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Abstract
We consider an optimal stochastic impulse control problem over an infinite time horizon
motivated by a model of irreversible investment choices with fixed adjustment costs. By
employing techniques of viscosity solutions and relying on semiconvexity arguments, we
prove that the value function is a classical solution to the associated quasi-variational inequal-
ity. This enables us to characterize the structure of the continuation and action regions and
construct an optimal control. Finally, we focus on the linear case, discussing, by a numer-
ical analysis, the sensitivity of the solution with respect to the relevant parameters of the
problem.
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1 Introduction

In this paper we consider a one dimensional stochastic impulse optimal control problem
modeling the economic problem of irreversible investment with fixed adjustment cost.

Let X = {Xt }t≥0 be a real valued positive process representing an economic indicator
(such as the GDP of a country, the production capacity of a firm and so on) on which a
planner/manager can intervene. When no intervention is undertaken, it is assumed that the
process X evolves autonomously according to a time-homogeneous Itô diffusion.On the other
hand, the planner may act on this process, increasing its value, by choosing a sequence of
interventions dates {τn}n≥1 and of intervention amplitudes {in}n≥1, with in > 0 .1 Hence, the
control is represented by a sequence of couples {(τn, in)}n≥1: the first component represents
the intervention time, the second component the size of intervention. The goal of the controller
is to maximize over the set of all admissible controls, the expected total discounted income

E

⎡
⎣
∫ ∞

0
e−ρt f (Xt ) dt −

∑
n≥1

e−ρτn (c0in + c1)

⎤
⎦ ,

where f is a reward function, c0 > 0 and c1 > 0 represent, respectively, the proportional
and the fixed cost of intervention, and ρ > 0 is a discount factor.

From the modeling side, our problem is the “extension” to the case c1 > 0 of the same
problem already treated in the literature in the case c1 = 0 (see, e.g. [63, Ch. 4, Sec. 5].
In this respect, it applies to economic problems of capacity expansion, notably irreversible
investment problems.2

From the theoretical side, the introduction of a fixed cost of control is relevant, as it
leads from a problem well posed (in the sense of existence of optimal controls) as a singular
control problem to a problem well posed as an impulse control problem.3 Such a change
is not priceless at the theoretical level. Indeed, the introduction of a fixed cost of control
has two unpleasant effects. Firstly, it destroys the concavity of the objective functional even
if the revenue function is concave. Secondly, when approaching the problem by dynamic
programming techniques (as we do), the dynamic programming equation has a nonlocal
term and takes the form of a quasi-variational inequality (QVI, hereafter), whereas it is a
variational inequality in the singular control case.

1.1 Related literature

First of all, it is worth noticing that the stochastic impulse control setting has been widely
employed in several applied fields: e.g., exchange and interest rates [20,49,56], portfolio
optimization with transaction costs [34,51,57], inventory and cash management [12,21,27–
29,44,45,58,62,67,68,71], real options [47,53], reliability theory [7]. More recently, games
of stochastic impulse control have been investigated with application to pollution [38].

1 The fact that only positive intervention, i.e. in > 0, is allowed is expressed in the economic literature of
Real Options by saying that the investment is irreversible.
2 Other than in [63, Ch. 4, Sec. 5], irreversible and reversible investment problems with no fixed investment
costs are largely treated in the mathematical economic literature, both over finite and infinite horizon. We
mention, among others [1,2,4,5,10,11,23,24,30,32,33,37,39–42,52,55,59,64,70].
3 The stochastic impulse control setting has been widely employed in several other applied fields: e.g.,
exchange rate [20,49], portfolio optimization with transaction costs [51,57], inventory and cash management
[27,67,68] and real options [47,53].
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From amodeling point of view, the closest works to ours can be considered [3,6,26,35,51].
On the theoretical side, starting from the classical book [17], several works investigated
QVIs associated to stochastic impulse optimal control in R

n . Among them, we mention
the recent [43] in a diffusion setting and [14,31] in a jump-diffusion setting. In particular
[17, Ch.4] deals with Sobolev type solutions, whereas [43] deals with viscosity solutions.
These two works prove a W 2,p-regularity, with p < ∞, for the solution of QVI, which,
by classical Sobolev embeddings, yields a C1-regularity. However, it is typically not easy
to obtain by such regularity information on the structure of the so called continuation and
action regions, hence on the candidate optimal control. If this structure is established, then
one can try to prove a verificiation theorem to prove that the candidate optimal control is
actually optimal. In a stylized one dimensional example, [43, Sec. 5] successfully employs
this method by exploiting the regularity result proved in [43, Sec. 4] to depict the structure
of the continuation and action region for the problem at hand. Concerning verification, we
need to mention the recent paper [15], which provides a non-smooth verification theorem in
a quite general setting based on the stochastic Perron method to construct a viscosity solution
to QVI; also this paper, in the last section, provides and application of the results to a one
dimensional problem with an implementable solution. In dimension one other approaches,
based on excessive mappings and iterated optimal stopping schemes, have been successfully
employed in the context of stochastic impulse control (see [3,6,35,46]). More recently, these
methods have been extended to Markov processes valued in metric spaces (see [25]); again
a complete description of the solution is shown in one dimensional examples.

1.2 Contribution

From the methodological side our work is close to [43]. As in the latter, we follow a direct
analytical method based on viscosity solutions and we do not employ a guess-and-verify
approach.4 Indeed, we directly provide necessary optimality conditions that, by uniqueness,
fully characterize the solution. In particular, we do not postulate the smooth-fit principle, as it
is usually done in the guess-and-verify approach, but we prove it directly.5 To the best of our
knowledge a rigorous analytical treatment as ours of the specific problem treated in this paper
seems to be still missing in the literature. It is important to notice that our analysis yields
a a complete and implementable characterization of the optimal control policy through the
identification of the continuation and action regions. Since the aforementioned techniques
based on excessive mappings seems to be perfectly employable to our problem (even under
weaker assumption), it is worth to point out that our contribution is methodological. As it is
well known, the (implementable) characterization of the optimal control in stochastic impulse
control problems is a challenging task in dimension larger than one. Hence, it is important
to have at hand an approach like ours that might be generalized to address impulse control
problems in multi-dimensional setting. To this regard, it is worth to notice the following.

• To the best of our knowledge, the only study providing a complete picture of the solution
in dimension two—through a two dimensional (S, s)-rule—is the recent paper [16] (see
also [69] in a deterministic setting). The techniques used there are analytical and based
on the study of QVI’s. Unfortunately, in this paper, the authors are able to provide a
complete solution only in a very specific case.

4 See, e.g. [13,27,48,51,57] and, in a much more general context of jump-diffusion [60, Ch.6] for the guess-
and-verify approach.
5 The smooth-fit principle has also been established, when the diffusion is assumed to be transient, by tech-
niques based on excessive function (see [66]).
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• In the presence of semiconvex data, our approach to prove C1 regularity of the value
function based on semiconvexity jointly with the viscosity property, unlike [43], might
be successful to prove a directional regularity result just along nondegenerate directions
(see [37] in a singular control context).

• The directional regularity result mentioned above might be sufficient to derive the right
optimality condition to solve the control problem (see again [37] in a singular control
context).

1.3 Contents

In Sect. 2 we set up the problem. In Sect. 3 we state some preliminary results on the value
function v, in particular we show that it is semiconvex. In Sect. 4 we derive QVI associated to
v and show that it solves the latter in viscosity sense. After that, we prove that v is of classC2

in the continuation region (the region where the differential part of QVI holds with equality,
see below) and of classC1 on thewhole state space (Theorem 4.6, our first main result), hence
proving the smooth fit-principle. We prove the latter result relying just on the semiconvexity
of v and exploting the viscosity supersolution property; unlike [43], this allows to avoid the
use of a deep theoretical result such as the Calderon–Zygmund estimate. So, with respect
to the aforementioned reference, our method of proof is cheaper from a theoretical point of
view; on the other hand, it heavily relies on assumptions guaranteeing the semiconvexity of
v. In Sect. 5 we use the latter regularity to establish the structure of the continuation and
action regions—the real unknown of the problem—showing that they are both intervals.
This allows to express explicitly v up to the solution of a nonlinear algebraic system of three
variables (Theorem 5.11, our second main result). In Sect. 6, relying on the results of the
previous section, we are able to construct an optimal control policy (Theorem 6.1, our third
main result). The latter turns out to be based on the so called (S, s)-rule:6 the controller acts
whenever the state process reaches a minimum level s (the “trigger” boundary) and brings
immediately the system at the level S > s (the “target” boundary). Finally, in Sect. 7, we
provide a numerical illustration of the solution when X follows a geometric Brownianmotion
dynamics between intervation times, analyzing the sensitivity of the solution with respect to
the volatility coefficient σ and to and the fixed cost c1.

2 Problem formulation

We introduce some notation. We set

R+:=[0,+∞), R+:=[0,+∞], R++:=(0,+∞).

The set R++ will be the state space of our control problem. Throughout the paper we adopt
the conventions e−∞ = 0 and inf ∅ = ∞. Moreover, we simply use the symbol ∞ in place
of+∞when positive quantities are involved and no confusion may arise. Finally, the symbol
n will always denote a natural number.

Let (�,F , {Ft }t≥0,P) be a filtered probability space satisfying the usual conditions and
supporting a a one dimensional Brownian motion W = {Wt }t≥0. We denote F:={Ft }t∈R+ ,

where we set F∞:=
∨
t∈R+

Ft . We take b, σ : R → R satisfying the following

6 This is a well known rule in the economic literature of inventory problems, see [8,67,68].
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Assumption 2.1 b, σ : R → R are Lipschitz continuous functions, with Lipschitz constants
Lb, Lσ , respectively, identically equal to 0 on (−∞, 0] and with σ > 0 on R++. More-
over, b, σ ∈ C1(R+) and b′, σ ′ are Lipschitz continuous on R++, with Lipschitz constants
L̃b, L̃σ > 0, respectively.

Remark 2.2 The requirement that b′, σ ′ are Lipschitz continuous is typical when one wants
to prove the semiconvexity/semiconcavity of the value function in stochastic optimal con-
trol problem (see, e.g., the classical reference [72, Ch.4, Sec. 4.2] in the context of regular
stochastic control; [14] in the context of impulse control). We use this assumpton since, as
outlined in the introduction, in our approach the proof of the semiconvexity of the value
function will be a crucial step towards the proof of the C1 regularity.

Let τ be a (possibly not finite) F-stopping time and let ξ be an Fτ -measurable random
variable. By standard SDE’s theory with Lipschitz coefficients, Assumption 2.1 guarantees
that there exists a unique (up to undistinguishability) F-adapted process Z τ,ξ = {Z τ,ξ

t }t≥0

with continuous trajectories on [τ,∞), such that

Z τ,ξ
t =

{
0 for t ∈ [0, τ )

ξ + ∫ t
τ
b(Z τ,ξ

s )ds + ∫ t
τ

σ (Z τ,ξ
s )dWs P-a.s., for t ≥ τ.

(2.1)

Moreover, by a straightforward adaptation of [50, Sec. 5.2, Prop. 2.18] to random initial data,
we obtain

ξ, η Fτ -measurable random variables, ξ ≤ η P-a.s. 	⇒ Z τ,ξ
t+τ ≤ Z τ,η

t+τ P-a.s., ∀t ≥ 0.
(2.2)

Now fix x ∈ R++. By (2.2) and Assumption 2.1, it follows that Z0,x takes values in R+.
Due to the nondegeneracy assumption on σ over R++, as a consequence of the results of
[50, Sec. 5.5.C], the process Z0,x is a (time-homogeneous) regular diffusion on R++; i.e.,
setting τx,y := inf

{
t ≥ 0 : Z0,x

t = y
}

, one has

P{τx,y < ∞} > 0 ∀y ∈ R++.

In “Appendix” we show that Assumption 2.1 guarantees that the boundaries 0 and +∞ are
natural for Z0,x in the sense of Feller’s classification.

