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Abstract
This paper follows van der Ploeg (Metroeconomica 37(2):221–230, 1985)’s research pro-
gram in testing both its extension of Goodwin (in: Feinstein (ed) Socialism, capitalism and
economic growth, Cambridge University Press, Cambridge, 4, 54–58, 1967) predator–prey
model and the Minsky Financial Instability Hypothesis (FIH) proposed by Keen (J Post
Keynes Econ 17(4):607–635, 1995). By endowing the production sector with CES tech-
nology rather than Leontief, van der Ploeg showed that the possible substitution between
capital and labor transforms the close orbit into a stable focus. Furthermore, Keen (1995)’s
model relaxed the assumption that profit is equal to investment by introducing a nonlinear
investment function. His aim was to incorporate Minsky’s insights concerning the role of
debt finance. The primary goal of this paper is to incorporate additional properties, inspired
by van der Ploeg’s framework, into Keen’s model. Additionally, we outline possibilities for
production technology that could be considered within this research program. Using numer-
ical techniques, we show that our new model keeps the desirable properties of Keen’s model.
However, we also demonstrate that when the economy is endowed with a class of CES pro-
duction function that includes the Cobb–Douglas and the linear technology as limit cases, the
unique stable equilibrium is an economically desirable one. Finally, we propose a modified
extension that includes speculative component in the economy as in Grasselli and Costa-
Lima (Math Financ Econ 6(3):191–210, 2012) and investigate its effect on the dynamics. We
conclude that CES production function is a more suitable assumption for empirical purposes
than the Leontief counterpart. Finally, we show, using numerical simulations, that under
plausible calibration, the model endowed with CES production function eventually lose the
cyclical property of Goodwin’s model with and without the speculative component.
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1 Introduction

It has been half a century since Goodwin [3] developed a model of endogenous real growth
cycles. Based on a simple and well known dynamic–the nonlinear Lotka-Volterra prey–
predator model–Goodwin’s model appeals in its simplicity and can be easily applied by
researchers in a variety of fields (physics, biology, etc.). Goodwin’s growth cycle is a
simple dynamic model of distributional shares of output1 and of (un)employment. In his
model, he shows how accumulation takes the form of a cycle. The solution of the model
describes a family of closed cycles in the state variables (workers’ share and employ-
ment).2

In the 1980s, Van der Ploeg merged what he called “the neo-Keynesian” and the “neo-
classical views.” He extended the Goodwin-Lotka-Volterra model by incorporating constant
elasticity of substitution, or CES production technology, thus capital and labor no longer
being complementary factors of production. By doing so, he relaxed the original assumption
of a constant capital-to-output ratio made by Goodwin. The advantage of this relaxation is
that both the Leontief technology underlying Goodwin’s model and the more general tech-
nology underlying Solow’s [16] model are incorporated as special cases. Furthermore, van
der Ploeg showed that the choice of incorporating CES technology destroys the conservative
nature of the Goodwin system, i.e. transforms a closed orbit in a stable focus. Therefore,
perpetual cycles are replaced by damped cycles or monotonic convergence to the balanced
growth equilibrium. The primary economic rationale of van der Ploeg’s extension would
be that improved profit will stimulate investment and thus increase output. This gain in
output would in turn stimulate jobs and push wages up by wage negotiation. Through inter-
nal financing, firms would substitute labor by capital by firing and installing new capital.
For example, in Goodwin’s model, a higher wage share results in lower profits. The latter
will negatively impact output growth and employment due to lower investment. This lower
investment will eventually lead to a new boom in the “class struggle” cycle, which in turn
will lead to a decrease in wages and increase in profits. In van der Ploeg’s model, when
substitution between factors of production is considered, a given period of high employ-
ment rate–the apex of the cycle–will induce a substitution of labor by capital rather than an
increase in wages. Such substitution will allow for the dampening of employment and wage
variations.

In van der Ploeg’s framework, the equality between investment and profits always holds. In
this paper, we propose to relax the equality by incorporating aMinskyan framework including
debt. Minsky’s Financial Instability Hypothesis (hereafter: FIH) links the expansion of credit
with the rise of asset prices and the inherent fragility of the financial system. Although
Minsky made his points clear, aided by convincing diagrams and incisive exploration of
data, he refrained from presenting his ideas as a mathematical model. This task was taken
up by Keen [8], where a system of differential equations was proposed as a simplified model
incorporating the basic features of Minsky’s hypothesis. By adding a new dimension to
Goodwin’s model, Keen’s dynamic model changes a conservative system into a dissipative
one in which the dynamics display sensitive dependence on initial conditions. Specifically,
this new model has a stable equilibrium defined in terms of the employment rate, the profit
rate, and the debt-to-output ratio. Additionally, the system will converge to this equilibrium

1 In the sense of the GDP at factor cost, where the income approach of the GDP is summarized as the
distribution of wages and profits.
2 For a complete overview of Goodwin’s modern dynamics and its economic interpretation, we refer the
reader to the paper of Grasselli and Costa-Lima [6].
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if the initial conditions are sufficiently close to what we will call the Good equilibrium.
However, for other initial conditions, the model bifurcates (see Pomeau and Manneville
[15]) and undergoes an unstable cyclical breakdown towards what we will call the Bad
equilibrium.

This paper shows that when the economy is endowed with CES production function, the
properties of Keen’s model are preserved. Except that, under the assumption of a class of
production function being bounded by the Cobb–Douglas and the linear, the equilibrium that
led to the collapse (i.e., the Bad equilibrium) is no longer locally stable. We also show that
the basin of attraction towards theGood equilibrium is substantially larger when substitution
is allowed. Finally, we indicate that the model with CES production function would be a
more suitable candidate for estimation purposes than the Leontief counterpart. All these
conclusions hold whenever speculation is added to the economic landscape.

This paper is organized as follows: Sect. 2 outlines the model that departs from Keen
[8] by incorporating CES production technology. Section 3 introduces the equilibria and the
study of their local stability. Section 4 presents different properties deduced from the study
of the basins of attraction. Section 5 extends the model by allowing for speculation. Finally,
Sect. 6 offers concluding remarks and suggestions for further works.

2 Themodel

Keen [8] assumed Leontief production technology in which the inputs of production–capital
and labor–are not substitutable. The production function is defined as follows3

Y k := min

(
Kk

ν
, aLk

)
,

where Y k is the real output, Kk the stock of productive capital, Lk the labor force and a > 0
the labor productivity. In this framework, the capital-to-output parameter, ν > 0, is constant
and technology is assumed to be used at its maximal capacity. van der Ploeg [18] relaxed
the assumption that capital and labor cannot be substituted with each other by endowing the
economy with CES production function

Y = A
[
bK−η + (1 − b)(eal t L)−η

]− 1
η , (1)

where A > 0 is the factor productivity (or efficiency parameter) and b ∈ (0; 1) reflects the
capital intensity of the production. The short-run elasticity of substitution between capital
and labor is given by ση := 1

1+η
. The labor productivity is driven by a constant rate of growth

al . It should be recalled that the CES production function allows for three limit cases: (i)
when η → +∞, one retrieves the Leontief production function; (ii) η → 0 leads to the
Cobb–Douglas production; (iii) if η → −1 one recovers the linear production function.4,5

Real wages are set according to a short-run Phillips curve and we assume that the pro-
duction sector behaves like a large oligopoly which adjusts the quantity produced so as

3 The superscript k stands for Keen.
4 We confine ourselves to η ∈]0,+∞[ (that is an elasticity of substitution that lies in the set ]0, 1[). The
reason is twofold: (i) such short term elasticity would imply an above unity substitution between capital and
labor in a very short term that is very unlikely (see Klump et al. [10]); and (ii) such values values would break
the predator–prey logic of the clockwise behavior suggested by Goodwin and shown by the data (Solow [17],
Harvie [7], Mohun et al. [12], or Mc Isaac [11]).
5 Throughout the article, the consumption price is normalized to 1.
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to maximize its profit.6 The first-order condition that characterizes the profit maximizing
behavior implies that real wages equal their marginal return

∂Y

∂L
= w.

