, the function φ̃ defined by (103) satisfies (100) with terminal condition (101).

The system of linear ODEs (104) with terminal condition (105) can be solved in closed
form on [0, T ] when there is no blowup. This is the purpose of the following proposition.

Proposition 26 Let us assume that either (i) γ > 1 or (ii) γ < 1 and T <
γ

1−γ
λmin

(
�

1
2 �−1

0 �
1
2

)
.

Then, the functions ã and B̃ defined, for t ∈ [0, T ] by

ã (t) = 1

2

∫ T

t
Tr

(
�−1
(

− 1

γ
�s +
(
�−1

s + (γ − 1)�−1
T

)−1
))

ds

B̃ (t) =
((

�t + (γ − 1)�t�
−1
T �t

)−1 − 1

γ
�−1

t

)

satisfy the system (104) with terminal condition (105).

We are now ready to state the main result of this subsection, whose proof is similar to that
of Theorem 4.

Theorem 7 Let us assume that either (i)γ > 1or (ii)γ < 1and T <
γ

1−γ
λmin

(
�

1
2 �−1

0 �
1
2

)
.

Let us consider ã and B̃ as defined in Proposition 26. Let us then define φ̃ by (103) and,
subsequently, ũ by (99).
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For all (t, V , β) ∈ [0, T ] × R
∗+ × R

d and θ = (θs)s∈[t,T ] ∈ Ãt , we have

E

[
U γ
(

V t,V ,β,θ
T

)]
≤ ũ (t, V , β) . (106)

Moreover, equality in (106) is obtained by taking the optimal control (θ�
s )s∈[t,T ] ∈ Ãt given

by

∀s ∈ [t, T ], θ�
s = �−1

(
�−1

s + (γ − 1) �−1
T

)−1
�−1

s (βs − r�1). (107)

In particular ũ = ṽ.

4.3.3 Comments on the results: beyond the learning-anticipation effect

In the case of an agent maximizing an expected CRRA utility objective function, the optimal
portfolio allocation is given by the formula

θ�
t = �−1

(
�−1

t + (γ − 1) �−1
T

)−1
�−1

t

(
βt − r�1

)
,

whenever either (i) γ ≥ 1 or (ii) γ < 1 and T <
γ

1−γ
λmin

(
�

1
2 �−1

0 �
1
2

)
.

When γ �= 1, the optimal strategy does not boil to the naive strategy

θt,naive = 1

γ
�−1
(
βt − r�1

)
.

However, it does in the case of a logarithmic utility function (i.e., γ = 1). This means that
there is no learning-anticipation effect in the case of an agent with a log utility.

As in the CARA case, it is interesting to analyze the formula in the one-asset case d = 1.
In that case, let us denote by σ the volatility of the risky asset and let us assume that the
prior distribution forμ isN (β0, ν

2
0 ), where ν0 > 0. The agent following the optimal strategy

invests at time t a proportion of his wealth

θ�
t = σ 2 + ν20 t

σ 2 + ν20
t+(γ−1)T

γ

βt − r

γ σ 2

in the risky asset, whereas the naive strategywould consist instead in investing the proportion

θt,naive = βt − r

γ σ 2 .

When γ > 1, we observe a learning-anticipation effect similar to that of the CARA case.

It is measured by the multiplier χ = σ 2+ν20 t

σ 2+ν20
t+(γ−1)T

γ

∈ [0, 1]. χ is an increasing function of t .

This means that the agent invests less (in absolute value) in the risky asset than he would if
he opted for the naive strategy, except at time T because there is nothing more to learn. χ is
also an increasing function of σ . The smaller σ , the more important the learning-anticipation
effect. When volatility is low, it is really valuable to wait for a good estimate of μ before
investing. χ is eventually a decreasing function of ν0 and T . The longer the investment
horizon and the higher the uncertainty about the value of the drift, the stronger the incentive
of the agent to start with a small exposure (in absolute value) in the risky asset and to observe
the behavior of the risky asset before adjusting his exposure, ceteris paribus.
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All the above effects are in line with the CARA case: the agent is prudent and waits to
knowmore. However, the effects are reversed when γ < 1. In that case indeed, the multiplier
χ ceases to be below 1. Instead, it is above 1. In fact, the very possibility that expected returns
could be very high (or very low because we can short) creates an incentive for the agent to
have a higher exposure in the risky asset. Then, as the uncertainty reduces through learning,
the agent adjusts his position towards a milder one and ends up with the same position as in
the naive strategy when t = T .

It is noteworthy thatχ at time 0 tends to+∞when γ tends to
ν20

σ 2+ν20T
, and this corresponds

to the threshold found in Proposition 21 for the blowup occurring exactly at time t = 0. This
means, if β0 > r , that the agent wants to borrow an infinite amount of money at time 0 to
invest in the risky asset.