We introduce now a set of admissible controls and their corresponding controlled process.
As a set of admissible controls (i.e., feasible investment strategies) we consider the set I of
all sequences of couples I = {(τn, in)}n≥1 such that:

(i) {τn}n≥1 is an increasing sequence of R+-valued F-stopping times such that τn < τn+1

P-a.s. over the set {τn < ∞} and
lim
n→∞ τn = ∞ P-a.s.; (2.3)

(ii) {in}n≥1 is a sequence of R++-valued random variables such that in is Fτn -measurable
for every n ≥ 1;

(iii) The following integrability condition holds:
∑
n≥1

E
[
e−ρτn (in + 1)

]
< ∞. (2.4)

For n ≥ 1, τn represents an intervention time, whereas in represents the intervention size
at the corresponding intervention time τn . Condition (2.3) ensures that, within a finite time
interval, only a finite number of actions are executed. We allow the case τn = ∞ definitively,
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meaning that only a finite number of actions are taken. Condition (2.4) ensures that the
functional defined below is well defined. We call null control any sequence {(τn, in)}n≥1

such that τn = ∞ for each n ≥ 1 and denote any of them by ∅. Notice that using the same
notation ∅ for the null controls is not ambiguous with regard to the control problem we are
going to define, as any null control will give rise to the same payoff.

Given a control I ∈ I , an initial stopping time τ ≥ 0 and a random variable ξ > 0 P-a.s.
Fτ -measurable, we denote by X τ,ξ,I = {X τ,ξ,I

r }r∈[0,∞) the unique (up to indistinguishabil-
ity) càdlàg process on [τ,∞) solving the SDE (in integral form)

X τ,ξ,I
t =

⎧⎪⎨
⎪⎩

0 for t ∈ [0, τ )

ξ +
∫ t

τ

b
(
X τ,ξ,I
s

)
ds +

∫ t

τ

σ
(
X τ,ξ,I
s

)
dWs +

∑
n≥1

1[τ,r ] (τn) · in for t ∈ [τ,∞)

(2.5)
If t = 0 and ξ ≡ x ∈ R++ then we denote X0,ξ,I by Xx,I . It is easily seen that, if τ ′ is
another stopping time such that τ ′ ≥ τ , then the following flow property holds true

X τ,ξ,I
t = X

τ ′,Xτ,ξ,I
τ ′− ,I

t ∀t ≥ τ ′, P-a.e.. (2.6)

Note that, up to undistinguishability, we have Xx,∅ = Z0,x . Moreover, setting by convention
τ0:=0, i0:=0 and X0−:=x , we have recursively on n ∈ N

Xx,I
t = Z

τn ,X
x,I
τn

t ∀t ∈ [τn, τn+1), P-a.s..

Then, by (2.2), we have the following monotonicity of the controlled process with respect to
the initial data

Xx,I
t ≤ Xx ′,I

t P-a.s., ∀t ≥ 0, ∀I ∈ I , ∀x, x ′ : 0 < x ≤ x ′. (2.7)

Next, we introduce the optimization problem.Givenρ > 0, f : R++ → R++ measurable,
c0 > 0, c1 > 0, we define the payoff functional J by

J (x, I ):=E

⎡
⎣
∫ ∞

0
e−ρt f

(
Xx,I
t

)
dt −

∑
n≥1

e−ρτn (c0in + c1)

⎤
⎦ , ∀x ∈ R+, ∀I ∈ I .

(2.8)
We notice that (2.4) and the fact that f is bounded from below ensure that J (x, I ) is well

defined and takes values in R ∪ {∞}.
We will make use of the following assumption on f .

Assumption 2.3 f ∈ C1(R++;R+), f ′ > 0, f ′ is strictly decreasing and f satisfies the
Inada condition at ∞:

f ′(∞):= lim
x→∞ f ′(x) = 0.

Finally, without loss of generality, we assume that f (0+):= lim
x→0+ f (x) = 0.

Note that

Mb :=
(

sup
x∈R++

b′(x)
)+

< ∞ (2.9)

by Assumption 2.1. The following assumption will ensure finiteness for the problem (Propo-
sition 3.2).
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Assumption 2.4 ρ > Mb.

Assumptions 2.1, 2.3 and 2.4 will be standing through the rest of the manuscript.
The optimal control problem that we address consists in maximizing the functional (2.8)

over I ∈ I , i.e., for each x ∈ R+, we consider the maximization problem

sup
I∈I

J (x, I ). (P)

Remark 2.5 The fact that c1 > 0 means that there is a fixed cost when the investment occurs.
This provides that (P) is well posed as an impulse control problem, i.e. optimal controls can
be foundwithin the class of impulse controls . If it was c1 = 0 (only proportional intervention
cost), the setting providing existence of optimal controls would be the more general singular
control setting (see e.g. [63, Ch. 4]). For comparison between impulse and singular control
we refer to [18]; for the relevance of the introduction of the fixed cost we refer to [61], where
the asymptotics for c1 → 0 is investigated. In Sect. 7.1.2, we comment this issue through
the numerical outputs.

We also notice that one might consider more general intervention costs C : R++ → R+
increasing and convex, (e.g. C(i) = αi2 + βi + c1 with α, c1 > 0 and β ≥ 0). We believe
that, at least for a suitable subclass of such cost functons, the solution would depict the same
structure as the one we provide here in the affine case (i.e. C(i) = c0i + c1). On the other
hand, we underline that at many points our proofs make use of the affine structure of the cost
and the generalization seems to be not straightforward.

3 Preliminary results on the value function

In this section we introduce the value function associated with (P) and establish some basic
properties of it. We define the value function v by

v(x):= sup
I∈I

J (x, I ), ∀x ∈ R++. (3.1)

We notice that v is R+-valued, as by Assumption 2.3

v(x) ≥ J (x,∅) = v̂(x):=E

[∫ ∞

0
e−ρt f (Xx,∅

t )dt

]
≥ 0 ∀x ∈ R++. (3.2)

Note that v̂ is nondecreasing as f ′ > 0 (Assumption 2.3) and by (2.7).

Proposition 3.1 v is nondecreasing.

Proof Let 0 < x ≤ x ′. Since f ′ > 0 (see Assumption 2.3), from (2.7) we get J (x; I ) ≤
J (x ′; I ) for every I ∈ I . The claim follows by taking the supremum over I ∈ I . ��

We denote by f ∗ the Fenchel–Legendre transform of f on R++:

f ∗(α):= sup
x∈R++

{
f (x) − αx

}
, ∀α ∈ R++. (3.3)

Nonnegativity and continuity of f (see Assumption 2.3) and the condition f ′(∞) = 0 (again
Assumption 2.3) guarantee that 0 ≤ f ∗(α) < ∞ for all x ∈ R++.
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Proposition 3.2 For all α ∈ (0, c0ρ] we have

0 ≤ v̂(x) ≤ v(x) ≤ f ∗(α)

ρ
+ αx

ρ
, ∀x ∈ R++ (3.4)

and

lim sup
x→∞

v(x)

x
= 0. (3.5)

Proof The fact that 0 ≤ v̂ ≤ vwas already noticed in (3.2).We show the remaining inequality.

Let x ∈ R++ and I ∈ I . For R > 0, define the stopping time τ̂R := inf
{
t ≥ 0 : Xx,I

t ≥ R
}

.

Notice that, since b ∈ C1(R++;R) and b(0) = 0 by Assumption 2.1, mean value theorem
yields

b(ξ) ≤ b(0) + Mbξ = Mbξ, ∀ξ ∈ R, (3.6)

where Mb is defined in (2.9). Set τ0:=0 and let t ∈ R++. Applying Itô’s formula to
ϕ(s, Xx,I

s ):=e−ρs X x,I
s , s ∈ [0, τ̂R), taking expectations after considering that Xx,I

s ∈ (0, R)

for s ∈ [0, τ̂R), summing up over n ∈ N and using (3.6) and 2.4, we get

E

[
e−ρt X x,I

t∧τ̂R

]
= x − ρ

∫ t

0
e−ρs

E

[
1[0,τ̂R ](s)Xx,I

s

]
ds +

∫ t

0
e−ρs

E

[
1[0,τ̂R ](s)b(Xx,I

s )
]
ds

+ e−ρt
E

⎡
⎣ ∑
n≥1, τn≤t∧τ̂R

in

⎤
⎦

≤ x + (Mb − ρ)

∫ t

0
e−ρs

E

[
1[0,τ̂R ](s)Xx,I

s

]
ds + e−ρt

E

⎡
⎣ ∑
n≥1, τn≤t∧τ̂R

in

⎤
⎦

≤ x + e−ρt
E

⎡
⎣ ∑
n≥1, τn≤t∧τ̂R

in

⎤
⎦ .

By Fatou’s lemma, letting R → ∞ and observing that τR → ∞ P-a.s. , we get

E

[
e−ρt X x,I

t

]
≤ x + e−ρt

E

⎡
⎣ ∑
n≥1, τn≤t

in

⎤
⎦ . (3.7)

By integrating the second term on the right-hand side of (3.7), we have using Fubini–Tonelli’s
Theorem (as all the integrands involved are nonnegative)

E

⎡
⎣
∫ ∞

0

⎛
⎝e−ρt

∑
n≥1, τn≤t

in

⎞
⎠ dt

⎤
⎦ = E

⎡
⎣∑
n≥1

(∫ ∞

τn

e−ρ(t−τn)dt

)
e−ρτn in

⎤
⎦

= 1

ρ
E

⎡
⎣∑
n≥1

e−ρτn in

⎤
⎦ . (3.8)

Therefore, taking into account (3.7), (3.8) and (2.4), we have

E

[∫ ∞

0
e−ρt X x,I

t dt

]
≤ 1

ρ

⎛
⎝x + E

⎡
⎣∑
n≥1

e−ρτn in

⎤
⎦
⎞
⎠ < ∞. (3.9)
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Now let α > 0. By definition of f ∗ and by (3.9), we can write

E

⎡
⎣
∫ ∞

0
e−ρt f (Xx,I

t )dt −
∑
n≥1

e−ρτn (c0in + c1)

⎤
⎦

≤ E

⎡
⎣
∫ ∞

0
e−ρt

(
f ∗(α) + αXx,I

t

)
dt −

∑
n≥1

e−ρτn (c0in + c1)

⎤
⎦

≤ f ∗(α)

ρ
+ αx

ρ
+
(

α

ρ
− c0

)
E

⎡
⎣∑
n≥1

e−ρτn in

⎤
⎦ .

By arbitrariness of I ∈ I , if α ∈ (0, c0ρ], the latter provides the last inequality in (3.4).
Take now α ∈ (0, c0ρ]. By (3.4) we have

0 ≤ lim sup
x→∞

v(x)

x
≤ α lim sup

x→∞
v(x)

αx
≤ α lim sup

x→∞

{
f ∗(α)

αρx
+ 1

ρ

}
= α

ρ

By arbitrariness of α we get (3.5). ��
Assumption 3.3 The following conditions hold true.

(i) ρ > max
{
B0,C0

}
where B0,C0 are the constants defined in Lemma A.3.

(ii) For each β > 0,

M(β):=E

[∫ ∞

0
e−ρt

(
f ′ (Xβ,∅

t

))2
dt

]
< ∞. (3.10)

(iii) For each η > 0, the function f is semiconvex on [η,∞). Precisely, there exists a
nonincreasing function K0 : R++ → R++ such that

f (λx+(1−λ)y)−λ f (x)−(1−λ) f (y) ≤ K0(η)λ(1−λ)(y−x)2, ∀λ ∈ [0, 1], ∀x, y ∈ [β,∞).

(3.11)
(iv) The function K0 in (iii) is such that, for each β > 0,

M̂(β):=E

[∫ ∞

0
e−ρt

(
K0

(
Xβ,∅
t

))2
dt

]
< ∞. (3.12)

Remark 3.4 Semiconvex functions are functions that can be written as difference of a convex
function and a quadratic one (see [26, Prop. 1.1.3] or [72, Ch.4, Sec. 4.2]). Moreover, a
function ϕ ∈ C2([β,∞);R) verifies (3.11) with K0(η) := −2 inf [η,∞) f ′′ (see again [26,
Prop. 1.1.3]).

The following Proposition shows that power functions satisfy Assumption 3.3(ii)–(iv).