Thus, van der Ploeg brokeGoodwin’s assumption of a constant capital-to-output ratio,making
it time-varying and defined by (see “Appendix A”):

νη(t) := K (t)

Y (t)
= 1

A

(
1 − ω(t)

b

)− 1
η

,

where ω := wL/Y is the wage-to-output ratio. We endow νη with a subscript η since the
dynamics will strongly depend upon η’s value. Whenever η → +∞, the capital-to-GDP
ratio is constant as in the Leontief case. The full model derivation of the Minskyan classical
growth cyclemodel is available in “AppendixA”. It boils down to a three-dimensional system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω̇ = ω
[(

η
1+η

)
[�(λ) − al ]

]

λ̇ = λ
[
κ(π)A

( 1−ω
b

)1/η − δ − al − β − 1
η(1−ω)

ω̇
ω

]

ḋ = d
[
r − κ(π)A

( 1−ω
b

)1/η + δ + ω̇
(1−ω)η

]
+ κ(π) − (1 − ω)

(2)

where N is the active population, assumed to grow at a constant rate β, and λ := L/N is the
employment rate, which determines the level of wages through the short-term Phillips curve
: ẇ
w = �(λ). The second aggregate behavior is given by the function κ(.), that controls the

investment-to-output ratio and depends upon the profit share π := 1−ω−rd . In the latter, d
stands for the debt-to-output ratio and r > 0 for the constant short term interest rate. Finally,
the parameter δ > 0 refers to the depreciation rate of capital.

In system (2), whenever η → +∞ and A = 1/ν̄, Keen’s [8] model is retrieved. Thus,
we recover Leontief production function and, as previously stated, a constant capital-output
ratio.

The growth rate of the economy is given by7

g := Ẏ

Y
= κ(π)A

(
1 − ω

b

)1/η

− δ − ω̇

(1 − ω)η
.

Here, as in both the van der Ploeg and Keen models, the behavior of households is fully
accommodating in the sense that, given investment I := κ(π)Y , consumption is determined
by the macro balance

C := Y − I = (1 − κ(π))Y

precluding a more general specification of household saving propensity.8 Table 1 makes the
stock-flow consistency of the model explicit. For this paper, we adopt the convention that

D := L − M f ,

6 This minimal rationality argument is analogous to the assumption in Goodwin’s model that the allocation of

capital and labor is always at the diagonal of the (Kk , Lk )-plan, so that we have not onlyYk = min
(
Kk

ν , aLk
)

but also Yk = Kk

ν = aLk .
7 See “Appendix A” for the computation.
8 Studying the consequences of dropping Say’s law will be the task of a forthcoming paper.
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Table 1 Balance sheet, transactions, and flow of funds in the economy

Households Firms Banks Sum

Balance sheet

Capital stock K K

Deposits Mh M f − M

Loans − L L

Sum (net worth) Xh X f Xb X

Transactions Current Capital

Consumption −C C

Investment I − I

Accounting memo [GDP] [Y ]
Wages W −W

Interests on deposits rMMh rMM f −rMM

Interests on loans − r L L r L L

Financial balances Sh  − I Sb

Flow of funds

Gross fixed capital formation I I

Change in deposits Ṁh Ṁ f − Ṁ

Change in loans − L̇ L̇

Column sum Sh  Sb I

Change in net worth Ẋh = Sh Ẋ f =  + −δK Ẋb = b Ẋ

where the net borrowing D is the difference between firm loans, L , and firms deposits, M f .
Furthermore, the model (2) is retrieved from Table 1 by assuming r = rM = r L .

With this set-up, we can readily verify that the accounting identity that requires investment
to be equal to savings always holds.9

For the numerical simulations that follow, most of the parameters are borrowed from
Keen [9] and are explained in “Appendix B”. Figure 1 shows the (ω, λ, d)-space, or the
phase space, of Keen’s model converging towards the Good equilibrium. Qualitatively, we
observe that Goodwin’s cyclical behavior is dampened when the trajectory approaches its
equilibrium value. Remember that, in the CES setting, Fig. 1 refers to the limit case

lim
η→+∞ νη(t) = ν,

of a constant capital-to-output ratio.
Turning to the time-varying behavior of the capital-to-output ratio, Figs. 2 and 3 show

the counterpart model where the elasticity of substitution for capital and labor are σ500 =
1

1+500 ≈ 0.2% and σ100 = 1
1+100 ≈ 1%, respectively. By allowing for substitution between

capital and labor (while maintaining other parameters and beginning again near the Good
equilibrium), we observe that the cycles are more muted when η is lower. This characteristic
echoes the stable focus behavior demonstrated by van der Ploeg as opposed to the closed
orbit showed by Goodwin’s dynamics.

9 We note that according to Nguyen-Huu and Pottier [14], the channel of debt financing is not fully determined
by the model. Indeed, it does not distinguish between loanable funds and endogenous money creation since
both rationales induce the same set of equations.
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Fig. 1 Keen’s model with
Leontief production function and
initial condition in the
neighborhood of the good
equilibrium

ω

d

λ

Fig. 2 CES model with η = 500
and initial conditions in the
neighborhood of the good
equilibrium

ω

d

λ

Fig. 3 CES model with η = 100
and initial conditions in the
neighborhood of the good
equilibrium

ω

d

λ
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Fig. 4 Evolution of ω in the previous simulations. In blue: η = +∞. In red: η = 500. In green: η = 100.
(Color figure online)

Aprimary rationale to explain the differencemight be that a gain in profit boosts investment
and output. Thus, employment will increase and so will total wages. Indeed, when η > 0,
the wage share, ω, increases according to the wage negotiation curve

ω̇

ω
= η

1 + η
(�(λ) − al) .

This rise in ω will increase the capital-to-output ratio10 νη since

ν̇η

νη

= ω̇

(1 − ω)η
.

It follows that firms will tend to substitute labor by capital by firing and installing new
capital, because the growth of the capital-output ratio enters negatively in the evolution of
the employment rate (see “Appendix A”).

Figure 4 shows the time series for the wage share ω as obtained by the three differ-
ent settings used for the production function. These simulations clarify the difference in
the evolution of the wage share and its cyclical properties (especially the amplitude of the
cycles). The blue curve represents the Leontief technology. Consistently with Figs. 2 and 3,
it demonstrates a more volatile behavior than its counterparts: (i) the CES with η = 500 (in
red); and (ii) the CES with η = 100 (in green). We qualitatively observe that the amplitude
of cycles decreases as η increases, while their periodicity remains similar. In other words, the
qualitative change induced by the allowance of the capital-labor substitution affects only the
amplitude of cycles, remaining unchanged the long-run trend.11 Finally, Fig. 5 illustrates the
behavior of the system in a case with low substitution (η = 100), with the usual parameters
(see “Appendix B”).

10 Figure 5 includes the evolution of the capital-to-output ratio for benchmark parameters and η = 100.
11 In addition, it can be noticed that the equilibrium points differ slightly depending on the value of η.
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Fig. 5 Illustration of the system dynamics with benchmark parameters and η = 100

3 Equilibria

All equilibria can be found by an exhaustive examination of three cases. First, ω1 �= 0,
meaning that the wage share is not zero. This point will be labeled as the Good equilibrium.
Second, ω2 = 0, λ2 �= 0, which provides an economically meaningless equilibrium. Finally,
ω3 = 0, λ3 = 0, which provides two equilibria: a Trivial and a Bad equilibrium.

3.1 The good equilibrium

Prior to the derivation of this equilibrium, it is worth mentioning that the point (ω1, λ1, d1)
refers to the Good equilibrium. Using the equilibrium condition of ω1, we find that λ1 =
�−1 (al). Next, using the equilibrium condition of λ1, κ(.) can be written in terms of ω1 so
that

κ (π1) = al + β + δ

A

(
1 − ω1

b

)− 1
η =: ζ1 (ω1) . (3)

Plugging Eq. (3) into the equilibrium condition of d1 yields d1 as a function of ω1:

d1 (ω1) = 1 − ω1 − ζ1 (ω1)

r − al − β
. (4)

Plugging Eq. (4) into the κ(.) of Eq. (3) leads to a nonlinear equation that ω1 should satisfy.
Depending on the specification chosen for κ ,12 we solve this equation numerically so that
we get ω1. Next, we find d1 using Eq. (4). As with the Goodwin and Solow models, at the
equilibrium point, the real growth rate of the economy is given by

g = Ẏ

Y
= κ(π1)A

(
1 − ω1

b

)1/η

− δ = al + β.

12 It can be shown that, with the simplest possible case of an affine function, a closed-form expression for the
equilibrium is not available.
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Proposition 1 The Good equilibrium exists if κ
(
1 − r

r−al−β
(1 − ζ1 (0))

)
< ζ1 (0).

Proposition 2 ω1 is positive if
(

Aζ1
al+β+δ

)η

> b.

The proofs for both propositions can be found in “Appendix C”.

3.2 The slavery equilibrium

This second equilibrium is economically meaningless. It would suggest that wages are null
while employment is still positive, and would be interpreted as characterizing Slavery. Its
derivation can be sketched in the same manner as before. The following function ζ2(.) can
be derived from system (2) so that

κ (1 − rd2) Ab
− 1

η − δ = al + β + �(λ2) − al
1 + η

=: ζ2 (λ2) . (5)

Equation (5) together with system 2 gives

d2 (λ2) = 1 − b
1
η

A (ζ2 (λ2) + δ)

r − ζ2 (λ2)
. (6)

Finally, plugging Eq. (6) into Eq. (5) gives a value satisfied by λ2. Hence, d2 can be deduced
from Eq. (6). Note that whenever η → +∞ we retrieve Grasselli and Costa Lima [6] results.
We show in “Appendix E” that for our benchmark specification, this equilibrium exists.