This reversed phenomenon is linked to the qualitative difference between the power utility
functions when γ > 1, which are bounded from above, and the power utility functions when
γ < 1, which have no upper bound. This difference explains why, for γ < 1 and for a
Gaussian prior distribution (which is unbounded), the multiplier χ and the value function
can blowup to +∞ and therefore stop to be defined if T is too large (or equivalently if γ is
too small when T is fixed).

5 Optimal portfolio choice, portfolio liquidation, and portfolio
transition with online learning and execution costs

The results presented above have been obtained by using PDEmethods only. It is noteworthy
that one could have derived the same formulas by using themartingalemethod ofKaratzas and
Zhao [28]. However the martingale method requires a model in which there are martingales,
and there are many problems in which martingales cannot be exhibited. The goal of this
section is to show how PDEs can be used to address problems for which the martingale
method cannot be applied.

The classical literature on portfolio choice and asset allocation mainly considers friction-
less markets. In that case, both PDEmethods and martingale methods can be used for solving
the problem, because there exists an equivalent probability measure under which discounted
prices, and therefore discounted portfolio values, aremartingales.Martingalemethods cannot
be used however when one adds frictions in the model. In what follows, we consider frictions
in the form of execution costs, as in optimal execution models àla Almgren–Chriss (see
[1,2]). We show that the PDE method presented in the previous sections enables to address
the optimal portfolio choice problem, but also optimal portfolio liquidation and optimal port-
folio transition problems, when there are execution costs and when one learns the value of
the drift over the course of the optimization problem.

We first present the modelling framework and a generic optimization problem encom-
passing the three types of problem we consider. We then derive the associated HJB equation
and derive a simpler PDE using an ansatz. We then focus on the specific case in which
(i) the prior distribution of the drift is Gaussian and (ii) the execution costs and penalty
functions are quadratic, because in that case the PDE boils down to a system of ODEs
that can be solved numerically. We then show some numerical examples for each of the
problems.
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5.1 Notations and setup of themodel

5.1.1 Price dynamics and Bayesian learning of the drift

As abovewe consider a financial market with one risk-free asset and d risky assets. In order to
simplify the equations, we assume that the risk-free asset yields no interest. It is noteworthy
that the model can easily be generalized to the case of a non-zero risk-free interest rate r .

We index by i ∈ {1, . . . , d} the d risky assets. For i ∈ {1, . . . , d}, the price of the i th risky
asset Si has the following drifted Bachelier dynamics11

∀i ∈ {1, . . . , d} , d Si
t = μi dt + σ i dW i

t , (108)

where the volatility vector σ = (σ 1, . . . , σ d)′ satisfies ∀i ∈ {1, . . . , d} , σ i > 0, and where
the drift vector μ = (μ1, . . . , μd)′ is unknown.

As above, we assume that the prior distribution of μ, denoted by mμ, is sub-Gaussian.
Throughout,we shall respectively denote byρ = (ρi j )1≤i, j≤d and� = (ρi jσ iσ j )1≤i, j≤d

the correlation and covariance matrices associated with the dynamics of prices.
We introduce the process (βt )t∈R+ defined by

∀t ∈ R+, βt = E

[
μ|F S

t

]
. (109)

We can state a result similar to that of Theorem 1.

Theorem 8 Let us define

F : (t, S) ∈ R+ × R
d+ 	→
∫

Rd
exp

(
z′�−1
[

S − S0 − t

2
z

])
mμ(dz). (110)

F is a well-defined finite-valued C∞(R+ × R
d) function.

We have

∀t ∈ R+, βt = �G(t, St ), (111)

where

G = ∇S F

F
. (112)

As in Sect. 2, we define the process
(
Ŵt
)

t∈R+ by

∀i ∈ {1, . . . , d} ,∀t ∈ R+, Ŵ i
t = W i

t +
∫ t

0

μi − β i
s

σ i
ds. (113)

Using the same method as in Sect. 2, we can prove the following result on
(
Ŵt
)

t∈R+ :

Proposition 27
(
Ŵt
)

t∈R+ is a Brownian motion adapted to
(F S

t

)
t∈R+ , with the same corre-

lation structure as (Wt )t∈R+

∀i, j ∈ {1, . . . , d} , d〈Ŵ i , Ŵ j 〉t = d〈W i , W j 〉t .

11 Unlike in the previous sections where we used the classical Black–Scholes (log-normal) dynamics, we
consider here the Bachelier dynamics. This dynamics is indeed standard in the optimal execution literature,
although it raises the problem of negative prices.
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The Brownian motion
(
Ŵt
)

t∈R+ is used to re-write Eq. (108) as

d St = βt dt + σ � dŴt (114)

= �G(t, St )dt + σ � dŴt . (115)

5.2 Almgren–Chris modelling framework and optimization problems

We consider the modelling framework introduced by Almgren and Chriss in [1,2] (see also
[21,24]). In this framework, we do not consider the Mark-to-Market (MtM) value of the
portfolio as a state variable. Instead, we consider separately the position q ∈ R

d in the risky
assets and the amount X ∈ R on the cash account.