Proposition 3.5 Let f ∈ C2(R++;R) such that f ′ > 0, f ′′ < 0 and

f ′(ξ) ≤ C0
(
1 + |ξ |γ−1) , f ′′(ξ) ≥ −C0

(
1 + |ξ |γ−2) ∀ξ ∈ R++ (3.13)

for some C0 > 0 and γ ∈ (0, 1) and let ρ > Lb(1 − γ ) + 1
2 L

2
σ (1 − γ )(2 − γ ). Then f

satisfies Assumption 3.3(ii)–(iv).

Proof Let β ∈ R++ and observe that, by Assumption 2.1, we have

|b(ξ)| ≤ Lb|ξ |, |σ(ξ)| ≤ Lσ |ξ | ∀ξ ∈ R.

With a localization procedure similar to the one of the prof of Proposition 3.2 (now keeping
the process Xβ,∅ away from 0), we get from Itô’s formula
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E

[
e−ρt

∣∣Xβ,∅
t

∣∣γ−1
]

= |β|γ−1 + E

[∫ t

0
e−ρs

[
−ρ
∣∣Xβ,∅

s

∣∣γ−1 + (γ − 1)
∣∣Xβ,∅

s

∣∣γ−2
b
(
Xβ,∅
s

)

+ 1

2
(γ − 1)(γ − 2)

∣∣Xβ,∅
s

∣∣γ−3
σ 2
(
Xβ,∅
s

)]
ds

]

≤ |β|γ−1 + E

[∫ t

0
e−ρs

[
−ρ
∣∣Xβ,∅

s

∣∣γ−1 + Lb(1 − γ )
∣∣Xβ,∅

s

∣∣γ−1

+ 1

2
L2

σ (1 − γ )(2 − γ )
∣∣Xβ,∅

s

∣∣γ−1
]
ds

]
.

ThenAssumption 3.3(ii) follows from (3.13) andGronwall’s Lemma applied to the inequality
above.

Moreover, note that, since ξ �→ −C0(1 + |ξ |γ−2) is negative and increasing, by Remark
3.4 and (3.13) we obtain that f verifies Assumption 3.3(iii) with

K0(η) := −2γ (γ − 1)ηγ−2 ∀x ∈ R++. (3.14)

Finally, similarly as above, we have

E

[
e−ρt

∣∣Xβ,∅
t

∣∣γ−2
]

= |β|γ−2 + E

[∫ t

0
e−ρs

[
−ρ
∣∣Xβ,∅

s

∣∣γ−2 + (γ − 2)
∣∣Xβ,∅

s

∣∣γ−3
b
(
Xβ,∅
s

)

+ 1

2
(γ − 2)(γ − 3)

∣∣Xβ,∅
s

∣∣γ−4
σ 2
(
Xβ,∅
s

)]
ds

]

≤ |β|γ−2 + E

[∫ t

0
e−ρs

[
−ρ
∣∣Xβ,∅

s

∣∣γ−2 + Lb(1 − γ )
∣∣Xβ,∅

s

∣∣γ−1

+ 1

2
L2

σ (1 − γ )(2 − γ )
∣∣Xβ,∅

s

∣∣γ−1
]
ds

]
.

Then Assumption 3.3(iv) follows from Gronwall’s Lemma applied to the inequality above
and from (3.14). ��

Remark 3.6 Note that, if ρ satisfies Assumption 3.3(i), then it also satisfies the requirement
of Proposition 3.5.

Proposition 3.7 Let Assumption 3.3 hold. Then v is semiconvex on [β,∞) for each β > 0,
i.e., for each β > 0 there exists K1(β) > 0 such that

v(λx+(1−λ)y)−λv(x)−(1−λ)v(y) ≤ K1(β)λ(1−λ)(x−y)2 ∀λ ∈ [0, 1], ∀x, y ∈ [β,∞).

(3.15)

Proof Fix β > 0. Let x, y ∈ [β,∞) with x ≤ y and I ∈ I . For each λ ∈ [0, 1] set
zλ:=λx + (1 − λ)y and λ,x,y,I :=λXx,I + (1 − λ)X y,I . We write

J (zλ, I ) − λJ (x, I ) − (1 − λ)J (y, I )

= E

[∫ ∞

0
e−ρt

(
f
(
Xzλ,I
t

)
− λ f

(
Xx,I
t

)
− (1 − λ) f

(
X y,I
t

))
dt

]
=
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= E

[∫ ∞

0
e−ρt

(
f
(
Xzλ,I
t

)
− f

(


λ,x,y,I
t

))
dt

]

:=

A

+E

[∫ ∞

0
e−ρt

(
f
(


λ,x,y,I
t

)
− λ f

(
Xx,I
t

)
− (1 − λ) f

(
X y,I
t

))
dt

]

:=

B

.

Applying Hölder’s inequality, observing that Xβ,∅ ≤ Xzλ,I ∧λ,x,y,I , that f ′ is decreasing,
using Assumption 3.3(i) and using Lemma A.3(ii), we write

A ≤ E

[∫ ∞

0
e−ρt f ′ (Xβ,∅

t

) ∣∣∣Xzλ,I
t − 

λ,x,y,I
t

∣∣∣ dt
]

≤
(
E

[∫ ∞

0
e−ρt

(
f ′ (Xβ,∅

t

))2
dt

])1/2 (
E

[∫ ∞

0
e−ρt

∣∣∣Xzλ,I
t − 

λ,x,y,I
t

∣∣∣2 dt
])1/2

≤ M(β)1/2
(
E

[∫ ∞

0
e−ρt

∣∣∣Xzλ,I
t − 

λ,x,y,I
t

∣∣∣2 dt
])1/2

≤ M(β)1/2
(∫ ∞

0
e−ρt A0e

B0t dt

)1/2

λ(1 − λ)|x − y|2

= A1/2
0 M(β)

(ρ − B0)1/2
λ(1 − λ)|x − y|2.

Moreover, by Assumption 3.3(i), (iii), (iv), again using Hölder’s inequality and applying
Lemma A.3(i), we have

B ≤ λ(1 − λ)E

[∫ ∞
0

e−ρt K0

(
Xβ,∅
t

) ∣∣∣X y,I
t − Xx,I

t

∣∣∣2 dt
]

≤ λ(1 − λ)

(
E

[∫ ∞
0

e−ρt
(
K0

(
Xβ,∅
t

))2
dt

])1/2 (
E

[∫ ∞
0

e−ρt
∣∣∣X y,I

t − Xx,I
t

∣∣∣4 dt
])1/2

≤ λ(1 − λ)M̂(β)1/2
(∫ ∞

0
e−ρt eC0t dt

)1/2
|x − y|2

= M̂(β)1/2

(ρ − C0)
1/2 λ(1 − λ)|x − y|2.

Now let δ > 0 and let I be such that v(z) ≤ J (z, I ) + δ. The inequalities above provide

v(z) − δ − λv(x) − (1 − λ)v(y) ≤ J (z, I ) − λJ (x, I ) − (1 − λ)J (y, I )

≤ K1(β)λ(1 − λ)|x − y|2 ∀x, y ≥ β, ∀λ ∈ [0, 1],

where K1(β):= M̂(β)

(ρ−C0)1/2
+ A1/2

0 M̂(β)

(ρ−B0)1/2
. We then obtain (3.15) by arbitrariness of δ. ��

In viewof the fact that the resultswhich follow rely on the semiconvexity of v, Assumption 3.3
will be standing for the remaining of this section and in Sects. 4, 5 and 6.

Define the space

Liploc,c0 (R++):=
{
u : R++ → R locally Lipschitz continuous on R++, s.t. lim sup

x→∞
u(x)

x
< c0

}
.

(3.16)
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We recall that semiconvex functions on open sets are locally Lipschitz. So, by Propositions 3.2
and 3.7, we have v ∈ Liploc,c0(R++). The space Liploc,c0(R++) will be used in the next
section.

4 Dynamic programming

The dynamic programming equation associated to our dynamic optimization problem is the
quasi-variational inequality (see, e.g., [17])

min
{
L u − f , u − M u

} = 0, (QVI)

where L and M are operators formally defined by

L u(x) := ρu(x) − b(x)u′(x) − 1

2
σ 2(x)u′′(x), x ∈ R++, (4.1)

M u(x) := sup
i>0

{u(x + i) − c0i − c1} , x ∈ R++. (4.2)

We note that L is a differential operator, so it has a local nature, while M is a functional
operator having a nonlocal nature.

4.1 Continuation and action region

Here we define and study the first properties of the continuation and action region in the state
space R++.

Lemma 4.1 M maps Liploc,c0(R++) into itself.

Proof Let u ∈ Liploc,c0(R++). Then there exists x, ε > 0 such that

u(x)

x
− c0 ≤ −ε ∀x ≥ x . (4.3)

By (4.3), for all i > 0, x ≥ x , we have

u(x + i) − (c0i + c1) = (x + i)

(
u(x + i)

x + i
− c0

)
+ c0x − c1 ≤ (c0 − ε)x .

Hence, by taking the supremum over i > 0,

M u(x)

x
≤ c0 − ε ∀x ≥ x,

which shows that lim sup
x→∞

M u(x)

x
< c0.

Now we show that M u is Lipschitz continuous on [M−1, M] for each M > 0. Using
(4.3) one can show that

lim sup
i→+∞

sup
x∈[M−1,M]

{
u(x + i) − c0i

} = −∞. (4.4)

Set

U (x):= sup
{
i ∈ R++ : u(x + i) − c0i ≥ u(x) − 1

} ∀x ∈ [M−1, M].
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The limit (4.4) provides that there exists R > 0 such that

U (x) ≤ R ∀x ∈ [M−1, M].
Hence, we have

M u(x) = sup
i∈(0,R]

{u(x + i) − c0i − c1} ∀x ∈ [M−1, M]. (4.5)

Now let L̂ be theLipschitz constant ofu|[M−1,M+R]. Then, ifM−1 ≤ x < y ≤ M , 0 < i ≤ R,
we can write

u(x + i) − (c0i + c1) − L̂(y − x) ≤ u(y + i) − (c0i + c1) ≤ u(x + i) − (c0i + c1) + L̂(y − x).

(4.6)

Now the claim follows by taking the supremum over i ∈ (0, R] on (4.6) and recalling (4.5).
��

By definition of v we have

v(x) ≥ v(x + i) − c0i − c1 ∀i > 0, (4.7)

hence
v ≥ M v. (4.8)

We define the continuation region C and the action region A by

C :={x ∈ R++ : M v(x) < v(x)
}

(continuation region) (4.9)

A :=R++\C = {x ∈ R++ : M v(x) = v(x)
}

(action region). (4.10)

They will represent, respectively, the region where it will be convenient to let the system
evolve autonomously and the region where it wil be convenient to undertake an action by
exercising an impulse. By Proposition 3.2 and Lemma 4.1, both members of (4.8) are finite
continuous functions. In particular, C is open and A is closed in R++.

For x ∈ A , let us introduce the set

�(x):=argmax
i>0

{
v(x + i) − c0i − c1

}
.

Clearly �(x) is empty if x ∈ C . In principle �(x) might be empty even if x ∈ A , but this
is not the case as shown by the following.

Proposition 4.2 Let x ∈ A .

(i) �(x) is not empty.
(ii) For all ξ ∈ �(x), we have x + ξ ∈ C .

Proof (i) Let x ∈ A and take a sequence {in}n∈N\{0} ⊂ R++ such that

M v(x) ≥ v (x + in) − c0in − c1 ≥ M v(x) − 1

n
, ∀n ∈ N\{0}. (4.11)

Then, considering that lim sup
i→∞

v(x + i)

x + i
= 0 by Proposition 3.2 and thatM v(x) is finite, we

easily see, arguing by contradiction, that, in order to fulfill (4.11), the sequence {in}n∈N must
be bounded.Hence, by considering a subsequence if necessary,we have in → i∗ ∈ R+. Let us
show that i∗ > 0. Indeed, assume by contradiction that i∗ = 0. By (4.11), taking into account
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thatv is continuous and thatv(x) = M v(x) as x ∈ A , we obtain v(x) = M v(x) ≤ v(x)−c1,
a contradiction. Then we have shown that i∗ > 0. From (4.11) we obtain, by continuity,
M v(x) = v(x + i∗) − c0i∗ − c1 and the claim follows.
(ii) This part of the proof closely follows the proof of [43, Prop. 2]. We omit it for brevity.