3.3 The trivial and the bad equilibria

This condition gives us two kinds of equilibria. On the one hand, the trivial equilibria can be
found by solving system 2, so that

(ω̄3, λ̄3, d̄3) = (0, 0, d̄3),

is an equilibrium point for (2), and with d3 being any solution of

d

[
r − κ(1 − rd)A

(
1

b

)1/η

+ δ

]
+ κ(1 − rd) − 1 = 0 (7)

Note that this condition for finding the equilibrium is similar to Grasselli and Costa-Lima
[6] if we identify A(1/b)−1/η = ν. Therefore, we expect this equilibrium to be unstable in
the same way that (ω̄3, λ̄3) is a saddle point for the Goodwin model.

On the other hand, another equilibrium with infinite debt can be found using the change
of variable: 1

d =: u. We get that
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω̇ =ω
[(

η
1+η

)
[�(λ) − al ]

]
,

λ̇ =λ
[
κ(π(u))A

( 1−ω
b

)1/η − δ − al − β − 1
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
,

u̇ =−u
[
r− κ(π(u))A

( 1−ω
b

)1/η+ δ + ω
(1−ω)

(
1

1+η

)
[�(λ)− al ]

]
−u2 (κ(π(u)) − (1 − ω)) .

(8)

with π(u) := 1 − ω − r/u. Hence, the point (ω̄3, λ̄3, ū3) = (0, 0, 0), or (ω̄3, λ̄3, d̄3) =
(0, 0,+∞) is an equilibrium. It can be interpreted as representing the collapse of the economy
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induced by over-indebtedness, where employment and wage converge towards 0 and debt
increases constantly towards infinity. This equilibrium is labeled as the Bad equilibrium.

3.4 Local stability study

This subsection seeks to present the Jacobianmatrices of the twomodels previously presented
(both with and without the change of variable). This step will help us to analyze the local
stability of the equilibria displayed above. Note that behavioral functions �(.) and κ(.)

are similar to those of Keen [9]. For the sake of clarity, in what follows, we use κ(π) :=
κ(1 − ω − rd). The Jacobian associated with system (2) is

J (ω, λ, d) =

⎡
⎢⎢⎢⎣

(
η

1+η

)
[�(λ) − al ] ω

(
η

1+η

)
�′(λ) 0

ε1 ε2 λ
[
−rκ ′(π)A

( 1−ω
b

)1/η]
ε3

d
1+η

(
ω

1−ω

)
�′(λ) ε4

⎤
⎥⎥⎥⎦ ,

with

ε1 = λ

[
−κ ′(π)A

(
1 − ω

b

)1/η

− 1

η
κ(π)

A

b1/η
(1 − ω)1/η−1−

1

(1 − ω)2

(
1

1 + η

)
[�(λ) − al ]

]
,

ε2 = κ(π)A

(
1 − ω

b

)1/η

− δ − al − β − 1

(1 − ω)

(
1

1 + η

)
[�(λ) − al ] −

λ
1

(1 − ω)

1

1 + η
�′(λ)

ε3 = d

[
κ ′(π)A

(
1 − ω

b

)1/η

+ 1

η
κ(π)

A

b1/η
(1 − ω)1/η−1+ 1

1 + η
(�(λ) − al)

1

(1 − ω)2

]
,

−κ ′(π) + 1,

ε4 = r− κ(π)A

(
1 − ω

b

)1/η

+δ+ ω

(1 − ω)

(
1

1 + η

)
[�(λ)−al ]+ rdκ ′(π)A

(
1 − ω

b

)1/η

−rκ ′(π).

At the equilibrium point (ω̄3, λ̄3, d̄3) = (0, 0, d̄3), the Jacobian moves down to a lower
triangular matrix

J (0, 0, d3) =
⎡
⎢⎣
(

η
1+η

)
[�(0) − al ] 0 0

0 ε′
2 0

ε′
3 0 ε′

4

⎤
⎥⎦

with

ε′
2 = κ(1 − rd3)A

(
1

b

)1/η

− δ − al − β −
(

1

1 + η

)
[�(0) − al ]),

ε′
3 = d

[
κ ′(1−rd3)A

(
1

b

)1/η

+ 1

η
κ(1− rd3)

A

b1/η
+ 1

1 + η
(�(0)−al)

]
−κ ′(1− rd3) + 1,
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ε′
4 =

[
r − κ(1 − rd3)A

(
1

b

)1/η

+ δ

]
+ rd3κ

′(1 − rd3)A

(
1

b

)1/η

− rκ ′(1 − rd3).

The Jacobian’s real eigenvalues are given by diagonal entries and it is not easy to determine
the sign of d3. Nevertheless, we note that, for a sufficiently large value of π3 := 1 − rd3, ε′

2
is positive, whereas a sufficiently small value of π3 (i.e., a large enough value of d3) makes
ε′
4 non-negative. We conclude that this equilibrium point is likely to be unstable.
AlthoughGrasselli andCosta-Lima [6] could analytically retrieve all equilibria, ourmodel

is too intricate to do so. Thus, we will later compute the eigenvalues of the Jacobian matrices
corresponding to each equilibrium under reasonable calibration.

In order to analyze the local stability of the Bad equilibrium point (0, 0,+∞), we denote
κ(π(u)) := κ(1 − ω − r/u) and the corresponding Jacobian matrix of system (8) is

J (ω, λ, u) =

⎡
⎢⎢⎢⎣

(
η

1+η

)
[�(λ) − al ] ω

(
η

1+η

)
�′(λ) 0

ε1 ε2 λ
[
κ ′(π(u))A

( 1−ω
b

)1/η r
u2

]
ε′′
3

−u
1+η

(
ω

1−ω

)
�′(λ) ε′′

4

⎤
⎥⎥⎥⎦ ,

with

ε′′
3 = −u

[
κ ′(π(u))A

(
1 − ω

b

)1/η

+ κ(π(u))A
(1 − ω)1/η−1

b1/η
1

η
+

(
1

1 + η
(�(λ) − al)

)
1

(1 − ω)2

]
− u2

[−κ ′(π(u)) + 1
]
,

ε′′
4 = −

[
r − κ(π(u))A

(
1 − ω

b

)1/η

+ δ + ω

(1 − ω)

(
1

1 + η

)
[�(λ) − al ]

]

+ r

u
κ ′(π(u))A

(
1 − ω

b

)1/η

− 2u [κ(π(u)) − (1 − ω)] − κ ′(π(u))r .

Despite the previous comment on the equilibrium points, since ω̄ = 0 and λ̄ = 0, the
Jacobianmatrix is diagonal at this point. Thus, its eigenvalues are summarized by the diagonal
terms(

η

1 + η

)
[�(0) − al ] , κ0A

(
1

b

)1/η

− (δ + al + β) −
(

1

1 + η
(�(0) − al)

)
,

−(r − κ0A

(
1

b

)1/η

+ δ).

The sign of the eigenvalues will depend on the parameter η, which is assumed to belong to the
set ]0;+∞[. Indeed, when assuming �(0) < 0, where wages decrease below some positive
employment rate threshold, the first eigenvalue has the opposite sign of η. Furthermore, the
remaining eigenvalues are negative if and only if

κ0 = inf
π∈R

{κ (π)} <
b

1
η

A
min

(
r + δ , al + δ + β + 1

1 + η
(� (0) − al)

)
.

Finally, given that �(0) < 0, the Bad equilibrium is stable if and only if η > 0 and the
previous conditions are fulfilled.13

13 Thus, if the elasticity of substitution is too high, i.e. above that of Cobb–Douglas (as in the linear case e.g.),
the Bad equilibrium is unstable.
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Table 2 The summary table of
stability for all equilibria

Value of η Good Trivial Slavery Bad

+ ∞ o x x o

100 o x x o

0.1 o x x o

It is worth mentioning that depending on η and due to the condition of κ0 = inf
π∈Rκ ∈ R,

boundary condition of phenomenological function �(.) will have a significant effect on
the stability of the Bad equilibrium. Indeed, by taking reasonable values for r and δ, if
�(0) < −(1+ η)(al + δ + β) + al then κ0 < 0 if one wants to guarantee the local stability
of the Bad equilibrium.

To numerically study the properties of other equilibria, we use a baseline calibration that
closely follows Keen [9].14 Our model differs from Keen [9]’s in that we assume that the
productive sector is endowed with CES technology. We remind the reader that the capital-
to-output ratio is not constant and equals

νη(t) = 1

A

(
1 − ω(t)

b

)− 1
η

.