Let us set a time horizon T ∈ R
∗+. The strategy of the agent is described by the stochastic

process (vt )t∈[0,T ] ∈ AAC = AAC
0 , where, for t ∈ [0, T ],

AAC
t =
{
(vs)s∈[t,T ],Rd -valued F S-adapted process,

satisfying the linear growth condition with respect to (Ss)s∈[t,T ]
}
.

This process represents the velocity at which the agent buys and sells the risky assets. In
other words,

qt = q0 +
∫ t

0
vsds. (116)

Now, for v ∈ AAC, the amount on the cash account evolves as

d Xt = −v′
t St dt −

d∑
i=1

V i
t Li
(

vi
t

V i
t

)
dt, (117)

where ∀i ∈ {1, . . . , d}, (V i
t )t∈[0,T ] is a deterministic process, continuous12 and bounded,

modelling the market volume for the i th risky asset,13 and where (Li )1≤i≤d model execution
costs. For each i ∈ {1, . . . , d}, the execution cost function Li ∈ C(R,R+) classically
satisfies:

• Li (0) = 0,
• Li is increasing on R+ and decreasing on R−,
• Li is strictly convex,
• Li is asymptotically superlinear, i.e.,

lim|y|→+∞
Li (y)

|y| = +∞.

Remark 9 In applications, Li is often a power function Li (y) = ηi |y|1+φi
with φi > 0,

or a function of the form Li (y) = ηi |y|1+φi + ψ i |y| with φi , ψ i > 0, where ψ i takes
account of proportional costs such as bid-ask spread or stamp duty. In the original Almgren–
Chriss framework, the execution costs are quadratic. This corresponds to Li (y) = ηi y2

(φi = 1, ψ i = 0).

12 The results we obtain in this section can be generalized if the process is only piecewise continuous.
13 This process can be set to very small values for modelling the night.
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Given v ∈ AAC
t , we define for s ≥ t ,

Xt,x,S,v
s = x +

∫ s

t

(
−v′

t St,S
τ −

d∑
i=1

V i
τ Li
(

vi
τ

V i
τ

))
dτ, (118)

qt,q,v
s = q +

∫ s

t
vτ dτ, (119)

St,S
s = S +

∫ s

t
�G(τ, St,S

τ )dτ +
∫ s

t
σ � dŴτ . (120)

We assume that the agent has a constant absolute risk aversion denoted by γ > 0. For an
arbitrary initial state (x0, q0, S0), the optimization problems we consider are of the following
generic form:

sup
(vt )t∈[0,T ]∈AAC

E

[
− exp
(
−γ
(

X0,x0,S0,v
T + q0,q0,v

T

′
S0,S0

T − �
(

q0,q0,v
T

)))]
, (121)

where the penalty function � is assumed to be continuous and convex.
The choice of the penalty function � depends on the problem faced by the agent:

• In the case of a portfolio choice problem, we can assume that � = 0 or that � penalizes
illiquid assets (see for instance [21,24]).

• In the case of an optimal portfolio liquidation problem, we can assume that the penalty
function is of the form �(q) = 1

2q ′ Aq with A ∈ S++
d (R) such that the minimum eigen-

value of A is large enough to force (almost complete) liquidation.14

• In the case of an optimal portfolio transition problem, we can assume that the penalty
function is of the form �(q) = 1

2

(
q − qtarget

)′
A
(
q − qtarget

)
with A ∈ S++

d (R) such
that the minimum eigenvalue of A is large enough to force qT to be very close to the
target qtarget.15

5.3 The PDEs in the general case

Let us introduce the value function V associated with the above generic problem.

V : (t, x, q, S) ∈ [0, T ] × R × R
d × R

d

	→ sup
(vs )s∈[t,T ]∈AAC

t

E

[
− exp
(
−γ
(

Xt,x,S,v
T + qt,q,v

T
′
St,S

T − �
(

qt,q,v
T

)))]
.

The HJB equation associated with the problem is

∂t u + G(t, S)′�∇Su + 1

2
Tr
(
�∇2

SSu
)

+ sup
v∈Rd

{
v′∇qu −

(
v′S +

d∑
i=1

V i
t Li
(

vi

V i
t

))
∂x u

}
= 0, (122)

with terminal condition

∀(x, q, S) ∈ R × R
d × R

d , u (T , x, q, S) = − exp(−γ (x + q ′S − �(q))). (123)

14 It is a relaxed form of the classical optimal liquidation problem.
15 It is a relaxed form of optimal transition problem.
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For reducing the dimensionality of the problem, we consider the following ansatz

u (t, x, q, S) = − exp
(−γ
(
x + q ′S − θ(t, q, S)

))
. (124)

We have the following result:

Proposition 28 Suppose there exists θ ∈ C1,2,2
(
[0, T ] × R

d × R
d
)

satisfying

∂tθ + G(t, S)′� (−q + ∇Sθ) + 1

2
Tr
(
�∇2

SSθ
)

+γ

2
(−q + ∇Sθ)′ � (−q + ∇Sθ) −

d∑
i=1

V i
t Hi (−∂qi θ

) = 0, (125)

with terminal condition

∀(q, S) ∈ R
d × R

d , θ (T , q, S) = �(q), (126)

where for all i ∈ {1, . . . , d}, Hi is the Legendre-Fenchel transform of Li , i.e.