��
Note that, as a consequence of Proposition 4.2, we have C �= ∅. Indeed, either A = ∅,

thus C = R++; or A �= ∅, thus C �= ∅ by Proposition 4.2(ii). Formally, Proposition 4.2(ii)
says that, if the system is in a position x ∈ A : (i) an optimal control exists [part (i)]; (ii)
this optimal control places the system in C [part (ii)]. We will verify this fact rigorously
afterwards.

4.2 Dynamic programming principle and viscosity solutions

The rigorous connection between v and (QVI) passes through the dynamic programming
principle (DPP).

Proposition 4.3 For every x > 0 and every F-stopping time τ ∈ R+,

v(x) = sup
I∈I

E

⎡
⎣
∫ τ

0
e−ρs f

(
Xx,I
s

)
ds −

∑
n≥1, τn≤τ

e−ρτn (c0in + c1) + e−ρτ v
(
Xx,I

τ

)⎤⎦ .

(DPP)

Proof We refer to [22] (for the finite horizon case; our formulation is the usual one for time
homogeneous infinite horizon problems). ��

Here we study (QVI) by means of viscosity solutions.

Definition 4.4 (Viscosity solution) Let u ∈ Liploc,c0(R++).

(i) u is a viscosity subsolution to (QVI) if for every (x0, ϕ) ∈ R++ × C2(R++) such that
u − ϕ has a local maximum at x0 and u(x0) = ϕ(x0) we have

min
{
L ϕ(x0) − f (x0), u(x0) − M u(x0)

} ≤ 0;
(ii) u is a viscosity supersolution to (QVI) if for every (x0, ϕ) ∈ R++ ×C2(R++) such that

u − ϕ has a local minimum at x0 and u(x0) = ϕ(x0) we have

min
{
L ϕ(x0) − f (x0), u(x0) − M u(x0)

} ≥ 0;
(iii) u is a viscosity solution to (QVI) if it is both a viscosity subsolution and a viscosity

supersolution of (QVI).

Proposition 4.5 The value function v is a viscosity solution of (QVI).

Proof Supersolution property Let x0 ∈ R++ and ϕ ∈ C2(R++) be such that v − ϕ has a
local minimum at x0 and v(x0) = ϕ(x0). In particular, v ≥ ϕ on (x0 − δ, x0 + δ) for a
suitable δ ∈ (0, x0). By (4.8) we only need to show that L ϕ(x0) − f (x0) ≥ 0. To this aim,

consider the stopping time τ := inf
{
t ≥ 0 : |Xx0,∅

t − x0| > δ
}
and note that P{τ > 0} = 1

by continuity of trajectories. Then, from (DPP) we get

v(x0) ≥ E

[∫ τ∧ε

0
e−ρt f

(
Xx0,∅
t

)
dt + e−ρ(τ∧ε)v

(
Xx0,∅

τ∧ε

)]
∀ε > 0. (4.12)

123



Mathematics and Financial Economics (2019) 13:579–616 593

From this we derive

ϕ(x0) ≥ E

[∫ τ∧ε

0
e−ρt f

(
Xx0,∅
t

)
dt + e−ρ(τ∧ε)ϕ

(
Xx0,∅

τ∧ε

)]
∀ε > 0. (4.13)

By applying Dynkin’s formula, dividing by ε, letting ε → 0+ and considering that Xx,∅ is
right-continuous in 0 and P{τ > ε} → 1 as ε → 0+, we obtain the desired inequality.
Subsolution property Let x0 ∈ R++ and ϕ ∈ C2(R++) be such that v − ϕ has a local
maximum at x0 and v(x0) = ϕ(x0). If v(x0) = M v(x0), then we are done. Then assume
v(x0) ≥ ξ+M v(x0) for some ξ > 0. In this case, we need to show thatL ϕ(x0)− f (x0) ≤ 0.
Assume by contradiction that L ϕ(x0) − f (x0) ≥ ε > 0. By continuity of L ϕ − f and of
v − M v and in view of the fact that v − ϕ has a local maximum at x0 and ϕ(x0) = v(x0),
there exists δ ∈ (0, x0/2) such that

∀x ∈ B(x0, 2δ]
⎧⎨
⎩
(i) L ϕ(x) − f (x) ≥ ε/2
(ii) ϕ(x) ≥ v(x)
(iii) v(x) − M v(x) ≥ ξ/2.

(4.14)

Now define the stopping time τ := inf{t ≥ 0 : |Xx0,∅
t − x0| > δ} and note that P{τ > 0} = 1.

In view of (4.14)(iii), undertaking an investment in the region B(x0, 2δ] is not optimal.
Hence (DPP) can be rewritten limiting the ranging of I to the set of controls such that
τ1 > τ , yielding the simple equality

v(x0) = E

[∫ τ

0
e−ρt f

(
Xx0,∅
t

)
dt + e−ρτ v

(
Xx0,∅

τ

)]
. (4.15)

Finally, we have, by (4.15), Dynkin’s formula and (4.14)(i)–(ii),

ε

2
E [τ ] ≤ E

[∫ τ

0
e−ρt

(
L ϕ

(
Xx0,∅
t

)
− f

(
Xx0,∅
t

))
dt

]

= ϕ(x0) − E

[∫ τ

0
e−ρt f

(
Xx0,∅
t

)
dt + e−ρτ ϕ

(
Xx0,∅

τ

)]

≤ v(x0) − E

[∫ τ

0
e−ρt f

(
Xx0,∅
t

)
dt + e−ρτ v

(
Xx0,∅

τ

)]
= 0. (4.16)

This provide a contradiction as P {τ > 0} = 1. ��

4.3 Regularity of the value function

Here we establish the regularity properties of the value function. Precisely, exploiting the
semiconvexity provided byProposition 3.7 and the viscosity property provided byProposition
4.5, we show that it is of class C1 on R++ and of class C2 on C .

Theorem 4.6 v ∈ C1(R++;R)
⋂

C2(C ;R).

Proof Let x0 ∈ R++. As v is semiconvex in a neighborhood of x0 (Proposition 3.7), in such
a neighborhood it can be written as difference of a convex function and a quadratic one (see
Remark 3.4). Hence, the one-side derivatives v′+(x0), v′−(x0) exist and v′−(x0) ≤ v′+(x0). To
show that v is differentiable at x0, we need to show that the previous inequality is indeed an
equality. Assume, by contradiction, that v′−(x0) < v′+(x0). Then we can construct a sequence
of functions {ϕn}n∈N ⊂ C2(R++) such that, for every n ∈ N,

ϕn(x0) = v(x0), ϕn ≤ v, ϕ′
n(x0) = v′−(x0) + v′+(x0)

2
, ϕ′′

n (x0) ≥ n.
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ThenL ϕn(x0)− f (x0) → −∞ as n → ∞, which is impossible as v is a viscosity supersolu-
tion to (QVI), by Proposition 4.5. Hence it must be v′−(x0) = v′+(x0). By arbitrariness of x0,
this shows that v is differentiable on R++. By semiconvexity we deduce that v ∈ C1(R++)

(see [65, Theorem 25.5]).
The fact that v ∈ C2(C ;R) follows from a standard localization argument: in each interval

(a, b) ⊂ C the function v is a viscosity solution to the linear equation L u − f = 0 with
boundary conditions u(a) = v(a) and u(b) = v(b). By uniform ellipticity of L over (a, b)
(see, e.g., [36, Ch.6]), this equation admits a unique solution in C2((a, b);R), which must
also be a viscosity solution. By uniqueness of viscosity solutions to the linear equation above
with Dirichlet boundary conditions, we conclude that v coincide with the classical solution,
hence v ∈ C2((a, b);R). As C is open, the claim follows by arbitrariness of (a, b). ��
Corollary 4.7 We have

(i) v′(x + ζ ) = c0, for every x ∈ A , ∀ζ ∈ �(x).
(ii) v′(x) = c0, for every x ∈ A .

Proof The proof is the same as in [43, Lemma. 5.2] and we skip it for the sake of brevity. ��
Corollary 4.7(i) will be used in the next section to characterize the optimal target point,

i.e. the point in the continuation region where it is optimal to place the systemwhen it reaches
the action region.

5 Explicit expression of the value function

In this section we characterize C ,A and v up to the decreasing solution of the homogeneous
ODE L = 0 and to the solution of a nonlinear system of three algebraic equations.

Lemma 5.1 A does not contain any interval of the form [a,∞), with a > 0. In particular
C �= ∅.
Proof Assume, by contradiction, that there exists a > 0 such that A ⊃ [a,∞). Then, due
to Lemma 4.7(ii), we have

v(x) = c0(x − a) + v(a), ∀x ≥ a,

which contradicts Proposition 3.2. On the other hand we should also have

v(x) = M v(x), ∀x ≥ a.

So it must be

c0(x − a) + v(a) = sup
i>0

{
c0(x + i − a) + v(a) − c0i − c1

} ∀x ≥ a,

which is impossible as c1 > 0. ��
The following assumption ensures that the action region is an interval.

Assumption 5.2 b|R+ is concave.

Lemma 5.3 Let Assumption 5.2 hold. Then A is an interval.
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Proof Since A is closed, it is sufficient to show that there do not exist points x0, x1 ∈ R++,
with x0 < x1, such that x0, x1 ∈ A and (x0, x1) ⊂ C . Arguing by contradiction, we assume
that such points instead exist. Given x ∈ (x0, x1), set j :=i − (x1 − x) for every i > 0.

Then, recalling that x ∈ C , so v(x) > M v(x), and that x1 ∈ A , hence v(x1) = M v(x1),
we can write

v(x) > M v(x) = sup
i>0

{
v(x + i) − c0i − c1

} ≥ sup
i>x1−x

{
v(x + i) − c0i − c1

}

= sup
j>0

{
v(x1 + j) − c0 j − c1

}+ c0(x − x1) = v(x1) + c0(x − x1), ∀x ∈ (x0, x1).

Therefore
v(x) − v(x1) > c0(x − x1) ∀x ∈ (x0, x1). (5.1)

Due to Proposition 4.2(i), we have for some for some y1 > x1, y1 ∈ C ,

v(x1) = v(y1) − c0(y1 − x1) − c1. (5.2)

On the other hand, v ≥ M v implies

v(x) ≥ v(y1) − c0(y1 − x) − c1 ∀x ∈ (x1, y1). (5.3)

Combining (5.2) and (5.3) we get

v(x) − v(x1) ≥ c0(x − x1) ∀x ∈ (x1, y1). (5.4)

Then (5.1) and (5.4) show that the function

ϕ(x) = v(x1) + c0(x − x1), x ∈ R++,

is such that ϕ(x1) = v(x1) and v − ϕ has a local minimum at x1. Since v is a viscosity
supersolution to (QVI), this implies

ρv(x1) − c0b(x1) ≥ f (x1). (5.5)

Now, by (5.1), there exists ξ ∈ (x0, x1) such that v′(ξ) < c0. Let

y2:= sup
{
x ∈ [x0, ξ) : v′(x) ≥ c0

}
.

Thedefinition above iswell posed as x0 ∈ A , so that byCorollary 4.7(ii)we have v′(x0) = c0.
Moreover, by continuity of v′ and by definition of y2 we have

y2 < ξ < x1, v′(y2) = c0, v′(x) < c0 ∀x ∈ (y2, ξ). (5.6)

Therefore, considering that v is twice differentiable in (x0, ξ) as this interval is contained in
C , from (5.6) and by continuity of v′ we see that

v′(y2) = c0, v′′(y2) ≤ 0. (5.7)

The equality L v = f holds in classical sense at y2, hence (5.7) entails

ρv(y2) − c0b(y2) ≤ f (y2). (5.8)

Combining (5.5) with (5.8), we get

ρ(v(x1) − v(y2)) − c0(b(x1) − b(y2)) ≥ f (x1) − f (y2). (5.9)

On the other hand, considering (5.1) with x = y2 and then combining it with (5.9), we get

ρc0(x1 − y2) − c0(b(x1) − b(y2)) > f (x1) − f (y2) (5.10)
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Now, as x1 ∈ A , by (5.2) we have

v(y1) − c0(y1 − x1) − c1 = sup
y>x1

{
v(y) − c0(y − x1) − c1

}
. (5.11)

The function v is twice differentiable at y1 since y1 ∈ C , so (5.11) yields

v′(y1) = c0, v′′(y1) ≤ 0.