In building the capital stock dataset, databasemakers assume an initial capital-to-output stock
of about 3 (see Mc Isaac [11]). In order to retrieve similar results for the Leontief case, we
will assume that νη(t) → 3 whenever η → +∞, which implies that A = 1/3. On the other
hand, the ratio (1− ω(t))/b should oscillate around 1 since b represents the share of capital
in the production function in Eq. (1). In order to find a reasonable value, we will assume that
b = 1 − ω∗, where ω∗ is the Good equilibrium value of the Leontief model counterpart.
Finally, the parameter η will be tested for different values of σ = 1/(1 + η). First, we will
test σ = 0, i.e. the Leontief case, where η → +∞. Second, the case where σ ≈ 1+—close
to the Cobb–Douglas case, i.e. η → 0—will be investigated. Third, the intermediary case
between the last two, where σ = 1% (or η = 100) will be displayed.

Table 2 provides a summary of the tables available in “Appendix D”. An “o” means that
the equilibrium is stable whereas an “x” stands for local instability. As expected, the Good
is always stable while the trivial and the slavery are always unstable.

Figure 6 provides an example of a trajectory that converges towards a Good equilibrium.
The simulation begins at a point slightly behind the convergent spiral, at the bottom of the
figure. At the beginning of the simulation, the trajectory displays ample cycles with a debt-to-
output ratio that increases over the time. In other words, it shows large fluctuations of ω, the
wage share, and λ, the employment rate. However, cycles will be less pronounced over time
and after reaching a given level of debt-to-output, the productive sector begins deleveraging
until it reaches its equilibrium point, at which of the state variable displays a finite value.

Figure 7 gives an example where the economy is no longer attracted by theGood equilib-
rium. The only difference between Figs. 6 and 7 is the initial condition of ω, which results in
slightly higher profits. In the short to medium run, we observe a trajectory that is qualitatively
similar to Fig. 6. However, when the system arrives in a region where the economy should
deleverage, as in this example, the debt burden is too high and the productive sector can
no longer reduce its debt. At this point, the nonfiancial corporate’s debt grows indefinitely.
Moreover, starting from this debt burden moment, the wage share is getting closer to unity at

14 See “Appendix B” for the details.
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Fig. 6 Simulation of a trajectory
converging towards the good
equilibrium with the calibration
of “Appendix B” and η = 500.
The initial conditions for λ and d
are set to their equilibrium values
while ω is initiated at 0.8055877
(at 0.06 from its equilibrium
value). The initial condition is
located at the bottom of the figure

ω

d

λ

Fig. 7 Simulation of a trajectory
towards the bad equilibrium with
the calibration of “Appendix B”
and η = 500. The initial
conditions corresponds to the
darkest blue point and is the same
as in Fig. 6 except for
ω = 0.8055876. (Color figure
online)

ω

d

λ

the apex of each cycle. As shown by system (2), the decrease in employment and the increase
of the debt-to-output ratio (that is the convergence towards the Bad attractor) will speed-up
as ω → 1−.15

4 Numerical study of the basins of attraction

This section aims at quantitatively and qualitatively analyzing the specificity of each model
presented above according to the respective basins of attraction. We consider three cases:
(i) η → +∞; (ii) η = 100; and (iii) η = 0.5;16 Furthermore, we perform a sensitivity

15 It can be noticed that the variation of λ is unbounded as ω → 1−. Therefore, it is very likely that the
Lyapunov function shows unbounded variation making the variational domain be in D(ω,λ,d) = [0, 1] ×
[0, 1] × R. We leave the proof for further research. For more insights see Grasselli and Costa-Lima [6] or
Costa-Lima and Ngyen-Huu [13].
16 The case η = 0.5 is identified as being the closest to the Cobb–Douglas. However, as shown in “Appendix
F”, when we derive the model with Cobb–Douglas production technology, we found that the wage share is no
longer time-varying and equals, at all times, the output elasticity 1−b. Therefore, the original Goodwin prey–
predator (between the employment rate and the wage share) logic does not hold anymore, as previously eluded.
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analysis of the following key parameters: al , the rate of labor productivity growth; β, the rate
of population growth; δ, the depreciation rate of capital; and r the short term interest rate.

4.1 Methodology for the basins of attraction

Weadopt a simple approach to evaluate the basins of attraction.We simulate our system taking
initial conditions at each points of a grid in the (ω, λ, d) space (typically, this grid consists of
325 points in the cuboid [0.5; 0.95] × [0.6; 1] × [0; 3]). At the time horizon of t = 200, we
compute the Euclidian distance of the set of simulated variables to their equilibrium values.
We consider that a simulation converges towards the equilibriumwhenever that distance falls
below a chosen precision (0.5 in practice). Although our programs are flexible and allow us
to evaluate many basins of attraction, depending on the choices of the equilibrium, the grid,
the precision, the time horizon and the time-steps (for the Runge-Kutta fourth-order method
used in the simulations), we stick to the specification described above and evaluate mainly
the basin of attraction of the Good equilibrium, the only one which is always stable. We
finally plot the basins and compute their volume using Delaunay triangulation. The points of
the basin are black if they converge to the good equilibrium, green for convergence to other
equilibria, and yellow if they diverge.17

4.2 Main results

Figure 8 plots the basin of attraction of the Good equilibrium in the Leontief case. In other
words, every economy that is initialized in that set will numerically converge towards the
Good equilibrium. When the debt is low, the wage share must be high in order to keep the
profit share at reasonable levels. In other words, if the wage share is not high enough, profit
will be high and the investment share would skyrocket as a consequence. This would drive
the economy to the Minskyan paradigm. In contrast, when the debt is high, the wage share
should remain low. A consequence of low wage share would be higher profit, which provides
a suitable situation for financial instability through the investment function since most of the
value added would go to the debt services and no longer to workers and investment. A high
wage share coupled with a high debt will prevent firms from deleveraging and, therefore
from reducing their debt.

Figure 9 shows the example of the basin of attraction of an economy endowed with CES
production function where η = 0.5 (that is close to the Cobb–Douglas production function).
In the numerical analysis of the set of points under consideration, nearly all of the explored
state space is covered. However, the area where wage share, debt ratio, and employment
levels are high does not lead to a convergence towards the good equilibrium. The latter case
represents low profits and the incapacity of the corporate sector to deleverage, preventing the
economy from converging towards the Good equilibrium.

Figure 10 displays the basin of attraction of the Bad equilibrium for the system of Eq.
(8) with η = 0.5 (that is close to Cobb–Douglas technology). Recall that, in this system
u = 1/d . The basin of attraction of the Bad equilibrium lies in an area where u ≤ 0.1 (i.e.
d ≥ 10). The numerical analysis shows that, at such high levels of debt, the system will not
converge to the Bad equilibrium only at low level of wage share together with low level of
employment–that is when income distribution is favoring banks (through debt repayment)
and firm’s self-funded investment.

17 At https://drive.google.com/open?id=0Bzqy7tzbKA8pNTktQUEyOFNDTVE.
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Fig. 8 Basin of attraction of the
good equilibrium for the Leontief
production technology. The good
equilibrium point is
(ω, λ, d) = (0.865, 0.972, 1.50)

Fig. 9 Basin of attraction of the
good equilibrium for the CES
production technology with
η = 0.5. The good equilibrium
point is (ω, λ, d) = (0.865,
0.972, 1.50)

Fig. 10 Basin of attraction of the
bad equilibrium for the CES
production technology with
η = 0.5. The Bad equilibrium
point is (ω, λ, u) = (0, 0, 0)
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Table 3 Parameter sensitivity of basins of attraction: percentage of points from the simulation grid falling into
the basin of attraction of the Good equilibrium. Values are reported in percentages

Parameters Benchmark al r δ β

η
(
al , r , δ, β

) = (2, 4, 1, 1)
−
1

+
3

−
1

+
5

−
0.5

+
2

−
0

+
3

η = 0.5 52 52 52 41 54 52 52 52 52

η = 100 51 28 54 40 50 50 45 33 53

η = 1015 9 3 12 0 13 8 6 2 24

0.
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Fig. 11 Illustration of the system dynamics with benchmark parameters and η = 0.5

4.3 Sensitivity analysis

Table 3 shows the percentage of initial condition points that converge towards the Good
equilibrium. For instance, 52 represents the percentage of points within the considered area
that converges under the benchmark calibration when η = 0.5. Given a higher elasticity of
substitution σ = 1/(1 + η), the basin of attraction is usually larger. This is well illustrated
by Fig. 8, the basin of attraction of the Leontief case. Figure 9 plots the basin of attraction of
the CES function with σ = 2/3. Note that CES production technology qualitatively shows a
significantly larger basin of attraction than the Leontief one, even with very low substitution.
Generally, the lower η, the larger the basin of attraction. Indeed, the basin of attraction of
η = 0.5 shows uniformly a higher basin of attraction. Moreover, for the case η = 0.5, the
only parameter that changes the value reported in Table 3 is the real interest rate r . For a
higher value of r , the basin of attraction generally increases in volume, while for a lower
value, it significantly decreases. The higher sensitivity of debt in the profits induced by the
higher interest rate prevents, in almost all cases, the economy from falling into a state of the
economy that is not desired.