Hi : p ∈ R 	→ sup
y∈R

py − Li (y).

Then u defined by (124) is solution of the HJB equation (122) with terminal condition (123).
Moreover, the supremum in (122) is achieved at v�(t, q, S) = (vi�(t, q, S)

)
1≤i≤d , where

∀i ∈ {1, . . . , d}, vi�(t, q, S) = V i
t Hi ′ (−∂qi θ(t, q, S)

)
. (127)

Proof Let us consider θ ∈ C1,2,2
(
[0, T ] × R

d × R
d
)
solutionof thePDE (125)with terminal

condition (126). For u defined by (124), we have

∂t u + G(t, S)′�∇Su + 1

2
Tr
(
�∇2

SSu
)+ sup

v∈Rd

{
v′∇qu −

(
v′S +

d∑
i=1

V i
t Li
(

vi

V i
t

))
∂x u

}

= γ ∂tθu + G(t, S)′� (−γ q + γ∇Sθ) u

+ 1

2
Tr
(
�
(
γ∇2

SSθ + (−γ q + γ∇Sθ) (−γ q + γ∇Sθ)′
))

u

− γ u sup
v∈Rd

{
v′ (S − ∇qθ

)−
(

v′S +
d∑

i=1

V i
t Li
(

vi

V i
t

))}

= γ u

(
∂tθ + G(t, S)′� (−q + ∇Sθ)

+ 1

2
Tr
(
�∇2

SSθ
)+ γ

2
(−q + ∇Sθ)′ � (−q + ∇Sθ)

− sup
v∈Rd

{
−v′∇qθ −

d∑
i=1

V i
t Li
(

vi

V i
t

)})

= γ u

(
∂tθ + G(t, S)′� (−q + ∇Sθ) + 1

2
Tr
(
�∇2

SSθ
)

+γ

2
(−q + ∇Sθ)′ � (−q + ∇Sθ)

−
d∑

i=1

V i
t Hi (−∂qi θ

) ) = 0.
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As it is straightforward to verify that u satisfies the terminal condition (123), the result is
proved. ��

The result of the above proposition means that for solving the HJB equation we can solve
the simpler three-variable PDE (125) with terminal condition (126). However, Eq. (125)
is not linear and corresponds to the equation of a zero-sum game between the agent and
nature (see [22] for a similar equation in the case of option pricing with execution costs à
la Almgren–Chriss). Solving Eq. (125) with terminal condition (126) in the general case
is out of the scope of this article. However, we can consider the special case where (i) the
prior distribution of the drift is Gaussian and (ii) execution costs and penalty functions are
quadratic as in the original Almgren–Chriss model, because solving the problem then boils
down to solving a system of ODEs.

5.4 The case of a Gaussian prior and quadratic costs

Let us consider a non-degenerate multivariate Gaussian prior mμ, i.e.,

mμ(dz) = 1

(2π)
d
2 |�0| 12

exp

(
−1

2
(z − β0)

′�−1
0 (z − β0)

)
dz, (128)

where β0 ∈ R
d and �0 ∈ S++

d (R).
By using Theorem 8, we obtain a result similar to that of Proposition 10.

Proposition 29 For the multivariate Gaussian prior mμ given by (128), G is given by

∀t ∈ R+,∀S ∈ R
d , G(t, S) = �−1�t

(
�−1 (S − S0) + �−1

0 β0

)
. (129)

For carrying out computations, the following proposition will be useful.

Proposition 30 The first order partial derivatives of G are given by:
∀t ∈ R+,∀S ∈ R

d ,

DSG(t, S) = �−1�t�
−1, (130)

∂t G(t, S) = −�−1�t G(t, S). (131)

Let us assume, for each i ∈ {1, . . . , d}, that Li (y) = ηi y2. Then, for each i ∈ {1, . . . , d},

Hi : p ∈ R 	→ sup
y∈R

py − ηi y2 = p2

4ηi
.

Let us also assume that �(q) = 1
2

(
q − qtarget

)′
A
(
q − qtarget

)
with A ∈ S++

d (R), the
choice of A and qtarget depending on the type of problem we consider:

• A = 0 and qtarget = 0 for an optimal portfolio choice problem.
• A ∈ S++

d (R) with a large minimum eigenvalue and qtarget = 0 for an optimal portfolio
liquidation problem.