Therefore the equalityL v(y1) = f (y1) yields the inequality

ρv(y1) − c0b(y1) ≤ f (y1). (5.12)

Combining (5.12) with (5.5), we get

ρ(v(y1) − v(x1)) − c0(b(y1) − b(x1)) ≤ f (y1) − f (x1). (5.13)

On the other hand, from (5.11) we get

v(y1) − v(x1) ≥ c0(y1 − x1). (5.14)

So, from (5.13) and (5.14) we get

ρc0(y1 − x1) − c0(b(y1) − b(x1)) ≤ f (y1) − f (x1). (5.15)

To conclude, note that (5.10) and (5.15) are not compatible with the strict concavity of

R++ → R, x �→ f (x) + c0b(x) − ρc0x

which follows from Assumptions 2.3 and 5.2. ��
Under Assumption 5.2, Lemma 5.1 and Lemma 5.3 provide

either (i) C = R++
or (ii) ∃ r , s, 0 ≤ r < s < ∞: C = (0, r) ∪ (s,∞).

(5.16)

Case (i) above corresponds to the case in which the continuation region invades all the state
space and it is never convenent to undertake an action. In case (ii) the action region is not
empty and there is convenience to undertake an action when the system reaches this region.

Consider the homogeneous ODE

L u = 0 on R++. (5.17)

By [19, Th. 16.69] its general solution is of the form

u = Aψ + Bϕ, A, B ∈ R,

where ψ, ϕ are, respectively, the unique (up to a multiplicative constant) strictly increasing
and strictly decreasing solutions to (5.17) and, as 0 and ∞ are not accessible boundaries
for the reference diffusion Z , these fundamental solutions satifsy the following boundary
conditions

ψ(0+):= lim
x→0+ ψ(x) = 0, ϕ(0+):= lim

x→0+ ϕ(x) = +∞, lim
x→∞ ψ(x) = +∞, lim

x→∞ ϕ(x) = 0.

(5.18)
Other properties of these functions can be found on [19, Sec. 16.11]. On the other hand, the
function v̂ defined in (3.2) is the unique solution inR++, within the class of functions having
at most linear growth, to the nonhomogeneous ODE L u = f (see [19, Th. 16.72]: actually
in the quoted result the function f is required to be bounded, but the proof works as well in
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our context within the class of functions having at most linear growth). It follows that every
classical solution to

L u = f , over I ⊂ R++, (5.19)

whereI is an open interval, must have the form u = Aψ + Bϕ + v̂. Therefore, as by Propo-
sition 4.5 and Theorem 4.6 the value function v solves in classical sense (5.19), according to
the two possibilities of (5.16), in case (i) there must exist real numbers A, B such that

v = v̂ + Aψ + Bϕ on R++; (5.20)

in case (ii) there must exist real numbers Ar , Br , As, Bs
{

v = v̂ + Arψ + Brϕ on (0, r),
v = v̂ + Asψ + Bsϕ on (s,∞).

(5.21)

Proposition 5.4 Let Assumption 5.2 hold. According to the cases (i) and (ii) of (5.16) we
have, respectively:

– If case (i) holds, then v ≡ v̂, hence A = B = 0 in (5.20);
– If case (ii) holds, then lim

x→∞(v(x) − v̂(x)) = 0 and As = Br = 0, Ar , Bs ≥ 0 in (5.21).

Proof Assume that case (i) holds. As L v = f on C = R++, by a standard localization
procedure we get (see, e.g., the proof of Proposition 3.2)

v(x) = E

[∫ t

0
e−ρs f

(
Xx,∅
s

)
ds

]
+ E

[
e−ρtv

(
Xx,∅
t

)]
∀t ∈ R+. (5.22)

We pass to the limit t → ∞ on the first addend of the right hand side by using the monotone
convergence theorem. As for the second addend, we use (3.4) and (3.7) with I = ∅ to write

0 ≤ E

[
e−ρtv

(
Xx,∅
t

)]
≤ e−ρt f

∗(α)

ρ
+ α

ρ
x ∀α ∈ (0, c0ρ].

Then

0 ≤ lim sup
t→∞

E

[
e−ρtv

(
Xx,∅
t

)]
≤ α

ρ
x ∀α ∈ (0, c0ρ].

By arbitrariness of α we conclude that

lim
t→∞E

[
e−ρtv

(
Xx,∅
t

)]
= 0.

Hence

v(x) = E

[∫ ∞

0
e−ρs f

(
Xx,∅
s

)
ds

]
. (5.23)

By definition of v̂ and by the inequality v ≥ v̂, this proves the claim.

Now assume that case (ii) holds. For each x > s set τx := inf
{
t ≥ 0 : Xx,∅

t ≤ s
}
. As ∞

is a natural boundary for Z0,x = Xx,∅, by (A.2) we have

lim
x→∞P{τx ≥ M} = 1 ∀M > 0. (5.24)

If 0 < x < x ′, by (2.7) with I = ∅ we get

P-a.s., Xx,∅
t ≤ Xx ′,∅

t for all t ≥ 0,
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so, we also have τx ≤ τx ′ P-a.s.. If {xn}n∈N is a sequence diverging to ∞, we then have

lim
n→∞ τxn = ∞ P-a.s.. (5.25)

As L v = f on (s,∞), as for (5.22), we get

v(xn) = E

[∫ τxn∧t

0
e−ρζ f

(
Xxn ,∅

ζ

)
dζ

]
+ E

[
e−ρ(τxn∧t)v

(
Xxn ,∅
t∧τxn

)]
∀t ∈ R+, n ∈ N.

(5.26)
Therefore, splitting over {τxn < t} and {τxn ≥ t} the second addend on the right hand side,

v(xn) = E

[∫ τxn ∧t

0
e−ρζ f

(
Xxn ,∅

ζ

)
dζ

]
+ E

[
1{τxn ≥t}e−ρtv

(
Xxn ,∅
t

)]

+ E

[
1{τxn <t}e−ρ(τxn ∧t)v

(
Xxn ,∅
t∧τxn

)]

≤ E

[∫ τxn ∧t

0
e−ρζ f

(
Xxn ,∅

ζ

)
dζ

]
+ E

[
1{τxn ≥t}e−ρtv

(
Xxn ,∅
t

)]
+ E[e−ρτxn 1{τxn <t}]v(s).

for all t ≥ 0. Now we pass to the limit t → ∞ by using the same arguments used to obtain
(5.23), and we get

v(xn) ≤ E

[∫ τxn

0
e−ρζ f

(
Xxn ,∅

ζ

)
dζ

]
+ E[e−ρτxn 1{τxn<∞}]v(s).

Then, the definition of v̂ provides

v(xn)−E
[
e−ρτxn 1{τxn<∞}

]
v(s) ≤ v̂(xn)−E

[
1{τxn<∞}

∫ ∞

τxn

e−ρζ f
(
Xxn ,∅

ζ

)
dζ

]
≤ v̂(xn).

Using (5.25) and recalling that v ≥ v̂, we conclude lim
n→∞(v(xn) − v̂(xn)) = 0. Since the

sequence {xn}n∈N was arbitrary, we conclude

lim
x→∞(v(x) − v̂(x)) = 0. (5.27)

From (5.18) and (5.27) we have As = 0 and Bs ≥ 0. Finally, since v ≥ v̂ and v is finite
in (0, r), from (5.18) we have Ar ≥ 0 and Br = 0. ��

Set

v̂∗(z):= sup
x>0

{
v̂(x) − zx

}
, z ∈ R++.

We are going to introduce an assumption, requiring that c1 is not too large, that guarantees, at
once, that the action region is not empty and that the structure of the continuation and action
regions are

A = (0, s] and C = (s,∞) for some s > 0.

Under this nice structure, it turns out that it is convenient to undertake an action when the
system lies below a given threshold and lat it evolve autonomously when the system lies
above this threshold. Henceforth, we will call this threshold trigger boundary.

Assumption 5.5 c1 < v̂∗(c0).

The following result provides a way to check explicitly the validity of Assumption 5.5.
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Proposition 5.6 Let f (x) ≥ Kxγ for some K > 0, γ ∈ (0, 1) and set K ′ :=
γ K

ρ+γ Lb+ 1
2 γ (1−γ )L2

σ

. Then

v̂∗(c0) ≥ K ′ 1 − γ

γ

( c0
K ′
) γ

γ−1
.

Proof Let x ∈ R++. With a localization procedure similar to the one of the proof of Propo-
sition 3.2, we get from Itô’s formula

E

[
e−ρt

∣∣Xx,∅
t

∣∣γ ]

= xγ + E

[∫ t

0
e−ρs

[
−ρ
(
Xx,∅
s

)γ + γ
(
Xx,∅
s

)γ−1
b(Xx,∅

s )

+ 1

2
γ (γ − 1)

(
Xx,∅
s

)γ−2
σ 2(Xx,∅

s )

]
ds

]

≥ xγ + E

[∫ t

0
e−ρs

[
−ρ
(
Xx,∅
s

)γ − Lb(1 − γ )
(
Xx,∅
s

)γ

− 1

2
L2

σ γ (1 − γ )
(
Xx,∅
s

)γ ]
ds

]
.

Then we get

E

[
e−ρt(Xx,∅

t
)γ ] ≥ xγ e

−
(
ρ+γ Lb+ 1

2 γ (1−γ )L2
σ

)
t
, ∀t ∈ R+.

From that and from the assumption on f , we obtain

v̂(x) ≥ K

ρ + γ Lb + 1
2γ (1 − γ )L2

σ

xγ = K ′

γ
xγ , ∀x ∈ R++.

Hence,

v̂∗(c0) := sup
x>0

{
v̂(x) − c0x

} ≥ sup
x>0

{
K ′

γ
xγ − c0x

}
= K ′ 1 − γ

γ

( c0
K ′
) γ

γ−1
.

��
Proposition 5.7 Let Assumptions 5.2 and 5.5 hold. Then there exists s > 0 such that C =
(s,∞) and, consequently, A = (0, s].
Proof First, notice that, as v̂ satisfies (3.4), it follows that v̂∗ is finite on R++. Considering
that v ≥ v̂ and that v̂ is nondecreasing, we have

lim
x→0+ v(x) ≥ lim

x→0+ M v(x) ≥ lim
x→0+ M v̂(x) = lim

x→0+ sup
i>0

{
v̂(x + i) − c0i − c1

}

≥ lim
x→0+ sup

i>0

{
v̂(i) − c0i − c1

} = v̂∗(c0) − c1 > 0. (5.28)

Now assume by contradiction that (0, r) ⊂ C , for some r > 0. By Proposition 5.4 we have

v(x) = v̂(x) + Arψ(x), x ∈ (0, r),

for some Ar ≥ 0. Then, as ψ(0+) = 0, we must have v(0+) = v̂(0+) = 0. The latter
contradicts (5.28), hence we conclude. ��
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Under Assumptions 5.2 and 5.5, the structure of C and A established by Proposition 5.7
joined with Proposition 5.4 provides the following structure for v: for some B = Bs ≥ 0

v(x) =
{
Bϕ(x) + v̂(x), if x ∈ (s,∞),

Bϕ(s) + v̂(s) − c0(s − x), if x ∈ (0, s]. (5.29)

Lemma 5.8 Let Assumption 5.2 hold. Let a ≥ 0 and let u ∈ C2((a,∞);R) satisfyL u = f
on (a,∞). If x0 ∈ (a,∞) is a local minimum point for u′, then u′(x0) > 0 and there is no
local maximum point for u′ in (x0,∞).