In system (2), an increase of the labor productivity growth rate, the depreciation rate of
capital, or population growth negatively impact the employment rate dynamics. Thus, in the
case with almost no substitution (η = 1015), an increase in one of these parameters moderates
booms in the business cycles. This is similar to what substitution would induce (a decrease of
the employment rate due to a lower relative cost of labor). This explains why in the Leontief
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case, Table 3 exhibits larger basins of attraction as al , δ and β increase. As soon as we allow
for a limit degree of substitution, from almost 0% to 1/(100 + 1) ≈ 1%, the surface of the
basin of attraction substantially increases and highlights the the transformation recorded by
difference of the Leontief to the CES case. This change is somewhat similar to van der Ploeg’s
results for the model’s trajectory behaviors. However, these parameters only have a modest
effect on the size of the basins of attraction when substitution is higher. Indeed, Fig. 11 plots
the phase portrait of the state variable with the baseline calibration (see “Appendix B”) and
a coefficient η = 0.5. In this simulation, the calibrated elasticity of substitution between
capital and labor is 1

1+0.5 ≈ 66.66%, which is consistent with most of the empirical findings
surveyed by Klump et al. [10].18 However, this simulation no longer shows the primary
rationale of the Goodwin’s endogenous economic fluctuations. In other words, under what
is ostensibly the most realistic calibration, our finding is that the model is no longer able
to replicate the business cycles after the introduction of a reasonable substitution between
factors of production. More research is needed to understand whether this is an inherent
shortcoming feature of Goodwin-Keen inspired models or if the a cyclical behavior (see
Solow [17], or [7]) could be recovered obtained with some additional refinement.

5 Speculation

This section aims at analyzing the destabilizing property of speculation. Indeed, as empha-
sized by Grasselli et al. [6] for the Keen’s model, the model presented so far fails even more
at capturing Minsky’s well known conclusion that “stability—or tranquility—, in a world
with a cyclical past and capitalist financial institutions is destabilizing.” To see whether we
can retrieve the destabilizing impact found by Grasselli et al. [6], we endow the system with
the same speculation scheme specification, that is to rewrite the debt evolution so that

Ḋ = κ(π)Y − πY + S,

with, S, the speculative component whose dynamics is

Ṡ

S
= � (gK (ω, d)) ,

where gK (ω, d) = K̇
K is the growth of the productive capital.19 It is worth mentioning that,

as noticed by Grasselli and Nguyen [4], the additional flow of credit, S, corresponds to a
purchase of existing financial assets. The additional source of net borrowing of firms from
banks is used in turn to buy financial assets held by the Firms sector itself. S does not appear
either in the consolidated balance sheet for the Firms sector of Table 1, nor in the transactions
and flow of funds matricesas the purchase is made through the intra-firm market. Defining
the ratio of speculation to economic output by, s := S/Y , it is easy to see that the additional
speculative term leads to the following four-dimensional system

18 Klump et al. [10] surveyed a number of studies intended for developed countries in various timeframes
(ca. 1800–2000). Almost 75% of the estimated elasticities showed a value between 0.5 and 1.
19 Note that in Grasselli et al. [6], the growth rate of output equals that of capital, as ν is constant. We chose
to align the growth in speculation with the growth rate of capital, as its objects is precisely existing assets.
However, aligning the speculation with output would have been equally compatible with Grasselli et al. [6].
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇ = ω
[(

η
1+η

)
[�(λ) − al ]

]
,

λ̇ = λ
[
κ(π)A

( 1−ω
b

)1/η − δ − al − β − 1
η(1−ω)

ω̇
ω

]
,

ḋ = d
[
r − κ(π)A

( 1−ω
b

)1/η + δ + ω̇
(1−ω)η

]
+ κ(π) − (1 − ω) + s,

ṡ = s
[
�
(
κ(π)A

( 1−ω
b

)1/η − δ
)

− κ(π)A
( 1−ω

b

)1/η + δ
]
.

(9)

5.1 Equilibria

We follow Grasselli and Costa-Lima [6]’s guideline in deriving the equilibria of the
model augmented by the speculative component. Therefore, we restrain ourselves into the
meaningful ones, corresponding to the locally stable equilibria previously examined, as a
four-dimensional system shows three options based on equilibria that are locally stable in
Sect. 3.4.

First, it is easy to show that the equilibrium (ω1, λ1, d1, 0) exists and is a endomorphic
embedding of the Good equilibrium found in Sect. 3.1. Moreover, this equilibrium point
corresponds to an economy without speculation, as one may expect.

Second, possible high level debt is captured through the change of variable u = 1/d , with
which the system becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇ = ω
[(

η
1+η

)
[�(λ) − al ]

]
,

λ̇ = λ
[
κ(π(u))A

( 1−ω
b

)1/η − δ − al − β − 1
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
,

u̇ = −u
[
r − κ(π(u))A

( 1−ω
b

)1/η + δ + ω
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
−u2 [κ(π(u)) − (1 − ω) + s] ,

ṡ = s
[
�
(
κ(π)A

( 1−ω
b

)1/η − δ
)

− κ(π)A
( 1−ω

b

)1/η + δ
]
.

(10)

we can observe that (ω̄2, λ̄2, ū2, s̄2) = (0, 0, 0, 0) is an equilibrium of System (10). The
latter is equivalent to the previous Bad equilibrium as it corresponds to collapsing wages and
employment, and exploding debt, and the absence of speculation.

Third, we study the former system’s counterpart to study for high level of speculation.
That implies the change of variable x = 1/s, so that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω̇ = ω
[(

η
1+η

)
[�(λ) − al ]

]
,

λ̇ = λ
[
κ(π(u))A

( 1−ω
b

)1/η − δ − al − β − 1
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
,

u̇ = −u
[
r − κ(π(u))A

( 1−ω
b

)1/η + δ + ω
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
−u2 (κ(π(u)) − (1 − ω) + 1/x) ,

ẋ = x
[
−�

(
κ(π(u))A

( 1−ω
b

)1/η − δ
)

+ κ(π(u))A
( 1−ω

b

)1/η − δ
]
.

(11)

It is not clear that (0, 0, 0, 0) could be an equilibrium of System (11) because of u2/x , we
therefore introduce the ratio v = s

d = u
x , leading to the system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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ω̇ = ω
[(

η
1+η

)
[�(λ) − al ]

]

λ̇ = λ
[
κ(π(v, x))A

( 1−ω
b

)1/η − δ − al − β − 1
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
v̇ = −v

[
r − �

(
κ(π(v, x))A

( 1−ω
b

)1/η − δ
)

+ ω
(1−ω)

(
1

1+η

)
[�(λ) − al ]

]
−v2 (xκ(π(v, x)) − x(1 − ω) + 1)

ẋ = x
[
−�

(
κ(π(v, x))A

( 1−ω
b

)1/η − δ
)

+ κ(π(v, x))A
( 1−ω

b

)1/η − δ
]
,

(12)

with π(v, x) = 1 − ω − r/vx . We observe that, under the same condition of Grasselli

and Costa-Lima [6], both (0, 0, 0, 0) and (0, 0, �
(
κ0A

( 1
b

)1/η − δ
)

− r , 0) are equilibria of

System (12). In terms of the original system, the equilibrium (0, 0, 0, 0) of system (12), is
the point

(ω̄3, λ̄3, d̄3, s̄3) = (0, 0,+∞,±∞)

where wages and employment are collapsing while debt and speculation become infinitely
large with debt that is growing faster than the speculation since in the case v → 0+ or at the

same pace for v → �
(
κ0A

( 1
b

)1/η − δ
)

− r .

5.2 Modified local stability

We first derive the Jacobian of System (9):

J (ω, λ, d, p) =

⎛
⎜⎜⎝J (ω, λ, d)

0
0
1

ζ1 0 ζ2 ζ3

⎞
⎟⎟⎠ ,

with

ζ1 = −p

(
� ′
(

κ(π)A

(
1 − ω

b

)1/η

− δ

)
− 1

)

[
κ ′(π)A

(
1 − ω

b

)1/η

+ 1

η
κ(π)A

(
1

b

)1/η

(1 − ω)1/η−1

]
,

ζ2 = −p

(
� ′
(

κ(π)A

(
1 − ω

b

)1/η

− δ

)
− 1

)
κ ′(π)A

(
1 − ω

b

)1/η

,

ζ3 = �

(
κ(π)A

(
1 − ω

b

)1/η

− δ

)
− κ(π)A

(
1 − ω

b

)1/η

+ δ.