• A ∈ S++
d (R) with a large minimum eigenvalue and qtarget arbitrary for an optimal port-

folio transition problem (towards the portfolio represented by qtarget).
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In order to solve Eq. (125) with terminal condition (126), we consider the ansatz

θ (t, q, S) = a (t) + 1

2
G(t, S)′b (t) G(t, S)

+ G(t, S)′c (t) q + 1

2
q ′d (t) q + G(t, S)′e(t) + q ′ f (t), (132)

where a(t) ∈ R, b(t) ∈ Sd(R), c(t) ∈ Md(R), d(t) ∈ Sd(R), e(t) ∈ R
d , and f (t) ∈ R

d .16

Proposition 31 Assume there exists a ∈ C1 ([0, T ]), b ∈ C1 ([0, T ] , Sd(R)), c ∈
C1 ([0, T ] , Md(R)), d ∈ C1 ([0, T ] , Sd(R)), e ∈ C1

(
[0, T ] ,Rd

)
, and f ∈ C1

(
[0, T ] ,Rd

)
satisfying the following system of ODEs:

ȧ(t)+ 1

2
Tr
(
�t�

−1b(t)�−1�t�
−1)+ γ

2
e(t)′�−1�t�

−1�t�
−1e(t)− f (t)′N (t) f (t)=0

(133a)

ḃ(t) + γ b(t)�−1�t�
−1�t�

−1b(t) − 2c(t)′N (t)c(t) = 0 (133b)

ċ(t) − � + γ b(t)�−1�t (−Id + �−1�t�
−1c(t)) − 2c(t)′N (t)d(t) = 0 (133c)

ḋ(t) + γ
(−Id + c(t)′�−1�t�

−1)� (−Id + �−1�t�
−1c(t)
)− 2d(t)N (t)d(t) = 0

(133d)

ė(t) + γ b(t)�−1�t�
−1�t�

−1e(t) − 2c(t)′N (t) f (t) = 0 (133e)

ḟ (t) + γ
(−Id + c(t)′�−1�t�

−1)�t�
−1e(t) − 2d(t)N (t) f (t) = 0, (133f)

with terminal condition

a(T ) = 1

2
q ′
target Aqtarget (134a)

b(T ) = 0 (134b)

c(T ) = 0 (134c)

d(T ) = A (134d)

e(T ) = 0 (134e)

f (T ) = −Aqtarget, (134f)

where N (t) is the diagonal matrix with diagonal
(

V i
t

4ηi

)
1≤i≤d

.

Then, the function θ defined by (132) satisfies (125) with terminal condition (126).

Proof By using Eqs. (130) and (131), and noticing that ∂t G = −DS�G, we have

∂tθ + G ′� (−q + ∇Sθ) + 1

2
Tr
(
�∇2

SSθ
)

+γ

2
(−q + ∇Sθ)′ � (−q + ∇Sθ) −

d∑
i=1

V i
t Hi (−∂qi θ

)

= ∂tθ + G ′� (−q + ∇Sθ) + 1

2
Tr
(
�∇2

SSθ
)

+γ

2
(−q + ∇Sθ)′ � (−q + ∇Sθ) − ∇qθ ′N∇qθ

16 The function d should not be confused with the number d of risky assets.
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= ȧ + 1

2
∂t G

′bG + 1

2
G ′ḃG + 1

2
G ′b∂t G

+ ∂t G
′cq + G ′ċq + 1

2
q ′ḋq + ∂t G

′e + G ′ė + q ′ ḟ

+ G ′� (−q + DSGbG + DSGcq + DSGe) + 1

2
Tr
(
�t�

−1b�−1�t�
−1)

+ γ

2
(−q + DSGbG + DSGcq + DSGe)′ � (−q + DSGbG + DSGcq + DSGe)

− (cG + dq + f )′ N (cG + dq + f )

= ȧ + 1

2
G ′ḃG + G ′ċq + 1

2
q ′ḋq + G ′ė + q ′ ḟ − G ′�q + 1

2
Tr
(
�t�

−1b�−1�t�
−1)

+ γ

2
(−q + DSGbG + DSGcq + DSGe)′ � (−q + DSGbG + DSGcq + DSGe)

− (cG + dq + f )′ N (cG + dq + f )

=
(

ȧ + 1

2
Tr
(
�t�

−1b�−1�t�
−1)+ γ

2
e′ DSG�DSGe − f ′N f

)

+ 1

2
G ′ (ḃ + γ bDSG�DSGb − 2c′Nc

)
G

+ G ′ (ċ − � + γ bDSG�(−Id + DSGc) − 2c′Nd
)

q

+ 1

2
q ′ (ḋ + γ (−Id + c′ DSG)�(−Id + DSGc) − 2d Nd

)
q

+ G ′ (ė + γ bDSG�DSGe − 2c′N f
)

+ q ′ ( ḟ + γ (−Id + c′ DSG)�DSGe − 2d N f
) = 0.