Proof As b, σ, f ∈ C1(R++;R), from

ρu(x) = b(x)u′(x) + 1

2
σ 2(x)u′′(x) + f (x), ∀x ∈ (a,∞), (5.30)

we obtain u′′ ∈ C1((a,∞);R), i.e. u ∈ C3((a,∞);R). We differentiate (5.30) getting

ρu′(x) = b′(x)u′(x)+b(x)u′′(x)+ 1

2
σ 2(x)u′′′(x)+σσ ′(x)u′′(x)+ f ′(x), ∀x ∈ (a,∞).

(5.31)
Let x0 ∈ (a,∞) be a local minimum point for u′. Then u′′(x0) = 0 and u′′′(x0) ≥ 0 so, by
(5.31), we have

ρu′(x0) ≥ b′(x0)u′(x0) + f ′(x0). (5.32)

Note that from (5.32), using Assumptions 2.3 and 2.4, we obtain u′(x0) > 0. Now, arguing
by contradiction, assume that x1 ∈ (x0,∞) is local maximum point for u′. Then u′′(x1) = 0
and u′′′(x1) ≤ 0, so, by (5.31), we have

ρu′(x1) ≤ b′(x1)u′(x1) + f ′(x1). (5.33)

Without loss of generality, we can assume that

u′(x0) ≤ u′(x1). (5.34)

Combining (5.32) and (5.33) and taking account that f ′ is strictly decreasing, we get
(
ρ − b′(x1)

)
u′(x1) ≤ f ′(x1) < f ′(x0) ≤ (ρ − b′(x0)

)
u′(x0). (5.35)

Now, by Assumption 5.2 we have b′(x0) ≥ b′(x1). So, the fact that u′(x0) > 0 and (5.35)
yield (

ρ − b′(x1)
)
u′(x1) <

(
ρ − b′(x1)

)
u′(x0). (5.36)

By Assumption 2.4, we have the ρ − b′(x1) > 0. Hence, from (5.36) we obtain u′(x1) <

u′(x0), contradicting (5.34). ��
Recall that a function ϕ : O → R, with O open interval, is said quasiconcave if

ϕ
(
λx + (1 − λ) x ′) > min

{
ϕ(x), ϕ

(
x ′)} ∀x, x ′ ∈ O, ∀λ ∈ (0, 1).

Strictly quasiconcave functions can be characterized as functions that are either strictly
increasing, or strictly decreasing, or strictly increasing on the left of a point x∗ ∈ O and
strictly decreasing on the right of x∗.

Lemma 5.9 Let Assumption 5.2 hold. Let a ≥ 0, let u ∈ C2((a,∞);R) satisfy L u = f on
(a,∞) and assume that lim inf

x→∞ u′(x) ≤ 0. Then u′ is strictly quasiconcave.
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Proof Byvirtue of [9, Proposition 3.24], it is sufficient to show that u′ does not admit any local
minimum. Argue by contradiction and assume that x0 ∈ (a,∞) is a local minimum point
for u′. The proof of Lemma 5.8 shows then that u′(x0) > 0. Hence, since lim inf

x→∞ u′(x) ≤ 0,

there must exists a local maximum point x1 ∈ (x0,∞). This contradicts Lemma 5.8 and we
conclude. ��
Proposition 5.10 Let Assumptions 5.2 and 5.5 hold.

(i) There exists a unique S ∈ C = (s,∞) such that v′(S) = c0.
(ii) There exists (a unique) x∗ ∈ (s, S) such that v′ is strictly increasing in (s, x∗] and

strictly decreasing in [x∗,∞).
(iii) lim

x→∞ v′(x) = 0.

Proof (i) Corollary 4.7(i) and Proposition 4.2(i) yield the existence of S ∈ C = (s,∞)

such that v′(S) = c0. Regarding uniqueness, observe first that v satisfies the requirements of
Lemma 5.9 (plugging v in place of u) with a = s and where

lim inf
x→∞ v′(x) ≤ 0 (5.37)

holds by (3.4). Then the fact that v′(s) = c0 by Corollary 4.7(ii) yields the uniqueness.
(ii) By (5.29) we have v′(s) = c0. By (i) above we have v′(S) = c0 and v′(x) �= c0 for each
x ∈ (s, S). Then the claim follows by Lemma 5.9.
(iii) This follows immediately by monotonicity of v′ on [x∗,+∞), (5.37) and Proposition
3.1, which provides v′ ≥ 0. ��
Theorem 5.11 Let Assumptions 5.2 and 5.5 hold. The value function has the form

v(x) =
{
Bϕ(x) + v̂(x), if x ∈ (s,∞),

Bϕ(S) + v̂(S) − c0(S − x) − c1, if x ∈ (0, s], (5.38)

and the triple (B, s, S) is the unique solution in R+ × R
2++ to the system

⎧⎨
⎩
(i) Bϕ(s) + v̂(s) = Bϕ(S) + v̂(S) − c0(S − s) − c1,
(ii) Bϕ′(s) + v̂′(s) = c0,
(iii) Bϕ′(S) + v̂′(S) = c0.

(5.39)

Proof Consider (5.29). The expression of v over (s,∞) in (5.38) and (5.29) is the same.
As for the expression of v over (0, s], we note that, by definition of �(s), Proposition 4.2,
Corollary 4.7 and Proposition 5.10(i), we have

0 < S − s = argmax
i>0

{
v(s + i) − c0i − c1

}
. (5.40)

Since s ∈ A , we have v(s) = [M v](s); so, from (5.40) we get

v(s) = v(S) − c0(S − s) − c1,

from which we get the expression of v over (0, s] in (5.38). Then the three equations of
(5.39) follow, respectively, by imposing the continuity of v at s, the smooth-fit at s (as
v ∈ C1(R++;R)) and the condition of Proposition 5.10(i) defining S.

To show that (5.39) has a unique solution in R+ × R
2++, we consider the function

h
(
B̂, x

)
= B̂ϕ(x) + v̂(x), (B̂, x) ∈ R++ × R++.
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For each B̂ ≥ 0, L h(B̂, ·) = 0 in R++ and lim inf
x→∞ hx (B̂, x) ≤ 0 by (3.4) and (5.18). By

Lemma 5.9 hx (B̂, ·) is strictly quasiconcave; hence, there exist at most two solutions ŝ, Ŝ to
hx (B̂, ·) = c0 in R++. If such solutions exist, we have h(B̂, ·) − c0 > 0 on (ŝ ∧ Ŝ, ŝ ∨ Ŝ).
Therefore, if (B̂, ŝ, Ŝ) ∈ R+ × R

2++ solves (5.39), then (5.39)(i) yields

0 < c1 =
[
B̂ϕ(Ŝ) + v̂(Ŝ)

]
−
[
B̂ϕ(ŝ) + v̂(ŝ)

]
− cs

(
Ŝ − ŝ

)
=
∫ Ŝ

ŝ

(
hx (B̂, r) − c0

)
dr .

This forces ŝ = ŝ ∧ Ŝ, Ŝ = ŝ ∨ Ŝ, ŝ �= Ŝ. By the argument above we see that, if (B1, s1, S1)
and (B2, s2, S2) are two different solutions to (5.39) inR+ ×R

2++, we need to have s1 < S1,
s2 < S2 and B1 �= B2.

Nowassume, by contradiction, that (B1, s1, S1) and (B2, s2, S2) are two different solutions
of (5.39) in R+ × R

2++. Without loss of generality, we can assume B1 < B2. Recalling that
ϕ is strictly decreasing, we have

hx (B1, ·) > hx (B2, ·). (5.41)

The latter inequality, Lemma 5.9 and (5.39)(ii)–(iii) provide

(s1, S1) ⊃ (s2, S2), hx (B1, ·) − c0 > 0 on (s1, S1). (5.42)

We can then write, using (5.41)–(5.42) and (5.39)(i),

0 = c1 − c1 = (h(B1, S1) − h(B1, s1) − c0(S1 − s1))

− (h(B2, S2) − h(B2, s2) − c0(S2 − s2))

=
∫ S1

s1
(hx (B1, ξ) − c0)dξ −

∫ S2

s2
(hx (B2, ξ) − c0) dξ

≥
∫ S2

s2
(hx (B1, ξ) − hx (B2, ξ)) dξ > 0,

which is a contradiction. ��

6 Optimal control

In this section, through Theorem 6.1, we describe the structure of an optimal control for
our problem through a recursive rule. In the economic literature—see the stream of papers
on stochastic impulse control at the beginning of the paragraph on the related linterature in
the Introduction and [16]—this rule is known as (S, s)-rule. Informally, this rule, rigorously
stated in Theorem 6.1 below, can be described as follows.

• The point s works as an optimal trigger boundary: when the state variable is at level s
or below such level (i.e., it is within the action region A ), the controller acts.

• The point S works as an optimal target boundary: when the controller acts, she/he does
that in such a way to place the state variable at the level S ∈ C .

• When the state variable lies in the region C , the controller let it evolve autonomously
without undertaking any action until it exits from this region.
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Such rule is made rigorous by the following construction. Let x ∈ R++ and consider the
control I ∗ = {(τn, in)}n≥1 defined as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

τ1:=
{
0 if x ≤ s,

inf
{
t ≥ 0 : Z0,x

t ≤ s
}
if x > s,

i1:=
{
S − x if τ1 = 0 (i.e. x ≤ 0),
S − s if τ1 > 0 (i.e. x > s),

and then, recursively for n ≥ 1,
⎧⎪⎨
⎪⎩

τn+1:=
{

τn + inf
{
t > 0 : Z τn ,S

τn+t ≤ s
}
if τn < ∞

∞ otherwise
in+1:=S − s.

Note that, for P-a.e. ω ∈ {τn < ∞}, by continuity of R+ → R, t �→ Z τn ,S
τn+t (ω) and since

S > s, we have τn+1(ω) > τn(ω).

Theorem 6.1 (Optimal control) Let Assumptions 5.2 and 5.5 hold.
Let x ∈ R++ and consider the control I ∗ = {(τn, in)}n≥1 defined above. Then I ∗ ∈ I

and it is optimal for the problem starting at x, i.e., J (x, I ∗) = v(x).

Proof Admissibility As noticed above, τn < τn+1 P-a.s. on {τn < ∞}. Moreover, for each
n ≥ 1, in is constant; so, as a random variable, it is trivially Fτn -measurable.

Now, for fixed ε > 0 such that S − εS2 > s, define the auxiliary sequence {τ ε
n }n≥1 of

stopping times by

τ ε
1 :=

⎧⎨
⎩
0 if x ≤ s

inf

{
t ≥ 0 : Z0,x

t − ε
(
Z0,x
t + t

)2 ≤ s

}
if x > s

and

τ ε
n+1:=τ ε

n + inf

{
t ≥ 0 : Z τ ε

n ,S
τ ε
n+t − ε

(
Z

τ ε
n ,S

τ ε
n+t + t

)2 ≤ s

}
for n ≥ 1.

We notice that τ ε
n is finite and τ ε

n+1 > τε
n P-a.s.. Moreover, the random variables {τ ε

n+1 −
τ ε
n }n≥1 are identically distributed and τ ε

n+1 − τ ε
n is independent on Fτ ε

n
. Finally, it can be

verified by induction that

lim
ε→0+ τ ε

n = τn P-a.s. on {τn < ∞},
from which we obtain

lim inf
ε→0+ e−ρτε

n ≥ e−ρτn P-a.s.. (6.1)

Define Y ε:= inf

{
t ≥ 0 : Z0,S

t − ε
(
Z0,S
t + t

)2 ≤ s

}
. Then τ ε

n+1 − τ ε
n ∼ Y ε for all n ≥ 1.