Let suppose that p3(y) is the characteristic polynomial of the Jacobian J (ω1, λ1, d1) at the
Good equilibrium point. Therefore, the characteristic polynomial of the J (ω, λ, d, p) at the
point (ω1, λ1, d1, 0) is

p4(y) = p3(y)(ζ3 − y).

We previously numerically showed that the three-dimensional model under consideration
has roots of p3 that are negative. Assuming that the previous Good equilibrium’s growth
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rate of the economy holds, a necessary and sufficient condition for (ω1, λ1, d1, 0) to be
asymptotically locally stable is equivalent to

�(al + β) < al + β.

This founding is similar to Grasselli and Costa-Lima: the speculation can destabilize the
Good equilibrium as its growth is greater than the growth of the economy.

Furthermore, when evaluating the Jacobian matrix for the modified System (10) at the
equilibrium point (0, 0, 0, 0), one finds

J (0, 0, 0, 0) =

⎛
⎜⎜⎝

ι1 0 0 0
0 ι2 0 0
0 0 ι3 0
0 0 0 ι4

⎞
⎟⎟⎠ ,

with

ι1 = η

1 + η
(φ(0) − al) ,

ι2 = κ0A

(
1

b

)1/η

− (al + β + δ) − 1

η + 1
(φ(0) − al) ,

ι3 = κ0A

(
1

b

)1/η

− (r + δ),

ι4 = �(κ0A

(
1

b

)1/η

− δ) − κ0A

(
1

b

)1/η

+ δ.

Denoting the growth rate of the economy at infinite debt by

g0 = κ0A

(
1

b

)1/η

− δ,

we note that a condition for this equilibrium (ω̄2, λ̄2, ū2, p̄2) to be stable is

�(g0) < g0.

In other words, the speculation can have a destabilizing property on the Bad equilibrium
whenever the speculative component decreases faster than the growth rate of the economy.
Indeed, this mechanism would allow the debt-to-output ratio to stay at finite levels.

Finally, the Jacobian matrix of System (12) at the point (0, 0, 0, 0) reduces to

J (0, 0, 0, 0) =

⎛
⎜⎜⎝

ι1 0 0 0
0 ι2 0 0
0 0 �(g0) − r 0
0 0 0 −�(g0) + g0

⎞
⎟⎟⎠ ,

whereas at (0, 0, �
(
κ0A

( 1
b

)1/η − δ
)

− r , 0), with the additional assumption,

lim
x→+∞ xκ ′(−x) = 0,

we have

J (0, 0, �

(
κ0A

(
1

b

)1/η

−δ

)
−r , 0)=

⎛
⎜⎜⎝

ι1 0 0 0
0 ι2 0 0
0 0 −�(g0)+r −(�(g0) − r)2(κ0 − 1)
γ1 0 0 −�(g0) + g0

⎞
⎟⎟⎠ ,
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with

γ1 =
(

�

(
κ0A

(
1

b

)1/η

− δ

)
− r

)[
� ′
(

κ0A

(
1

b

)1/η

− δ

)[
−1

η

[
κ0A

(
1

b

)1/η
]

− 1

1 + η
(φ(0) − al)

]]
.

Therefore, provided that g0 < �(g0), and given that we assume ι1 < 0 and ι2 < 0, the
equilibrium (ω̄3, λ̄3, d̄3, p̄3) = (0, 0,+∞,±∞) is stable. As in Grasselli and Costa-Lima’s
paper, this equilibrium remains stable either �(g0) < r or �(g0) > r , the only difference
would be that the ratio, p/d , will be attracted by 0 instead of�(g0)−r . Either way, d → +∞
and p → +∞ are guaranteed since v remains positive.

5.3 Numerical study of the basins of attraction

This section reproduces the methodology in Sect. 4 for System (9).

5.3.1 The basins of attraction

Using the same calibration as in Sect. 4,we compare the results in terms of basins of attraction.
For compatibility with the previous exercise, we select four initial points of the speculation-
to-output ratio, s, and discuss the geometrical deformation (Fig. 12).

5.4 Sensitivity analysis

The sensitivity analysis follows the same methodology as in the previous section. We used a
quadri-dimensional grid of 320 for (ω, λ, d, s) ∈ [0.65; 0.95]×[0.7; 1]×[0; 3]×[0.01; 0.1].

Table 4 is the speculative augmentedmodel counterpart of Table 3. Similarly, the higher the
η is, the bigger the basin of attraction is.However, each entry ofTable 4 is strictly lower than its
counterpart. This shows the destabilizing effect of speculation in the economy. Interestingly,
the numerical simulations show different reaction of a change of parameter. Indeed, almost all
the changes lead to an opposite response compare to Table 3, to the exception of an increase
of the interest rate, r , in the Leontief case. A higher al , β, or δ decreases the volume of the
basin of attraction. For the case of δ, the result is not surprising. Indeed, an increase of δ will
have a direct impact on the economic growth driven by capital accumulation. Therefore, a
shrinking δ in a speculative economy implies less economic outcomes for potentially high
debt repayments. For the case of al , one can see from thewage share equation of System 9 that
an economy with a high al (comparatively to an economy with a low one) will steer wages
down and, thus, boost profits. This is likely to lead the economy towards a highly speculative
one and therefore potentially unstable. For the case of β, the channel would be slight different
from the one of al as the direct impact of the increase in the population growth rate is through
the employment rate, λ. As a result, the lowered employment rate likely decrease the wage
share and lead to the same narrative than for the previous case.

For the sake of illustration, Fig. 13 compares the trajectories of themodel with andwithout
speculation. As the initial condition of the speculation goes up, the debt-to-output rate shows
higher levels that potentially lead to unsustainable trajectories.
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Fig. 12 Projection of the basin of
attraction of the good equilibrium
for the Leontief production
technology on the hyperplane
(ω, λ, d, s = 0.1). Projections on
other values for s give similar
results: no visible convex set of
points in the good attractor given
the distance between points of the
grid. The good equilibrium point
is (ω, λ, d, s) =
(0.865, 0.972, 1.50, 0)

Table 4 Parameter sensitivity of basins of attraction: percentage of points from the simulation grid falling into
the basin of attraction of the Good equilibrium. Values are reported in percentages

Parameters Benchmark al r δ β

η
(
al , r , δ, β

) = (2, 4, 1, 1)
−
1

+
3

−
1

+
5

−
0.5

+
2

−
0

+
3

η = 0.5 42 41 26 25 43 41 43 42 6

η = 100 11 8 0 10 10 11 7 8 0

η = 1015 2 2 0 0 0 3 1 1 0

0 20 40 60 80 100

0
5

10
15

20

Time

Without speculation
Speculation: s0=0.1
Speculation: s0=0.75

d

Fig. 13 Trajectories of debt for different values of initial speculation and for (ω0, λ0, d0) = (0.85, 0.85, 1)

6 Conclusions and suggestions for further work

This paper presented multiple insights on how the class of CES production functions may
significantly alter the dynamical landscape of Keen’s model. The moderating effect induced
by the flexibility of the use of factors of production on the dynamics of the system is a
primary rationale of this paper’s model. Substitution allows to mitigate the influence of
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wages on employment rate (and vice versa), so that both adjust more rapidly towards their
equilibrium values. This result holds for speculative and nonspeculative economies.

Interestingly, numerical simulations showed that van der Ploeg’s extension plugged into
Keen’s model increases the set of points that converges towards the Good equilibrium. In
other words, given the same behavioral conditions, the volume of the basin of attraction of
the economically desirable equilibrium is greater for economies where some substitution
can take place. Therefore, an intermediate conclusion would be that substitution between
factors of production leads to the convergence of any reasonable initial condition towards the
Good equilibrium. Provided that substitution is strong enough (i.e. η < 0), it even ensures
that the Bad equilibrium is no longer stable. This conclusion is reinforced in the presence of
speculative schemes.

Furthermore, using numerical techniques, we showed that when substitution is allowed,
the change in the volume of the basin of attraction is globally less sensitive to a change of
parameters. Consequently, a model with CES function would be more suitable as a model
for estimation. Indeed, when using statistical methods, the exact inference of a parameter
is strongly unlikely. Thus, an economy endowed with CES production shows more robust
properties to cope with numerical errors of the type inherent to the statistical analysis or flaws
in the data. Additionally, realistic calibration of the model showed monotonic convergence
rather than dampened cycles. Since the emergence of business cycles is an empirical fact (at
least for some advanced economies), this inability to replicate business cycles under some
calibration either suggests that the Keen model relies on complementary factors or that the
phenomenological functions are not well calibrated.

