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Abstract
This paper studies an optimal investment and risk control problem for an insurer with default
contagion and regime-switching. The insurer in our model allocates his/her wealth across
multi-namedefaultable stocks and a riskless bondunder regime-switching risk.Default events
have an impact on the distress state of the surviving stocks in the portfolio. The aim of the
insurer is to maximize the expected utility of the terminal wealth by selecting optimal invest-
ment and risk control strategies. We characterize the optimal trading strategy of defaultable
stocks and risk control for the insurer. By developing a truncation technique, we analyze
the existence and uniqueness of global (classical) solutions to the recursive HJB system. We
prove the verification theorem based on the (classical) solutions of the recursive HJB system.

Keywords Optimal investment · Default contagion · Regime-switching · Recursive
dynamical system

Mathematics Subject Classifications 3E20 · 60J20

1 Introduction

Since the seminal works of Merton [15,16], portfolio optimization problems have been the
subject of considerable investigations. In recent years, the hybrid diffusion models have
received a considerable amount of attention from both researchers and practitioners. In par-
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ticular, the regime-switching model (as a class of hybrid models) is usually proposed to
capture the influence on the behavior of the market caused by transitions in the macroeco-
nomic system or the macroscopic readjustment and regulation. Zhang and Zhou [20] study
the valuation of stock loan in which the underlying stock price is modeled as a Markov
modulated geometric Brownian motion using a two-state hidden Markov chain. Elliott et al.
[10] consider the pricing of options under a generalized Markov modulated jump diffusion
model. Capponi et al. [8] obtain a Poisson series representation for the arbitrage-free price
process of vulnerable contingent claims in a market driven by an underlying continuous-time
Markov chain. Apart from the classical Merton’s model of utility maximization on termi-
nal wealth, there has been an increasing consideration of different stochastic control criteria
for portfolio management in recent years. Zhou and Yin [21] study the Markowitz’s mean-
variance portfolio selection with regime-switching in a continuous time model. Elliott and
Siu [9] investigate an optimal portfolio selection problem in a Markov modulated Black–
Scholes market when an economic agent faces model uncertainty. Shen and Siu [18] discuss
a consumption-portfolio optimization problem in a hidden Markov modulated asset price
model with multiple risky assets under the situation that an economic agent only has access
to information about the price processes of risky shares. Andruszkiewicz, et al. [1] consider
a risk-sensitive investment problem under a jump diffusion regime-switching market model.

The objective of this paper is to consider an analytical framework for the portfolio allo-
cation and risk control of an insurer, which explicitly accounts for the interaction between
regime-switching and credit risk. These two sources of risk have been identified as tightly
linked in empirical research, see, for example, Campbell and Taksler [6]. For pricing, models
accounting for the dependence of default intensities on asset volatilities have been proposed
byCarr andLinetsky [5], Carr andWu [4], and extended to amulti-name context byMendoza-
Arriaga and Linetsky [14]. We propose a model in which switching regimes, capturing the
state or modes of the underlying credit market, drive both volatility and default risk of the
risky asset price processes. Moreover, the total risk controlled by liabilities of the insurer is
driven by the switching regimes and the credit states of the portfolio. Zou and Cadenillas
[22] consider an optimal investment and risk control problem with a single default-free asset.
The case with multiple default-free assets and regime-switching is extended by Zou and
Cadenillas [23]. More recently, Peng and Wang [17] study the optimal investment strategy
and risk control for an insurer who has some inside information on the insurance business.
Bo and Wang [3] focus on an optimal investment and risk control problem for an insurer
under stochastic diffusive factors.