Observe that Y ε increases as ε tends to 0+. Let Y := lim
ε→0+ Y ε . Since S − εS2 > s entails

Y ε > 0, we have in particular Y > 0. We can then write, using (6.1) and Fatou’s Lemma in
the first inequality below,

E
[
e−ρτn+1

] ≤ lim inf
ε→0+ E

[
e−ρτε

n+1

]
= lim inf

ε→0+ E

[
e−ρ(τ ε

n+1−τ ε
n )e−ρτε

n

]

= lim inf
ε→0+ E

[
E

[
e−ρ(τ ε

n+1−τ ε
n )e−ρτε

n

∣∣∣Fτ ε
n

]]
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= lim inf
ε→0+

(
E

[
e−ρ(τ ε

n+1−τ ε
n )
]
E

[
e−ρτε

n

])

= lim inf
ε→0+

(
E

[
e−ρY ε

]
E

[
e−ρτε

n

]) (by induction)= lim inf
ε→0+

(
E

[
e−ρY ε

])n
E

[
e−ρτε

1

]

≤
(
E

[
e−ρY

])n
. (6.2)

Summing over n ≥ 1 and taking into account that E[e−ρY ] < 1, from (6.2) we get

E

⎡
⎣∑
n≥1

e−ρτn+1

⎤
⎦ < ∞. (6.3)

Both conditions (2.3) and (2.4) follow from (6.3), so the control I ∗ is admissible.
Optimality Set X∗:=Xx,I ∗

. We observe that, by (3.4), (3.7) and (6.3), we have

lim
T→∞E

[
e−ρT v(X∗

T )
]

= 0. (6.4)

Let T > 0 and set τ0:=0−. Observe that by definition X∗ ∈ [s,+∞) and recall thatL v = f
on C = (s,∞). For all n ∈ Nwe apply Itô’s formula to v(X∗) in the interval [τn ∧T , τn+1 ∧
T ). Note that v′ is bounded in [s,∞) by Proposition 5.10, so

E

[∫ τn+1∧T

τn∧T
v′(X∗

t )dWt

]
= 0 ∀n ∈ N.

Hence, taking the expectation in the Itô formula and taking into account that L v(X∗) =
f (X∗), we get

E

[
e−ρ(τn+1∧T )v

(
X∗

(τn+1∧T )−
)]

− E

[
e−ρ(τn∧T )v

(
X∗

τn∧T

)]

= −E

[∫ τn+1∧T

τn∧T
e−ρt f (X∗

t )dt

]
, ∀n ∈ N. (6.5)

Now fix for the moment ω ∈ �, n ≥ 1 and assume that τn(ω) ≤ T . By definition of in(ω)

and considering that X∗
τ−
n
(ω) ∈ A we have (cf. also Corollary 4.7, Proposition 4.2(i) and the

definition of S in Proposition 5.10(i))

in(ω) = argmax
i>0

{
v(X∗

τ−
n
(ω) + i) − c0i − c1

}
.

Hence, considering that M v(X∗
τ−
n
(ω)) = v(X∗

τ−
n
(ω)), we have

e−ρτn(ω)v
(
X∗

τn(ω)

)
− e−ρτnv

(
X∗

τn(ω)−
)

= e−ρτn(ω) (c0in(ω) + c1) . (6.6)

It follows that, for all n ≥ 1,

E

[
e−ρ(τn∧T )

(
v
(
X∗

τn∧T

)− v
(
X∗

(τn∧T )−
))]

=
= E

[
e−ρ(τn∧T )

(
v
(
X∗
T

)− v
(
X∗
T−
))
1{τn>T }

]
+ E

[
e−ρτn (c0in + c1) 1{τn≤T }

]
.

(6.7)

Using (6.5) and (6.7), we can then write, for N ≥ 1,
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E

[
e−ρ(τN+1∧T )v

(
X∗

τN+1∧T

)]
− v(x)

=
N∑

n=0

E

[
e−ρ(τn+1∧T )v

(
X∗

τn+1∧T

)
− e−ρ(τn∧T )v

(
X∗

τn∧T

)]

=
N∑

n=0

E

[
e−ρ(τn+1∧T )

(
v
(
X∗

τn+1∧T

)
− v

(
X∗

(τn+1∧T )−
))]

+
N∑

n=0

E

[
e−ρ(τn+1∧T )v

(
X∗

(τn+1∧T )−
)

− e−ρ(τn∧T )v
(
X∗

τn∧T

)]

=
N∑

n=0

(
E

[
e−ρ(τn+1∧T )

(
v
(
X∗
T

)− v
(
X∗
T−
))
1{τn+1>T }

]

+E
[
e−ρτn+1 (c0in+1 + c1) 1{τn+1≤T }

])

−
N∑

n=0

E

[∫ τn+1∧T

τn∧T
e−ρt f

(
X∗
t

)
dt

]
.

By passing to the limit N → ∞ and using (2.3), we obtain

E

[
e−ρT v

(
X∗
T

)]− v(x) + E

[∫ T

0
e−ρt f

(
X∗
t

)
dt

]

=
∞∑
n=0

(
E

[
e−ρ(τn+1∧T )

(
v
(
X∗
T

)− v
(
X∗
T−
))
1{τn+1>T }

]

+E
[
e−ρτn+1 (c0in+1 + c1) 1{τn+1≤T }

])
.

We take now the lim inf
T→∞ , using (6.4) on the first addend of the left hand side, monotone

convergence on the third addend of the left hand side and Fatou’s lemma on the right hand
side. We obtain

− v(x) + E

[∫ ∞

0
e−ρt f

(
X∗
t

)
dt

]
≥

∞∑
n=0

E
[
e−ρτn+1 (c0in+1 + c1)

]
, (6.8)

which shows that I ∗ is optimal (Fig. 1). ��

7 Numerical illustration in the linear case

In the previous sections we have characterized the solution of the dynamic optimization
problem through the unique solution of the nonlinear algebraic system (5.39) in the triple
(A, s, S). In this section we specialize the study when the reference process Z follows a
geometric Brownian motion dynamics, i.e. when b(x):=νx , σ(x):=σ x , with ν ∈ R, σ > 0
and when f (x) = xγ

γ
, with 0 < γ < 1, assuming

ρ > ν+. (7.1)
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Fig. 1 An illustrative picture of the value function and of the S − s rule

In this way, Assumptions 2.1, 2.3, 2.4, 3.3(ii)–(iv), 5.2 are satisfied.7 In the present case we
have

ϕ(x) = xm,

where m is the negative root of the characteristic equation

ρ − νm − 1

2
σ 2m(m − 1) = 0

associated with L u = 0, i.e.

m =
(
1

2
− ν

σ 2

)
−
√(

1

2
− ν

σ 2

)2
+ 2ρ

σ 2 , (7.2)

and

v̂(x) = Cγ

xγ

γ
, Cγ :=

(
ρ − νγ + 1

2
γ (1 − γ )σ 2

)−1

. (7.3)

The problem with no fixed cost, i.e. when c1 = 0, is investigated in the singular control
setting (the right one to get existence of optimal controls, see Remark 2.5) in [63, Sec. 4.5].
In this case, the value function v and the optimal reflection boundary s are characterized in
[63, Th.4.5.7] through an algebraic system too. Such system can be solved providing, in our
notation,

s =
(

c0(m − 1)

Cγ (m − γ )

) 1
γ−1

, B = Cγ (1 − γ )

m(m − 1)
sγ−m . (7.4)

7 Actually, we should consider b(x) = νx if x > 0 and b(x) = 0 otherwise and similarly for σ , in order to
fit Assumption 2.1. But this does not matter because our controlled process lies in R++.
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We make Assumption 5.5; the latter in the present case reads as

c1 < C
1

1−γ
γ c

γ
1−γ

0

(
1

γ
− 1

)
. (7.5)

Moreover, Assumption 3.3(i) would read as

ρ > max
{
4|ν| + 6σ 2, 2|ν| + 2σ 2} = 4|ν| + 6σ 2.

However, as we show below, in the linear-homogeneous case under consideration here, we
do not need to make this assumption: we can exploit the linear dependence of the controlled
process on the initial datum and the homogeneity of f to show the result of semiconvexity
stated, for the general case, in Proposition 3.7. Consequently, the other results of the paper
hold under no further assumption. Indeed, observing that the terms {in}n≥1 enter in the
dynamics of Xx,I in additive form, we have

Xx,I
t − X y,I

t = Xx,∅
t − X y,∅

t = (x − y)e(ν− σ2
2 )t+σWt , ∀I ∈ I , ∀x, y ∈ R++, (7.6)

that we can use to prove the following result.

Proposition 7.1 In the above frameworkwe have, for every λ ∈ [0, 1] and every x, y ≥ ε > 0

v(λx + (1 − λ)y) − λv(x) − (1 − λ)v(y) ≤ λ(1 − λ)(1 − γ )C−1
γ εγ−2(y − x)2.

Proof Let 0 < ξ ≤ ξ ′. Then, for suitable η, η′ ∈ [ξ, ξ ′] we have, by Lagrange’s Theorem,

f
(
λξ + (1 − λ)ξ ′)− λ f (ξ) − (1 − λ) f (ξ ′) =
= −λ

[
f (ξ) − f

(
ξ + (1 − λ)(ξ ′ − ξ)

)]− (1 − λ)
[
f (ξ ′) − f

(
ξ ′ + λ(ξ − ξ ′)

)]

= λ(1 − λ) f ′(η)(ξ ′ − ξ) − λ(1 − λ) f ′(η′)(ξ ′ − ξ)

= λ(1 − λ)
(
f ′(η) − f ′(η′)

)
(ξ ′ − ξ)

≤ λ(1 − λ)| f ′′(ξ)|(ξ ′ − ξ)2

= λ(1 − λ)(1 − γ )ξγ−2(ξ ′ − ξ)2. (7.7)

Let now 0 < ε ≤ x ≤ y, λ ∈ [0, 1] and set z:=λx + (1 − λ)y. Let δ > 0 and let Iδ ∈ I
be a δ-optimal control for v(z). Then, using (7.7), the fact that Xx,I ≥ Xx,∅, and recalling
(7.6), we get

v(λx + (1 − λ)y) − δ − λv(x) − (1 − λ)v(y) ≤ J (z, Iδ) − λJ (x, Iδ) − (1 − λ)J (y, Iδ)

= E

[∫ +∞

0
e−ρt

(
f
(
Xz,Iδ
t

)
− λ f

(
Xx,Iδ
t

)
− (1 − λ) f

(
X y,Iδ
t

))
dt

]

≤ λ(1 − λ)(1 − γ )E

[∫ +∞

0
e−ρt

(
Xx,Iδ
t

)γ−2 (
X y,Iδ
t − Xx,Iδ

t

)2
dt

]

≤ λ(1 − λ)(1 − γ )E

[∫ +∞

0
e−ρt (Xx,∅

t )γ−2
(
X y,∅
t − Xx,∅

t

)2
dt

]

= λ(1 − λ)(1 − γ )C−1
γ xγ−2(y − x)2 ≤ λ(1 − λ)(1 − γ )C−1

γ εγ−2(y − x)2,

the claim. ��
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Fig. 2 Value function (above) and its derivative (below)

7.1 Numerical illustration

We perform a numerical analysis of the solution solving the nonlinear system (5.39). In
Fig. 2, we provide the picture of the value function and its derivative when the parameters
are set as follows: ρ = 0.08, ν = −0.07, σ = 0.25, c0 = 1, c1 = 10, γ = 0.5. Solving
(5.39) with these entries and with ϕ(x) = xm , where m is given by (7.2), yields

(B, s, S) = (97.0479, 8.7492, 56.9930).

In the rest of this section we discuss numerically the solution, illustrating how changes in
parameters affect the value function and the trigger and target boundaries s, S, which describe
the optimal control.8

7.1.1 Impact of volatility

In Table 1 we report the relevant values the solution for different values of the volatility σ .
The other parameters are set as follows: ρ = 0.08, ν = −0.07, γ = 0.5, c0 = 1, c1 = 10.
Figure 3, drawn imposing the same values of parameters, represents the trigger level s, the
target level S, and their difference S − s as functions of the volatility σ . The figure and the
table show that, when uncertainty increases, the action region A shrinks and the investment
size S − s shrinks. The first effect is well-known in the economic literature of irreversible
investments without fixed costs as value of waiting to invest: an increase of uncertainty leads
to postpone the investment (see [54]). We can see that, in our fixed cost context, also the size
of the optimal investment is negatively affected by an increase of uncertainty.