This paper contributed to a growing body of work that has developed theoretical models
based on the Goodwin-Lotka-Volterra model. The methodology used in this paper may be
seen as a starting point for further analysis. We have tested the sensitivity of the model to
key parameters; another extension would be to test the robustness of the results with respect
to changes in the behavioral functions. These changes would presumably affect the vector
field of the system more substantially. Another natural extension might include testing the
properties of CES production function with three inputs (for instance by adding energy as
in Acurio [1]), two of which can be substituted with each other, while the third remains
complementary. This would shed light on possibilities for the recovery of endogenous cycles
in the model.

Adifferent sort of applicationwould involve droppingSay’s lawandmodeling the behavior
of the demand side. This would require either the introduction of the utilization rate of
capital or an allowance for inventories. Such an application has been made by Grasselli and
Nguyen-Huu [5], who showed that the economy does not converge towards an equilibrium
and exhibit limit cycles. This extension may be a way to reconcile the CES technology with
the endogenous cycle theory within the Goodwin framework. Furthermore, another way to
capture cycles in case of high sustainability between factors would be introduce money with
a Taylor rule. This extension may be able to cope with monetary cycles that in turn could
influence the real economy through that pattern.

In sum, we have seen that the basin of attraction changes substantially when substitution
is allowed. Here, we simply compared various models according to the volume of the basin
of attraction associated with each equilibrium. An alternative viewpoint would consist of
measuring the “strength” with which an equilibrium is attracting the economy. This could
be achieved, e.g., by relying on the Freı̆dlin-Wentzell theory (see Freı̆dlin and Wentzell [2]).
Converting the model into stochastic differential equations by adding a Brownian motion
would allow for the study of the probability that a given sample path will remain far from an
equilibrium. In otherwords,wewould be able to compute the probability that the system shifts

123



382 Mathematics and Financial Economics (2019) 13:359–391

from the basin of attraction of the Good equilibrium to the Bad equilibrium. An expected
result would be that the probability of straying out of the Good equilibrium is lower when
substitution is higher. The stochastic model would also–through Malliavin calculus–allow
for a sensibility test and would help to develop a sturdy understanding of the sensitivity of
the model to a change of parameter. This research may strengthen the conclusion of the paper
concerning the capability of CES technology to cope with a change of parameter.

Two final extentions are worth considering. First, one might study the structural stability
of the dynamical system of each model (CES versus Leontief) in order to test whether the
qualitative behavior of the trajectories is affected by A1-small perturbations. Second, one
might analyze possible Hopf bifurcation after introducing lags in the Phillips curve (or in the
capital accumulation equation). This change transforms the system from ordinary differential
equations to delay differential equations.

Appendices

A Getting the reduced form of the system

We assume that the productive sector is endowed with CES technology so that

Y = A
[
bK−η + (1 − b)(eal t L)−η

]− 1
η . (13)

Additionally, we make the assumption that wages are set at marginal rate of productivity, so
that:

∂Y

∂L
= w.

For simplicity, we define Le := eal t L , so that the following relationship holds

∂Y

∂Le
= ∂Y

∂L
e−al t . (14)

By using Eqs. (13) and (14)

∂Y

∂Le
= (1 − b)

Aη

(
Y

Le

)1+η

.

By taking the derivative of (13) and using (14)

(
ω

1 − b

) 1
η

A = Y

Le

⇔
(

ω

1 − b

) 1
η

Aeal t = Y

L
(15)

with ω, the share of total real wages (W := wL) in the production:

ω := wL

Y
.

Let a := Y/L be the labor productivity, one has ω = w/a. The growth rate of the wage share
is given by

ω̇

ω
= ẇ

w
− ȧ

a
.
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Using Eq. (15), one gets the following growth rate for labor productivity

ȧ

a
= 1

η

ω̇

ω
+ al .

Suppose that the growth rate of wages is given by a short-term Phillips Curve

ẇ

w
= �(λ).

The dynamic of the wage share is given by

ω̇

ω
=
(

η

1 + η

)
[�(λ) − al ] .

The population grows according to

Ṅ

N
= β ≥ 0.

The employment rate is defined by λ := L
N , while the capital-output ratio is given by ν := K

Y .
Hence, the employment rate dynamic

λ̇

λ
= L̇

L
− Ṅ

N

= K̇

K
− ȧ

a
− ν̇

ν
− Ṅ

N
.

The profit share in the production is given by

π := 1 − ω − rd,

where r is the short-term interest rate set by the central bank, and paid by producers, while
d is the ratio of real debt-to-production (i.e D

Y ). The capital accumulation is given by

K̇ = κ(π)Y − δK ,

K̇

K
= κ(π)

ν
− δ

where δ is the depreciation rate of capital, κ(π) is a function of the profit share, and ν is
the time-varying capital-to-output ratio. From the expression of ∂Y

∂K and knowing that Y is
homogeneous of degree one, we obtain

ν =
(
1 − ω

b

)− 1
η 1

A
.

Its growth rate is given by

ν̇

ν
= ω̇

(1 − ω)η
.

Therefore, the growth rate of employment is

λ̇

λ
= κ(π)A

(
1 − ω

b

)1/η

− δ − al − β − 1

η(1 − ω)

ω̇

ω
.

123



384 Mathematics and Financial Economics (2019) 13:359–391

The debt dynamic is the difference between investment and the profits made by the corporate
sector, in other words

Ḋ = κ(π)Y − (π)Y .

The growth rate of production is given by

g := Ẏ

Y
= κ(π)A

(
1 − ω

b

)1/η

− δ − ω̇

(1 − ω)η
.

Thus, the ratio of real debt on production is

ḋ

d
= Ḋ

D
− Ẏ

Y
= κ(π) − π

d
− κ(π)A

(
1 − ω

b

)1/η

+ δ + ω̇

(1 − ω)η
.

Hence, its dynamic is

ḋ = d

{
r − κ(π)A

(
1 − ω

b

)1/η

+ δ + ω̇

(1 − ω)η

}
+ κ(π) − (1 − ω) .

To wrap up, and for the sake of clarity, the tree-dimensional system is
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω̇ = ω
[(

η
1+η

)
[�(λ) − al ]

]

λ̇ = λ
[
κ(π)A

( 1−ω
b

)1/η − δ − al − β − 1
η(1−ω)

ω̇
ω

]

ḋ = d
[
r − κ(π)A

( 1−ω
b

)1/η + δ + ω̇
(1−ω)η

]
+ κ(π) − (1 − ω)

B Parameter values

See Fig. 14.
The calibration is almost entirely borrowed from Keen [9] to the exception of the spec-

ulation function that is borrowed from Grasselli and Costa-Lima [6]. The time frequency
between t and t + 1 is considered to be one year.

The same generalized exponential function is used for both the relationship between
investment as a share of output, and the short term Phillips Curve

�(λ, φ0, φ1, φ2) = �(λ) = φ0 + φ1 ∗ eφ2∗λ).

Figure 15 displays the behaviors of the phenomenological functions using the calibration
given by Table 5.

C Proofs for Propositions 1 and 2

Proposition 1 The Good equilibrium exists if κ
(
1 − r

r−al−β
(1 − ζ1 (0))

)
< ζ1 (0).

Proof The right hand side of Eq. (3) is a function of ω1 that equals 0 at ω1 = 1

and ζ1 (0) = al+β+δ
A b

1
η at 0; while the left hand side equals κ0 for ω1 = 1 and

κ
(
1 − r

r−al−β
(1 − ζ1 (0))

)
for ω1 = 0. Since both sides are continuous function of ω,

it suffices that κ
(
1 − r

r−al−β
(1 − ζ1 (0))

)
< ζ1 (0) to ensure the existence of the Good
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Fig. 14 Phenomenological functions behaviors according to the parameters in Table 5
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Fig. 15 Phenomenological functions behaviors according to the parameters in Table 5

Table 5 Calibration for the numerical estimations

Variable or parameter Description Value

al Rate of the labor productivity growth 2%

β Rate of population growth 1%

δ Depreciation rate of capital 1%

�(λ, − 0.01, 2.35 ∗ 10−23, 50) Parameters for the nonlinear Phillips curve

κ(π, 0.05, 0.05, 1.75, 0) Parameters for the investment function

r Interest rate paid by the productive sector 4%

η Control the elasticity of substitution ≈ 0; 1;+∞
A The factor productivity 1/3

b The share of capital in the production function 1 − 0.865 = 0.135

�(x) = − 0.25 + 0.25e−0.36+12x The speculation function
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Table 6 The numerical eigenvalues of all the models at their Good equilibrium point (ω1, λ1, d1)

Value of η Eigen. 1. Eigen. 2. Eigen. 3.

1015 − 0.022 + 1.33i − 0.022 − 1.33i −0.030

100 − 0.075 + 1.33i − 0.075 − 1.33i −0.030

0.1 −9.69 −0.162 −0.037

− 1/2 − 0.0498 + 0.023i − 0.0498 − 0.023i − 21.575

Table 7 The numerical
eigenvalues of all the models at
their Trivial equilibrium point
(ω̄3, λ̄3, d̄3)

Value of η Eigen. 1. Eigen. 2. Eigen. 3.