We incorporate the interaction between regime-switching and default contagion risk into
the risk controlmodel. Differently from the default-free case, default events have an impact on
the distress state of the surviving stocks in the portfolio. Since defaults can occur sequentially,
the default intensities of the surviving names are affected by the default events of other stocks
in the portfolio. Hence, the HJB system associated with the stochastic control problem is
recursive in terms of default states of the portfolio. The depth of the recursion equals the
number of stocks in the portfolio. We analyze the HJB equation and the constrained equation
satisfiedby the optimal strategyof stocks using a backward recursion.The recursive procedure
starts from the state in which all stocks are defaulted and regresses toward the state in which
all stocks are alive. Since the policy space of our control problem is not assumed to be
compact, the main difficulty in the analysis of solutions to this coupled system lies in the
general default state and the non-Lipschitz nonlinearities of the system. Andruszkiewicz,
et al. [1] deal with a risk-sensitive investment problem in a finite-factor model under a
compact policy space. The existence and uniqueness of solutions to their HJB equation can
be established by verifying the globally Lipschitz-continuous coefficients. We prove in this
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paper that the nonlinearities of the coupled system are Lipschitz-continuous only when the
variable corresponding to the solution is not close to zero (see Lemma 4.3). This suggests
developing a truncation technique such that the truncated nonlinearity in the system is globally
Lipschitz-continuous and considering an approximation of the truncated recursive coupled
systems. For this purpose, we establish a key comparison result (see Lemma 4.4) for two
coupled monotone dynamical systems. We refer the reader to Smith [19] for the definition of
monotone dynamical systems. In order to construct the limit of the approximating truncated
systems, we prove that the approximating systems admit a uniform (strictly positive) lower
bound, and then this limit can be verified to be the unique global solution of our recursive
HJB system (see Theorem 4.5).

The rest of the paper is organized as follows. Section 2 introduces the market model with
regime-switching and credit risk interaction. Section 3 formulates the dynamic optimization
problem for an insurer and derives the recursiveHJB system. Section 4 analyzes the (classical)
solutions of the recursive HJB system. The optimal investment and risk control strategies are
characterized in the same section. A verification theorem is also proved in the same section.
Section 5 develops a numerical analysis. Additional technical proofs are provided in the
“Appendix”.

2 Themodel

We consider a financial market consisting of n ≥ 1 defaultable stocks and a risk-free money
market account. Let (�,G,G,P) be a complete filtered probability space, where the global
filtrationG := F∨Z1∨Z2 is augmented by allP-null sets so as to satisfy the usual conditions.
Let T > 0 be the finite target horizon. The filtration F := (Ft )t∈[0,T ], where Ft is the sigma-
algebra generated by independent multi-dimensional standard Brownian motions denoted by
W := (Wj (t); j = 1, . . . , d)�t∈[0,T ], W̄ := (W̄ j (t); j = 1, . . . , d̄)�t∈[0,T ] and a regime-

switching process Y := (Y (t))t∈[0,T ] introduced below. Here d, d̄ ≥ 1 and we use � to
denote the transpose operator. We next specify the filtrations Z1 and Z2. The default state is
described by an n-dimensional default indicator process Z := (Z j (t); j = 1, . . . , n)t∈[0,T ]
which takes values on S := {0, 1}n . For j = 1, . . . , n, the default time of the j-th stock is
given by

τ j := inf{t ≥ 0; Z j (t) = 1}. (1)

ThefiltrationZ1 := (Z1t )t∈[0,T ], where the sigma-algebraZ1t :=∨n
j=1 σ(Z j (s); s ≤ t).

HenceZ1 contains all information about default events until the target horizonT . Thefiltration
Z2 := (Z2t )t∈[0,T ] where the sigma-algebra Z2t := σ((Ni,z(s), (i, z) ∈ {1, . . . ,m} ×
S); s ≤ t). Here Ni,z := (Ni,z(t))t∈[0,T ] for (i, z) ∈ {1, . . . ,m} × S are independent
Poisson processes with respective intensities ν(i, z) > 0, which will be used to model the
risk control process of an insurer introduced in (6) and (7) below. Our model consists of
four blocks: the regime-switching process, the credit model, the price processes and the risk
process for an insurer. Each of these blocks will be detailed in the sequel.
Regime-switching process. The regime-switching process Y here is described as a
continuous-time (conservative) Markov chain with state space {1, . . . ,m} where m ≥ 1,
which is independent of the multi-dimensional Brownian motions (W , W̄ ). The generator of
the Markov chain Y is given by an m × m-dimensional matrix Q := (qi j )m×m . This yields
that qii ≤ 0 for i ∈ {1, . . . ,m}, qi j ≥ 0 for i �= j , and