As it is straightforward to verify that θ satisfies the terminal condition (126), the result is
proved. ��

The above system of ODEs deserves a few comments.
In fact, it can be decomposed into 3 sets of ODEs that can be solved one after the other:

a first system of nonlinear ODEs (133b)–(133d) with the associated terminal conditions
(134b)–(134d) that defines (b, c, d), a second system of linear ODEs (133e) and (133f) with
the associated terminal conditions (134e) and (134f) that defines (e, f ) given (b, c, d), and
finally the simple ODE (133a) with the associated terminal condition (134a) that defines a
given (b, c, d, e, f ). The equation (133a) for a is trivial to solve. The second set of ODEs
does not raise any difficulty because the ODEs are linear. In particular, if qtarget = 0, i.e., if
we consider an optimal portfolio choice problem or an optimal portfolio liquidation problem,
then the solution of the second system of linear ODEs is trivial: (e, f ) = (0, 0).

Regarding the first set of equations, there exists a unique local solution (b, c, d) byCauchy-
Lipschitz. In order to prove that b and d are symmetric matrices, we can proceed as follows:
(i) replacing Eq. (133c) by

ċ(t) − � + γ

2

(
b(t) + b(t)′

)

�−1�t (−Id + �−1�t�
−1c(t)) − c(t)′N (t)

(
d(t) + d(t)′

) = 0, (135)

then (ii) considering the unique local solution (b̃, c̃, d̃) of (133b)–(133d) with terminal condi-
tions (134b)–(134d), then (iii) noticing that (b̃′, c̃, d̃ ′) is also a local solution of (133b)–(133d)
with terminal conditions (134b)–(134d), and therefore that b̃ = b̃′ and d̃ = d̃ ′ are symmetric,
(iv) noticing that (b̃, c̃, d̃) is therefore a local solution of (133b)–(133d) with the associated
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terminal conditions (134b)–(134d), and (v) concluding therefore that b = b̃ and d = d̃ are
symmetric.

Because of the local existence result, if T is small enough, then there exist functions
a ∈ C1 ([0, T ]), b ∈ C1 ([0, T ] , Sd(R)), c ∈ C1 ([0, T ] , Md(R)), d ∈ C1 ([0, T ] , Sd(R)),
e ∈ C1

(
[0, T ] ,Rd

)
, and f ∈ C1

(
[0, T ] ,Rd

)
satisfying the equations of Proposition 31.

However, although we did not find any case of blowup numerically, a global existence result
seems out of reach given the nature of system of ODEs.

Nevertheless, we can state a verification theorem that solves the problemwhen there exists
a solution to the above system on [0, T ].

Theorem 9 Assume there exist a ∈ C1 ([0, T ]), b ∈ C1 ([0, T ] , Sd(R)), c ∈ C1
(
[0, T ] ,

Md(R)
)
, d ∈ C1 ([0, T ] , Sd(R)), e ∈ C1

(
[0, T ] ,Rd

)
, and f ∈ C1

(
[0, T ] ,Rd

)
satisfying

the equations of Proposition 31. Let us then consider the function θ defined by (132) and the
associated function u defined by (124).

For all (t, x, q, S) ∈ [0, T ] × R × R
d × R

d and v = (vs)s∈[t,T ] ∈ AAC
t , we have

E

[
− exp
(
−γ
(

Xt,x,S,v
T + qt,q,v

T
′
St,S

T − �
(

qt,q,v
T

)))]
≤ u (t, x, q, S) . (136)

Moreover, equality in (136) is obtained by taking the optimal control (v�
s )s∈[t,T ] ∈ AAC

t given
by the closed-loop feedback formula

∀s ∈ [t, T ], v�
s = φ(s)qt,q,v�

s + ψ(s, St,S
s ), (137)

where φ : t ∈ R+ 	→ −2N (t)d(t) and ψ : (t, S) ∈ [0, T ] × R
d 	→ −2N (t)(c(t)G(t, S) +

f (t)).
In particular u = V .

Proof Let us first prove that (v�
s )s∈[t,T ] is well-defined and admissible (i.e., (v�

s )s∈[t,T ] ∈
AAC

t ).
For that purpose, let us consider the Cauchy problem

dq̃s

ds
= φ(s)q̃s + ψ(s, St,S

s ), q̃t = q.

Its unique solution is given by

∀s ∈ [t, T ], q̃s = exp

(∫ s

t
φ(τ)dτ

)(
q +
∫ s

t
ψ(τ, St,S

τ ) exp

(
−
∫ τ

t
φ(ζ )dζ

)
dτ

)
.