1015 6.8e+10 −6.88+10 −0.03

100 0.05 −0.04 −0.03

0.1 0.074 −0.012 −0.003

− 1/2 0.03 0.02 1.69e−08

equilibrium. As η > 0, 1 − r
r−al−β

(1 − ζ1 (0)) is often negative
(
it is negative as long as

al+β+δ
A > 1

1−ζ1(0)

)
, so that κ0 < ζ1 (0) ensures the existence of the equilibrium (because κ

is increasing).20 As ζ1 (0) ∈
[
0; al+β+δ

A

]
in this case, assuming e.g. κ (0) = 0 is a sufficient

condition for the existence of the Good equilibrium.

Proposition 2 ω1 is positive if
(

Aζ1
al+β+δ

)η

> b.

Proof As Eq. (3) rewrites ω1 = 1 − b
(

Aζ1
al+β+δ

)−η

, one just needs that
(

Aζ1
al+β+δ

)η

> b to

ensure a positive ω1. As η > 0, this is equivalent to ζ1 being above al+β+δ
A b

1
η .21 Hence, as

long as the image of κ is entirely on the right side of this value, ω1 is positive. �

DNumerical results for the stability of equilibrium

Table 6 displays the numerical eigenvalues of the Jacobian at the Good equilibrium point,
where (ω1, λ1, d1) are all finite. Remember, to be locally stable, the Jacobian matrix at this
equilibrium point has to be negative definite. This would mean that the eigenvalues are all
non-positive. In this exercise, they all show local stability at the Good equilibrium value.22

For the sake of completeness, Tables 7 and 8 show respectively the eigenvalues of the
Trivial and the Slavery equilibria. We observe that, as expected, non of these trials display a
local stability for that equilibrium point.

20 For η < 0, ζ1 (0) takes high values (often above 1), so that the previous inequality holds.
21 This equivalence would be the opposite for a negative value of η.
22 In the simulation, the value 0 would lead to numerical errors, therefore we choose the value 0.1 as the
lowest value that does not show numerical error. Similarly, +∞ has been approached by 1015 to show the
behavior of the the model near the Leontief case.
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Table 8 The numerical
eigenvalues of all the models at
the slavery equilibrium point
(ω̄2, λ̄2, d̄2)

Value of η Eigen. 1. Eigen. 2. Eigen. 3.

1015 0.05 − 0.04 − 0.03

100 0.05 −0.04 −0.03

0.1 1.27 −0.52 −0.002

− 1/2 −0.88 0.021 −0.0016

Table 9 The numerical
eigenvalues of all the models at
their Bad equilibrium point
(ω3, λ3, d3)

Value of η Eigen. 1. Eigen. 2. Eigen. 3.

1015 −0.03 −0.04 −0.05

100 −0.03 −0.04 −0.05

0.1 −0.003 −0.01 −0.05

− 1/2 0.03 0.02 −0.05

The eigenvalues of the Bad equilibrium are shown in Table 9 and confirm that, whenever
η ∈] − 1; 0[, the only stable equilibrium that may be asymptotically globally stable is the
good.

E Existence of the slavery equilibrium

Let us take the last two equations of the main system when ω → 0.

λ̇ � λ

[
κ (1 − rd) Ab− 1

η − �(λ) − al
1 + η

− (δ + al + β)

]
(16)

ḋ � d

(
r − κ (1 − rd) Ab− 1

η + δ + ω
� (λ) − al

1 + η

)
+ κ (1 − rd) − 1 (17)

At the equilibrium, whenever λ > 0, one finds, by injecting 16 into 17:

0 � d
(
r − κ (1 − rd) Ab− 1

η + δ + ω
(
κ (1 − rd) Ab− 1

η − δ − al − β
))

+ κ (1 − rd) − 1

As κ is bounded, one can neglect the term in ω. Defining s = Ab− 1
η , e = r + δ > 0 and

z (d) = −κ (1 − rd) ∈ [−1; 0] one thus obtains
d (sz (d) + e) = 1 + z (d) ∈ [0; 1]

If s < e, the left hand side is a continuous and non-negative function of d which passes
through the origin and is equivalent to d (e − sκ0) at+∞. Hence, the equation has a solution
and s < e is a sufficient condition for the existence of a Slavery equilibrium.

For η < 0, s converges decreasingly towards 0when η tends to 0, so there exists an interval
] − ηmin; 0[ within which the existence of the equilibrium is insured.

Note that for η > 0, as b < 1, s decreases with η and converges towards A, so that if there
is a substitutability η0 such that sη0 < e = r + δ, the existence of the Slavery equilibrium
is insured below this substitutability (for η > η0). That being said, for the benchmark
specification, this inequality does not hold. One can then derive a less restrictive sufficient

condition: e − sκ0 > 0. Finally, if κ0 < b
1
η (r+δ)/A, a Slavery equilibrium exists (with an

equilibrium value for the debt potentially very high). For our benchmark specification with
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η = 1 (resp. η = ∞, resp. η = −0.5), it suffices that κ0 < 0.02 (resp. κ0 < 0.15, resp.
κ0 < 8.2) for the equilibrium to exist.

F Getting the reduced form of the systemwith Cobb–Douglas production function

We assume that the productive sector is endowed with a constant return to scale Cobb–
Douglas technology so that

Y = A
[
Kb(eal t L)(1−b)

]
. (18)

Additionally, we make, as previously, the assumption that wages are set at marginal rate of
productivity, so that:

∂Y

∂L
= w.

For simplicity, we define Le := eal t L , so that the following relationship holds

∂Y

∂Le
= ∂Y

∂L
e−al t . (19)

By using Eqs. (18) and (19)

∂Y

∂Le
= (1 − b)

(
Y

Le

)
.

By taking the derivative of (13) and using (14)

ω = (1 − b) (20)

with ω, the share of total real wages (W := wL) in the production:

ω := wL

Y
.

Let a := Y/L be the labor productivity, one has ω = w/a. The growth rate of the wage share
is given by

ω̇

ω
= ẇ

w
− ȧ

a
.

Using Eq. (20), one gets the following growth rate for labor productivity

ȧ

a
= ẇ

w
.

Suppose that the growth rate of wages is given by a short-term Phillips Curve

ẇ

w
= �(λ).
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The dynamic of the wage share is given by

ω̇

ω
= 0 .

The population grows according to

Ṅ

N
= β ≥ 0.

The employment rate is defined by λ := L
N , while the capital-output ratio is given by ν := K

Y .
Hence, the employment rate dynamic

λ̇

λ
= L̇

L
− Ṅ

N

= K̇

K
− ȧ

a
− ν̇

ν
− Ṅ

N
.

The profit share in the production is given by

π := 1 − ω − rd,

= b − rd

where r is the short-term interest rate set by the central bank, and paid by producers, while
d is the ratio of real debt-to-production (i.e D

Y ). The capital accumulation is given by

K̇ = κ(π)Y − δK ,

K̇

K
= κ(π)

ν
− δ

where δ is the depreciation rate of capital, κ(π) is a function of the profit share, and ν is
the time-varying capital-to-output ratio. By dividing Eq. 18, by the output, Y , we are able to
obtain

ν =
(
1

A

)1/b ( a

eal t

) 1−b
b

.

Its growth rate is given by

ν̇

ν
= 1 − b

b
(�(λ) − al) .

Therefore, the growth rate of employment is

λ̇

λ
= κ(π)

ν
− δ − �(λ) − β − 1 − b

b
(�(λ) − al) .

The debt dynamic is the difference between investment and the profits made by the corporate
sector, in other words

Ḋ = κ(π)Y − (π)Y .

The growth rate of production is given by

g := Ẏ

Y
= κ(π)

ν
− δ − 1 − b

b
(�(λ) − al) .
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Thus, the ratio of real debt on production is

ḋ

d
= Ḋ

D
− Ẏ

Y
= κ(π) − π

d
− κ(π)

ν
+ δ + 1 − b

b
(�(λ) − al) .

Hence, its dynamic is

ḋ = d

{
r − κ(π)

ν
+ δ + 1 − b

b
(�(λ) − al)

}
+ κ(π) − b .

To wrap up, and for the sake of clarity, the three-dimensional system is⎧⎪⎪⎨
⎪⎪⎩

ν̇ = ν
( 1−b

b [�(λ) − al ]
)

λ̇ = λ
[

κ(π)
ν

− δ − �(λ) − β − 1−b
b (�(λ) − al)

]
ḋ = d

{
r − κ(π)

ν
+ δ + 1−b

b (�(λ) − al)
}

+ κ(π) − b
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