∑m
j=1 qi j = 0 for i ∈ {1, . . . ,m}

(i.e.,
∑

j �=i qi j = −qii for i ∈ {1, . . . ,m}).
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Credit risk model. The joint process (Y , Z) of the regime-switching process and the
default indicator process is a joint Markov process with state space {1, . . . ,m} × S. More-
over, at any time t ∈ [0, T ], the default indicator process transits from a state Z(t) :=
(Z1(t), . . . , Z j−1(t), Z j (t), Z j+1(t), . . . , Zn(t)) in which the stock j is alive (Z j (t) = 0) to
the neighbour state Z j (t) := (Z1(t), . . . , Z j−1(t), 1− Z j (t), Z j+1(t), . . . , Zn(t)) in which
the stock j has defaulted at a stochastic rate 1Z j (t)=0h j (Y (t), Z(t)). Here h j (i, z) > 0 for
all (i, z) ∈ {1, . . . ,m} × S. We assume that Y (t), Z1(t), . . . , Zn(t) will not jump simul-
taneously almost surely. Consequently, the default intensity of the j-th stock may change
either if any other stock in the portfolio defaults (contagion effect), or if there are regime-
switchings (market risk effect). Our default model thus belongs to the rich class of interacting
intensity models, introduced by Frey and Backhaus [11] (see also the interacting default
intensity model with diffusive factors introduced in Birge, et al. [2]). Hereafter, we set
h(i, z) := (h j (i, z); j = 1, . . . , n)� for (i, z) ∈ {1, . . . ,m} × S.
Price processes The vector of the price processes of the n defaultable stocks is denoted by
S̃ := (S̃ j (t); j = 1, . . . , n)�t∈[0,T ]. For t ∈ [0, T ], the price process of the j-th defaultable
stock is given by

S̃ j (t) = (1 − Z j (t))S j (t), j = 1, . . . , n. (2)

In other words, the price of the j-th stock is given by the predefault price S j (t) up to τ j−, and
jumps to 0 at time τ j , where it remains forever afterwards. The dynamics of the pre-default
price process S := (S j (t); j = 1, . . . , n)�t∈[0,T ] of the n defaultable stocks is given by

dS(t) = diag(S(t))[(μ(Y (t)) + h(Y (t), Z(t)))dt + σ(Y (t))dW (t)]. (3)

Above, diag(S(t)) is the diagonal n × n-dimensional matrix with diagonal elements S j (t)
for j = 1, . . . , n. For each i ∈ {1, . . . ,m}, the vector μ(i) is Rn-valued, and σ(i) is an
Rn×d -valued matrix such that σ(i)σ (i)� is positive definite. Equation (3) indicates that the
investor holding the credit sensitive security is compensated for the incurred default risk at
the premium rate h(Y (t), Z(t)). Using Eqs. (2), (3) and integration by parts, the dynamics
of the defaultable stock prices can be given by

d S̃(t) = diag(S̃(t))[μ(Y (t))dt + σ(Y (t))dW (t) − dM(t)], (4)

where M := (Mj (t); j = 1, . . . , n)�t∈[0,T ] is a pure jump P-martingale given by

Mj (t) := Z j (t) −
∫ t∧τ j

0
h j (Y (s), Z(s))ds, t ∈ [0, T ]. (5)

Risk control process For the risk control process, denote by η(t) the G-predictable total
outstanding number of policies (liabilities) at time t . The riskmodel for claims is described as
an extensive Cramér-Lundberg model, in which the claim (risk) per policyC = (C(t))t∈[0,T ]
is given by the following dynamics

dC(t) = c(Y (t))dt + φ(Y (t))dW (t) + φ̄(Y (t))dW̄ (t) + g(Y (t−))dN (t), (6)

where, for each i = 1, . . . ,m, the volatilities φ(i) and φ̄(i) are respectively d-dimensional
and d̄-dimensional nonzero row vectors, the drift c(i) ∈ R, and the positive jump size
(claim size) g(i) ∈ R+ := (0,∞). Here, the jump process N := (N (t))t∈[0,T ] is a Markov
modulated Poisson process with positive intensity process given by (ν(Y (t), Z(t)))t∈[0,T ].
For t ∈ [0, T ], the process N (t) represents the number of claims occurring in time interval
[0, t]. More precisely, we can rewrite N (t) as
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N (t) =
∑