Then v� is defined by ˙̃q and can be written as

∀s ∈ [t, T ], v�
s = φ(s) exp

(∫ s

t
φ(τ)dτ

)

(
q +
∫ s

t
ψ(τ, St,S

τ ) exp

(
−
∫ τ

t
φ(ζ )dζ

)
dτ

)
+ ψ(s, St,S

s ).

Given the definition of ψ and the affine nature of G with respect to S, (v�
s )s∈[t,T ] satisfies the

required linear growth condition to be in AAC
t .
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Now, let us consider (t, x, q, S) ∈ [0, T ] × R × R
d × R

d and v = (vs)s∈[t,T ] ∈ AAC
t .

By Itō’s formula, we have for all s ∈ [t, T ]
du
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)

= Lvu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)
ds + ∇Su

(
s, Xt,x,S,v

s , qt,q,v
s , St,S

s

)′ (
σ � dŴs

)
.

where

Lvu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)

= ∂t u
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)
+ G(s, St,S

s )′�∇Su
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)

+ 1

2
Tr
(
�∇2

SSu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

))
+ v′

s∇qu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)

−
(

v′
s St,S

s +
d∑

i=1

V i
t Li
(

vi
s

V i
t

))
∂x u
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)
.

Note that we have

∇Su
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)

= − γ u
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

) (
qt,q,v

s − ∇Sθ
(

s, qt,q,v
s , St,S

s

))

= − γ u
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

) (
qt,q,v

s − �−1�t�
−1b(t)G(t, St,S

s )

−�−1�t�
−1c(t)qt,q,v

s − �−1�t�
−1e(t)
)

.

Let us subsequently define, for all s ∈ [t, T ],
κv

s = −γ
(

qt,q,v
s − �−1�t�

−1b(t)G(t, St,S
s ) − �−1�t�

−1c(t)qt,q,v
s − �−1�t�

−1e(t)
)

,

and

ξv
t,s = exp

(∫ s

t
κv
τ

′ (
σ � dŴτ

)− 1

2

∫ s

t
κv
τ

′
�κv

τ dτ

)
.

We have

d
(

u
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

) (
ξv

t,s

)−1
)

= (ξv
t,s

)−1 Lvu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)
ds.

By definition of u, Lvu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)
≤ 0.

Moreover, by (127), Lvu
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

)
= 0 if v satisfies

vs = −2N (s)
(

c(s)G(s, St,S
s ) + d(s)qt,q,v

s + f (s)
)

= φ(s)qt,q,v
s + ψ(s, St,S

s ),

which is the case when (vs)s∈[t,T ] = (v�
s )s∈[t,T ].

As a consequence,
(

u
(

s, Xt,x,S,v
s , qt,q,v

s , St,S
s

) (
ξv

t,s

)−1
)

s∈[t,T ] is nonincreasing, and

therefore

u
(

T , Xt,x,S,v
T , qt,q,v

T , St,S
T

)
≤ u(t, x, q, S)ξv

t,T ,

with equality when (vs)s∈[t,T ] = (v�
s )s∈[t,T ].
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Subsequently,

E

[
− exp
(
−γ
(

Xt,x,S,v
T + qt,q,v

T
′
St,S

T − �
(

qt,q,v
T

)))]
= E

[
u
(

T , Xt,x,S,v
T , qt,q,v

T , St,S
T

)]

≤ u(t, x, q, S)E
[
ξv

t,T

]
,

with equality when (vs)s∈[t,T ] = (v�
s )s∈[t,T ].

Because v ∈ AAC
t satisfies the linear growth conditionwith respect to (St,S

s )s∈[t,T ], so does
(qt,q,v

s )s∈[t,T ]. Therefore, using the same argument as in Theorem 3, we see that
(
ξv

t,s

)
s∈[t,T ]

is a martingale with E
[
ξv

t,s

] = 1 for all s ∈ [t, T ].
We obtain

E

[
− exp
(
−γ
(

Xt,x,S,v
T + qt,q,v

T
′
St,S

T − �
(

qt,q,v
T

)))]

= E

[
u
(

T , Xt,x,S,v
T , qt,q,v

T , St,S
T

)]
≤ u(t, x, q, S),

with equality when (vs)s∈[t,T ] = (v�
s )s∈[t,T ].

We can conclude that

V(t, x, q, S) = sup
(vs )s∈[t,T ]∈AAC

t

E

[
− exp
(
−γ
(

Xt,x,S,v
T + qt,q,v

T
′
St,S

T − �
(

qt,q,v
T

)))]

= E

[
− exp
(
−γ
(

Xt,x,S,v
T + qt,q,v�

T

′
St,S

T − �
(

qt,q,v�

T

)))]

= u(t, x, q, S).

��

5.5 Numerical examples and comments

We consider now three simple examples in order to illustrate the results obtained above. For
these three examples, we consider one risky asset (stock) with the following characteristics:

• S0 = 50 e,
• μ = 0.01 e day−1,
• σ = 0.6 e day−1/2,
• V = 4000000 shares day−1,
• L(y) = η|y|2 with η = 0.15 e shares−1 day−1.