8 The simulations are done for negative values of ν, thinking of it as a depreciation factor. We omit, for the
sake of brevity, to report the simulations that we have performed for positive values of ν, as the outputs show
the same qualitative behaviour as in the case of negative ν.
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Table 1 Solution as function of σ

σ (%) B s S S − s v(0) v(s) v(S)

1 349.2820 14.6488 69.1073 54.4584 68.2325 82.8813 147.3398

5 313.6460 14.2670 68.4774 54.2104 68.0298 82.2968 146.5072

10 238.6460 13.2168 66.6426 53.4258 67.3856 80.6024 144.0282

15 172.6459 11.8029 63.9264 52.1235 66.2914 78.0943 140.2178

20 126.9781 10.2646 60.6291 50.3644 64.7453 75.0099 135.3743

25 97.0479 8.7492 56.9930 48.2438 62.7645 71.5137 129.7575

30 77.1043 7.3358 53.2006 45.8648 60.3826 67.7184 123.5832

Fig. 3 The trigger level s, the target level S and the difference S − s as functions of σ

7.1.2 Impact of fixed cost

In Table 2 we report the relevant values of the solution for different values of the fixed cost
c1, when the other parameters are set as follows: σ = 0.1, ρ = 0.08, ν = −0.07, γ =
0.5, c0 = 1. In the row corresponding to c1 = 0, there are reported the outputs of the corre-
sponding singular control problem, computed according to the values of s and B expressed by
(7.4).9). It can be observed that the convergence as c1 → 0+ is pretty slow; this is consistent
with the theoretical result of [61], which would state, in our case, ∂v(·;c1)

∂c1
(0+) = −∞.

Figure 4, drawn imposing the same values of parameters, shows that, as c1 increases,
the action region A shrinks and the investment size S − s expands. Both these effects are
expected: the first one is the counterpart of the value of waiting to invest, now with respect to
the fixed cost of investment, rather than with respect to uncertainty; the second one expresses

9 In this case the optimal control consists in a reflection policy at a boundary; in other terms the interval [s, S]
degenerates in a singleton {s} = {S}.
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Table 2 Solution as function of c1

c1 B s S S − s v(0) v(s) v(S)

0 577.5165 41.6233 41.6233 0 83.2470 124.8703 124.8703

0.01 573.1240 38.6466 44.5649 5.9182 83.1362 121.7828 127.7110

0.5 519.9311 30.6195 52.1522 21.5328 81.5607 112.1802 134.2129

1 487.9211 27.7903 54.7042 26.9139 80.4620 108.2523 136.1663

10 238.6460 13.2168 66.6426 53.4258 67.3856 80.6024 144.0282

30 57.6611 4.2696 72.3953 68.1257 44.7847 49.0543 147.1800

50 7.9037 1.0275 73.7826 72.7551 24.1040 25.1315 147.8866

c
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15

s (c
1
)

c
1

10 20 30 40 50 60
66

68

70

72

74

S(c
1
)

c
1

10 20 30 40 50 60
50

60

70

80

lenght of the interval (s,S)

Fig. 4 The trigger level s, the target level S and the difference S − s as functions of c1

the fact that an increase of the fixed cost leads to invest less often, then to provide a larger
investment size when the investment is undertaken.
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A Appendix

Proposition A.1 Under Assumption 2.1 the boundaries 0 and +∞ are natural in the sense of
Feller’s classification for the diffusion Z0,x .
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Proof Clearly +∞ is not accessible, in the sense that Z0,x does not explode in finite time. It
remains to show that 0 is not accessible, that is

x ∈ R++ 	⇒ Z0,x
t > 0 P-a.s. ∀t ≥ 0; (A.1)

that both 0 and +∞ are not entrance, that is

lim
x↓0 P{τx,y < t} = 0, lim

x↑∞P{τx,y < t} = 0, ∀t, y ∈ R++. (A.2)

To this end, we introduce the speed measure m of the diffusion Z0,x transformed to natural
scale (see [19, Prop. 16.81, Th. 16.83]). Up to a multiplicative constant, we have

m(dy) = 2

σ 2(y)
e
∫ y
1

2b(ξ)

σ2(ξ)
dξ
dy, y ∈ R++.

Assumption 2.1 implies that for some C0,C1 > 0 we have |b(ξ)| ≤ C0ξ and σ 2(ξ) ≤ C1ξ
2

for every ξ ∈ R+. According to [19, Prop. 16.43] we compute
∫ 1
0 ym(dy). We have

∫ 1

0
ym(dy) ≥

∫ 1

0

2y

σ 2(y)
e
∫ y
1

−2C0ξ

σ2(ξ)
dξ
dy.

Set F(y) := ∫ y
1

−2C0ξ

σ 2(ξ)
dξ . We have

∫ 1

0

2y

σ 2(y)
e
∫ y
1

−2C0ξ

σ2(ξ)
dξ
dy = − 1

C0

∫ 1

0
F ′(y)eF(y)dy = − 1

C0

[
eF(1) − lim

y→0+ eF(y)
]

= − 1

C0

[
1 − lim

y→0+ e
∫ y
1 − 2C0ξ

σ2(ξ)
dξ
]

= − 1

C0

[
1 − e

limy→0+
∫ 1
y

2C0
C1ξ

dξ
]

= +∞.

This shows, by [19, Prop. 16.43], that (A.1) holds, The fact that 0 is not-entrance, i.e. that
the first limit in (A.2) holds, is then consequence of [19, Prop. 16.45(a)]. Let us show, finally,
that also +∞ is not-entrance, i.e. that the second limit in (A.2) holds. In this case, according
to [19, Prop. 16.45(b)] we consider

∫ +∞
1 ym(dy) and see, with the same computations as

above, that it is equal to +∞. By the aforementioned result we conclude that +∞ is not
entrance. ��
Remark A.2 The property (A.1) can be generalized to the case of random initial data. Let
τ be a (possibly infinite) F-stopping time and let ξ be an Fτ -measurable random variable,

clearly we have the equality in law Z τ,ξ
t+τ =

(
Z0,x
t

)
|x=ξ

. By (A.1), it then follows that

ξ Fτ -measurable random variable , ξ > 0P-a.s. 	⇒ Z τ,ξ
t+τ > 0P-a.s. on {τ < ∞}, ∀t ≥ 0.

(A.3)

Lemma A.3 Let I ∈ I , x, y ∈ R++.

(i) We have

E

[
|Xx,I

s − X y,I
s |4

]
≤ |x − y|4eC0t ∀t ≥ 0, (A.4)

where C0:=4Lb + 6L2
σ .
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(ii) For each λ ∈ [0, 1] and x, y ∈ R++, define zλ:=λx + (1 − λ)y. Then

E

[∣∣∣Xzλ,I
t − λXx,I

t − (1 − λ)X y,I
t

∣∣∣2
]

≤ A0λ
2(1−λ)2|x−y|4eB0t ∀λ ∈ [0, 1], ∀t ≥ 0,

(A.5)
where A0 > 0 and B0:=2Lb + 2L2

σ + L̃b.

Proof (i) We apply Itô’s formula to |Xx,I − X y,I |4 and then—after a standar localization
procedure with stopping times to let the stochastic integral term be a martingale and all the
other expectations be well defined and finite; see e.g. the proof of Proposition 3.2—we take
the expectation. We get, also using Assumption 2.1,

E

[∣∣∣Xx,I
t − X y,I

t

∣∣∣4
]

= |x − y|4 + 4E
∫ t

0

(
Xx,I
u − X y,I

u

)3 (
b
(
Xx,I
u

)
− b

(
X y,I
u

))
du

+ 6E
∫ t

0

(
Xx,I
u − X y,I

u

)2 (
σ
(
Xx,I
u

)
− σ

(
X y,I
u

))2
du

≤ |x − y|4 + (4Lb + 6L2
σ

) ∫ t

0
E

[
|Xx,I

u − X y,I
u |4

]
du.

The claim follows by Gronwall’s inequality.
(ii) Define λ,x,y,I :=λXx,I + (1− λ)X y,I . We apply Itô’s formula to the process (Xzλ,I −
λ,x,y,I )2 and then—after a standar localization procedure with stopping times to let the
stochastic integral term be a martingale and all the other expectations are well defined and
finite; see e.g. the proof of Proposition 3.2—take the expectation, obtaining, also using
Assumption 2.1,

E

[(
Xzλ,I
t − 

λ,x,y,I
t

)2]

= 2
∫ t

0
E

[(
Xzλ,I
u − 

λ,x,y,I
u

) (
b
(
Xzλ,I
u

)
− λb

(
Xx,I
u

)
− (1 − λ)b

(
X y,I
u

))]
du

+
∫ t

0
E

[(
σ
(
Xzλ,I
u

)
− λσ

(
Xx,I
u

)
− (1 − λ)σ

(
X y,I
u

))2]
du

≤ 2
∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣ ·
∣∣∣b
(
Xzλ,I
u

)
− b

(


λ,x,y,I
u

)∣∣∣
]
du

+ 2
∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣ ·
∣∣∣b
(


λ,x,y,I
u

)
− λb

(
Xt,ξ,I
u

)
− (1 − λ)b

(
Xt,ξ ′,I
u

)∣∣∣
]
du

+ 2
∫ t

0
E

[∣∣∣σ
(
Xzλ,I
u

)
− σ

(


λ,x,y,I
u

)∣∣∣2
]
du

+ 2
∫ t

0
E

[∣∣∣σ
(


λ,x,y,I
u

)
− λσ

(
Xx,I
u

)
− (1 − λ)σ

(
X y,I
u

)∣∣∣2
]
du

≤ 2
(
Lb + L2

σ

) ∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣2
]
du

+ 2
∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣ ·
∣∣∣b
(


λ,x,y,I
u

)
− λb

(
Xt,ξ,I
u

)
− (1 − λ)b

(
Xt,ξ ′,I
u

)∣∣∣
]
du

+ 2
∫ t

0
E

[∣∣∣σ
(


λ,x,y,I
u

)
− λσ

(
Xx,I
u

)
− (1 − λ)σ

(
X y,I
u

)∣∣∣2
]
du. (A.6)
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By doing the same computations as in [72, p. 188] in order to obtain [72, p. 188, formulae
(4.22) and (4.23)], we have

∣∣b (λx ′ + (1 − λ)x ′′)− λb(x ′) − (1 − λ)b(x ′′)
∣∣ ≤ L̃bλ(1 − λ)|x ′ − x ′′|2 ∀x ′, x ′′ ∈ R++,

(A.7)∣∣σ (λx ′ + (1 − λ)x ′′)− λσ(x ′) − (1 − λ)σ(x ′′)
∣∣ ≤ L̃σ λ(1 − λ)|x ′ − x ′′|2 ∀x ′, x ′′ ∈ R++,

(A.8)

where L̃b, L̃σ are as in Assumption 2.1. Then, by using (A.7) and (A.8) in (A.6), we get

E

[∣∣∣Xzλ,I
s − 

λ,x,y,I
s

∣∣∣2
]

≤2
(
Lb + L2

σ

) ∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣2
]
du

+ 2λ(1 − λ)L̃b

∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣ ·
∣∣∣Xx,I

u − X y,I
u

∣∣∣2
]
du

+ 2λ2(1 − λ)2 L̃2
σ

∫ t

0
E

[∣∣∣Xx,I
u − X y,I

u

∣∣∣4
]
du. (A.9)

Using the inequality

2λ(1 − λ)ab ≤ a2 + λ2(1 − λ)2b2 ∀a, b ∈ R,

and (A.4) into (A.9), we obtain

E

[∣∣∣Xzλ,I
t − 

λ,x,y,I
t

∣∣∣2
]

≤
(
2Lb + 2L2

σ + L̃b

) ∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣2
]
du

+ λ2(1 − λ)2
(
L̃b + 2L̃2

σ

) ∫ t

0
E

[∣∣∣Xx,I
u − X y,I

u

∣∣∣4
]
du

≤
(
2Lb + 2L2

σ + L̃b

) ∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣2
]
du

+ (L̃b + 2L̃2
σ )λ2(1 − λ)2

∫ t

0
eC0u |x − y|4du

≤
(
2Lb + 2L2

σ + L̃b

) ∫ t

0
E

[∣∣∣Xzλ,I
u − 

λ,x,y,I
u

∣∣∣2
]
du

+ L̃b + 2L̃2
σ

C0

(
eC0t − 1

)
λ2(1 − λ)2|x − y|4,

where C0 is the constant of (A.4). We conclude by Gronwall’s inequality. ��
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