(i,z)∈{1,...,m}×S

∫ t

0
1Y (s−)=i,Z(s−)=zdNi,z(s). (7)

We recall that for (i, z) ∈ {1, . . . ,m} × S, Ni,z = (Ni,z(t))t∈[0,T ] are independent Poisson
processes with respective intensities ν(i, z), and moreover they are also independent of the
random processes (W , W̄ , Y ). Then, we have that, for t ∈ [0, T ],

Ñ (t) := N (t) −
∑

(i,z)∈{1,...,m}×S

∫ t

0
1Y (s)=i,Z(s)=zν(i, z)ds = N (t) −

∫ t

0
ν(Y (s), Z(s))ds

(8)

is aP-martingale. An example of insurance product whose arrival intensity of claims depends
on the default states of stocks and the regimes of the economy is so-called Trade Credit
Insurance (see, e.g., Jones [13]). Trade Credit Insurance protects a supplier from the risk of
buyer’s non-payment. The supplier delivers unpaid goods or services to the buyer and allows
a deferred payment from the buyer. To ensure the payment, the supplier purchases trade
credit insurance products. In exchange for the premia, the insurer covers the payment if the
buyer defaults. This implies that claims arrive when the buyer fails to pay the suppliers due
to credit risk such as protracted default, insolvency, and bankruptcy, etc. Consequently, the
probability of buyer’s default is correlated with the default states of stocks and the regimes
of the economy.

The diffusive term c(Y (t))dt +φ(Y (t))dW (t)+ φ̄(Y (t))dW̄ (t) in (6) models the fluctua-
tions in the value of the claim per policy. From Eqs. (4) and (6), it can be seen that apart from
the risk (pure jump) model for the claims, the claim (risk) per policy C(t) is also driven by
an idiosyncratic source of risk W̄ and has the common source of risk W with the defaultable
stock prices S̃(t). Thus, by Zou and Cadenillas [22], the total risk of the insurer in our case
can be described as

dRη(t) = η(t)dC(t). (9)

The forthcoming section will formulate the dynamic optimization problem for an insurer and
formally derive the recursive HJB system using the dynamic programming principle.

3 Dynamic optimization for an insurer

In this section, we formulate the optimal investment and risk control problem for an insurer
and derive the recursive HJB system accordingly. For this reason, for j = 1, . . . , n, let π̃ j (t)
be theG-predictable fraction strategy for the j-th defaultable stock at time t . We assume that
the insurer will not invest in the stock once it has defaulted. Then 1− π̃(t)�e�

n is the fraction
strategy for the risk-free money market account at time t . The dynamics of the money market
account B(t) is given by dB(t) = r(Y (t))B(t)dt , where the regime-switching interest rate
r(i) > 0 for i = 1, . . . ,m. Here π̃(t) := (π̃ j (t); j = 1, . . . , n)� and en denotes the
n-dimensional row vector whose all entities are ones.

We assume that the average premium per liability for the insurer is p(Y (t), Z(t)) (i.e., it
depends not only on the macro-economy, but also on the default state of the portfolio), then
the price of the insurance risk satisfies the dynamics dP(t) = p(Y (t), Z(t))dt − dC(t).
The insurer is in fact able to trade this risk process by selling insurance products and ceding
part or all of his/her business to reinsurers. Recall that η(t) stands for the G-predictable
total outstanding number of policies (liabilities) at time t introduced in Sect. 2. Let X π̃ ,l̃(t)
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represent the time-t wealth level corresponding to the strategy (π̃ , l̃), then the self-financing
condition yields that

dX π̃ ,l̃(t)