The first problem we consider is an optimal portfolio choice problem (with q0 = 0). The
parameters are the following:

Objective function

• T = 10 days,
• γ = 2 · 10−7e−1,
• � = 0.

Bayesian prior N (β0, ν
2
0 )

• β0 = 0.01 e day−1,
• ν0 = 0.03 e day−1.

Our methodology was first to approximate numerically the functions a, b, c, and d (we
know that (e, f ) = (0, 0)). Then, for different simulated paths of the stock price, we used
Eq. (137) for finding—in fact approximating numerically—the optimal number of shares in
the portfolio at each point in time (on a grid). The results are shown in Fig. 1.
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Fig. 1 Solution of the optimal portfolio choice problem for three trajectories of S. Top panel: price of the risky
asset St . Bottom panel: position qt in the risky asset

Two things must be noticed in Fig. 1. First, the agent builds a portfolio with a number of
shares that lies around qopt, where

qopt = μ

γσ 2 � 138,889

is the number of shares that would be optimal in the optimal portfolio choice model without
uncertainty on μ and without execution costs. Second, the strategy followed by the agent
looks like a trend-following strategy: the agent buys when the stock price increases and sells
when the stock price decreases, though in a smooth manner. This is in fact quite natural given
the dynamics of (βt )t∈R+ .

The second problem we consider is an optimal portfolio liquidation problem (with q0 =
100,000 shares). The parameters are the following:

Objective function

• T = 1 day,
• γ = 2 · 10−6e−1,
• A = 5 · 10−6 e share−2.17

Bayesian prior N (β0, ν
2
0 )

• β0 = 0.01 e day−1,
• ν0 = 0.1 e day−1.

We first approximated numerically the functions a, b, c, and d (we know that (e, f ) =
(0, 0)). Then, for different simulated paths of the stock price, we used Eq. (137) for approx-
imating the optimal number of shares in the portfolio at each point in time (on a grid). The
results are shown in Fig. 2.

17 The matrix A is a scalar in the one-asset case.
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Fig. 2 Solution of the optimal portfolio liquidation problem for three trajectories of S. Top panel: price of the
risky asset St . Bottom panel: position qt in the risky asset

We see in Fig. 2 that the small value of A we used is high enough to force complete
liquidation in all of the three cases. We also see that the optimal (adaptive) strategy con-
sists in liquidating at a faster pace for decreasing price trajectories than for increasing price
trajectories. This is in line with the trend following effect exhibited in Fig. 1.

The third problem we consider is an optimal portfolio transition problem (with q0 =
100,000 shares). The parameters are the following:

Objective function

• T = 1 day,
• γ = 2 · 10−6e−1,
• qtarget = 200,000 shares,
• A = 5 · 10−6 e share−2.

Bayesian prior N (β0, ν
2
0 )

• β0 = 0.01 e day−1,
• ν0 = 0.1 e day−1.

As above, we approximated numerically the functions a, b, c, d , e, and f , and then used
Eq. (137) for approximating the optimal number of shares in the portfolio at each point in
time (on a grid) for three different simulated paths of the stock price. The results are shown
in Fig. 3.
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Fig. 3 Solution of the optimal portfolio transition problem for three trajectories of S. Top panel: price of the
risky asset St . Bottom panel: position qt in the risky asset

We see in Fig. 3 that the small value of A we used is high enough to force complete
transition from portfolio q0 to portfolio qtarget in all of the three cases. In addition to the
classical trend-following-like effect, we see in Fig. 3 that the optimal strategy consists in
selling shares before buying them back. In fact, the agent faces a trade-off because there are
two opposite forces. When the final penalty is far away (i.e., at the beginning of the process),
the agent faces a portfolio choice problem similar to the one tackled in the first example.
Here,

qopt = μ

γσ 2 � 13,889 < q0.

Therefore, there is an incentive to sell shares at the beginning. After some time however, the
final condition matters and the agent has to reach the target, hence the U-shaped trajectory.

These three examples illustrate the use of the PDE method for solving various problems
under drift uncertainty.

6 Conclusion

In this paper, we have presented a PDE method that can be used for addressing optimal
portfolio choice, optimal portfolio liquidation, and optimal portfolio transition problems,
when the expected returns of risky assets are unknown. The main idea is to use at the same
time Bayesian (or more generally online) learning and dynamic programming techniques.
Our approach goes beyond the martingale method of Karatzas and Zhao, because it can
be used in more general models, for instance when a modelling framework à la Almgren–
Chriss is considered. We believe that the use of Bayesian (or more generally online) learning
in conjunction with stochastic optimal control enables to improve many models without
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increasing their dimensionality and we are looking forward to seeing other applications of
the same method, especially in Finance.
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