X π̃ ,l̃(t−)
= π̃(t)�diag(S̃(t−))−1d S̃(t) + (1 − π̃(t)�e�

n

)dB(t)

B(t)
+ l̃(t)dP(t) (10)

= π̃(t)�diag(S̃(t−))−1d S̃(t) + (1 − π̃(t)�e�
n

)dB(t)

B(t)
+ p(Y (t), Z(t))l̃(t)dt − dRl̃(t),

where l̃(t) is the ratio of liabilities over wealth at time t . By virtue of the dynamics (9), it
holds that

dRl̃(t) = l̃(t)
{
c(Y (t))dt + φ(Y (t))dW (t) + φ̄(Y (t))dW̄ (t) + g(Y (t−))dN (t)

}
. (11)

Using Eqs. (10) and (11), the wealth process of the insurer can be rewritten as

dX π̃ ,l̃(t)

X π̃ ,l̃(t−)
=[r(Y (t)) + π̃(t)�(μ(Y (t)) − r(Y (t))e�

n ) + l̃(t)(p(Y (t), Z(t)) − c(Y (t)))
]
dt

+ [π̃(t)�σ(Y (t)) − l̃(t)φ(Y (t))
]
dW (t) − l̃(t)φ̄(Y (t))dW̄ (t)

− π̃(t)�dM(t) − l̃(t)g(Y (t−))dN (t). (12)

We next give the definition of the admissible control set which will be used in the paper.

Definition 3.1 The admissible control set Ũ is a class of G-predictable feedback strategies
(π̃(t), l̃(t))t∈[0,T ] := ((π̃ j (t); j = 1, . . . , n)�, l̃(t))t∈[0,T ], given by the Markov control

π̃ j (t) := π j (t, X π̃ ,l̃(t−), Y (t−), Z(t−)) for j = 1, . . . , n, and the nonnegative Markov

control l̃(t) := l(t, X π̃ ,l̃(t−), Y (t−), Z(t−)) such that the wealth process X π̃ ,l̃(t) of the
insurer is nonnegative for all t ∈ [0, T ]. Moreover π̃ j (t) = π̃ j (t)(1 − Z j (t−)) for j =
1, . . . , n, and the feedback control function π j , j = 1, . . . , n and l are assumed to be locally
bounded. We use U to denote the set of the above feedback functions (π, l) := ((π j ; j =
1, . . . , n)�, l).

For x ∈ R+, letU (x) := 1
γ
xγ with γ ∈ (0, 1) be the power (CRRA) utility. We consider

the following expected utility maximization problem from terminal wealth of the insurer
given by, for (t, x, i, z) ∈ [0, T ] × R+ × {1, . . . ,m} × S,

V (t, x, i, z) := sup
(π̃,l̃)∈Ũ

E

[
U (X π̃ ,l̃(T ))

∣
∣X π̃ ,l̃(t) = x, Y (t) = i, Z(t) = z

]
. (13)
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Suppose that V is C1,2 in (t, x) ∈ [0, T ] × R+ for each (i, z) ∈ {1, . . . ,m} × S. Then,
Itô’s formula yields that

dV (t, X π̃ ,l̃ (t), Y (t), Z(t))

=
{

∂V

∂t
+ X π̃ ,l̃ (t)

∂V

∂x

[
r(Y (t)) + π̃(t)�θ(Y (t), Z(t)) + l̃(t)(p(Y (t), Z(t)) − c(Y (t)))

]

+ 1

2
(X π̃ ,l̃ (t))2

∂2V

∂x2
[
π̃(t)�σ(Y (t))σ (Y (t))�π̃(t) + (l̃(t))2(φ(Yt )φ(Yt )

� + φ̄(Y (t))φ̄(Y (t))�)

− 2l̃(t)π̃(t)�σ(Y (t))φ(Y (t))�
]
}

dt

+ X π̃ ,l̃ (t)
∂V

∂x

{[
π̃(t)�σ(Y (t)) − l̃(t)φ(Y (t))]dW (t) − l̃(t)φ̄(Y (t))dW̄ (t)

}

+ [V (t, X π̃ ,l̃ (t−)− l̃(t)X π̃ ,l̃ (t−)g(Y (t−)), Y (t−), Z(t−))−V (t, X π̃ ,l̃ (t−), Y (t−), Z(t−))
]
dN (t)

+
n∑

j=1

[
V (t, X π̃ ,l̃ (t−) − π̃ j (t)X

π̃ ,l̃ (t−), Y (t−), Z j (t−)) − V (t, X π̃ ,l̃ (t−), Y (t−), Z(t−))
]
dZ j (t)

+
∑

j �=Y (t−)

[V (t, X π̃ ,l̃ (t−), j, Z(t−)) − V (t, X π̃ ,l̃ (t−), Y (t−), Z(t−))
]
dHY (t−), j (t). (14)

Here, the coefficient θ(i, z) := μ(i) − r(i)e�
n + h(i, z) for (i, z) ∈ {1, . . . ,m} × S, and

the process, for t ∈ [0, T ],
Hi j (t) :=

∑

0<s≤t

1Y (t−)=i,Y (t)= j , i, j ∈ {1, . . . ,m} and i �= j . (15)

The dynamic programming principle yields that the value function V satisfies the following
HJB equation, i.e., for (t, x, i, z) ∈ [0, T ) × R+ × {1, . . . ,m} × S,

0 =∂V (t, x, i, z)

∂t
+ r(i)x

∂V (t, x, i, z)

∂x
+
∑

j �=i

[
V (t, x, j, z) − V (t, x, i, z)

]
qi j

+ sup
(π,l)∈U

{

x
∂V (t, x, i, z)

∂x

[
π�(I − diag(z))θ(i, z) + l(p(i, z) − c(i))

]

+ 1

2
x2

∂2V (t, x, i, z)

∂x2
[
π�(I − diag(z))σ (i)σ (i)�(I − diag(z))π + l2(φ(i)φ(i)�

+ φ̄(i)φ̄(i)�)

− 2lπ�(I − diag(z))σ (i)φ(i)�
]

+ [V (t, x − xlg(i), i, z) − V (t, x, i, z)
]
ν(i, z)

+
n∑

j=1

[
V (t, x − π j x, i, z

j ) − V (t, x, i, z)
]
(1 − z j )h j (i, z)

}

(16)

with terminal condition V (T , x, i, z) = U (x) for all (x, i, z) ∈ R+ ×{1, . . . ,m}×S. Here,
for j = 1, . . . , n, and z ∈ S, the flipped state is defined as

z j = (z1, . . . , z j−1, 1 − z j , z j+1, . . . , zn). (17)

In particular, we set z j = z if j = 0.
It can be observed that Eq. (16) is in fact a recursive dynamical system in terms of

default states z ∈ S. Further if we consider the value function in the form of V (t, x, i, z) =
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xγ ϕ(t, i, z), then ϕ(t, i, z) satisfies the recursive dynamical system given by, for (i, z) ∈
{1, . . . ,m} × S, on t ∈ [0, T ),

0 =∂ϕ(t, i, z)

∂t
+ γ r(i)ϕ(t, i, z) +

m∑

j=1

ϕ(t, j, z)qi j

+ sup
(π,l)∈U

H
(
(π, l); i, z, (ϕ(t, i, z j ); j = 0, 1, . . . , n)

)
(18)

with terminal condition ϕ(T , i, z) = 1
γ

for all (i, z) ∈ {1, . . . ,m} × S. For (π, l) ∈
(−∞, 1]n × [0,∞) and (i, z) ∈ {1, . . . ,m} × S, the function
H
(
(π, l); t, i, z, f̄ (z)

) = γ
{
π�(I − diag(z))θ(i, z) + (p(i, z) − c(i))l

}
f (z)

+
{

γ (γ − 1)

2
π�(I − diag(z))σ (i)σ (i)�(I − diag(z))π + [(1 − lg(i))γ − 1]ν(i, z)

+ γ (γ − 1)

2
l2
(
φ(i)φ(i)� + φ̄(i)φ̄(i)�

)− γ (γ − 1)lπ�(I − diag(z))σ (i)φ(i)�
}

f (z)

+
n∑

j=1

[(1 − π j )
γ f (z j ) − f (z)](1 − z j )h j (i, z), (19)

where f̄ (z) = ( f (z j ); j = 0, 1, . . . , n) is an arbitrary vector-valued function defined on
z ∈ S. In the forthcoming section, we will study the existence and uniqueness of (classical)
solutions of the recursive HJB system (18).

4 Analysis of iterated HJB equations

This section analyzes the existence and uniqueness of global (classical) solutions to the
recursive dynamical system (18) in terms of default states z ∈ S.

We introduce the notations which will be used frequently in this section. For x ∈ R
m , we

write x = (x1, ..., xm)� as an m-dimensional column vector. For any x, y ∈ Rm , we write
x ≤ y if xi ≤ yi for all i = 1, . . . ,m, while we write x < y if x ≤ y and there exists
some i ∈ {1, . . . ,m} such that xi < yi . In particular, we write x 
 y if xi < yi for all
i = 1, 2, ...,m. Recall that en denotes the n-dimensional row vector whose all entities are
ones. For the general default state z ∈ S, we introduce a general default state representation
z = 0 j1,..., jk for indices j1 �= · · · �= jk belonging to {1, . . . , n}, and k ∈ {0, 1, . . . , n}.
Such a vector z is obtained by flipping the entries j1, . . . , jk of the zero vector to one, i.e.,
z j1 = · · · = z jk = 1, and z j = 0 for j /∈ { j1, . . . , jk} (if k = 0, we set z = 0 j1,..., jk = 0).
Clearly 0 j1,..., jn = en .

Recall the recursive dynamical system (18) in terms of default states z = 0 j1,..., jk (where
k = 0, 1, . . . , n). The solvability can in fact be analyzed in the recursive form in terms of
default states. Hence, our proof strategy for analyzing the system is based on a recursive pro-
cedure, starting from the default state z = en (i.e., all stocks have defaulted) and proceeding
backward to the default state z = 0 (i.e., all stocks are alive).

(i) k = n (i.e., all stocks have defaulted). In this default state, the insurer will not invest in
stocks because they have defaulted and hence the optimal fraction strategy for stocks is
given by π∗

1 = · · · = π∗
n = 0 by virtue of Definition 3.1. Let ϕ(t, en) = (ϕ(t, i, en); i =

1, . . . ,m)�. Then, the dynamical system (18) reduces to
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⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ϕ(t, en) = − A(n)ϕ(t, en), in [0, T );

ϕ(T , en) = 1

γ
e�
m .

(20)

Here the matrix of coefficient is given by

A(n) =diag

[(

γ r(i) + sup
l∈U (n)

H (n)(l, i); i = 1, . . . ,m

)]

+ Q, (21)

where the policy space in (21) in this case is reduced to

U (n) := {l = l(i) ∈ [0,+∞); 1 − lg(i) ≥ 0}. (22)

Moreover, the function H (n)(l, i) is given by, for (l, i) ∈ [0,∞) × {1, . . . ,m},

H (n)(l, i) :=γ (p(i, en) − c(i))l + γ (γ − 1)

2
l2
(
φ(i)φ(i)� + φ̄(i)φ̄(i)�

)

+ [(1 − lg(i))γ − 1]ν(i, en).

Since γ ∈ (0, 1), it is not difficult to verify that for each i = 1, . . . ,m, H (n)(l, i) is
continuous and strictly concave in l on the compact U (n). Consequently, there exists a unique
optimum l∗ ∈ U (n) which is given by

l∗ = l∗(i) = argmax
l∈U (n)

H (n)(l, i), i = 1, . . . ,m. (23)

Further, we have that supl∈U (n) H (n)(l, i) = H (n)(l∗, i) ∈ [0,∞) for each i = 1, . . . ,m.
Then, the matrix of coefficient A(n) given by (21) is finite.

We next prove that the dynamical system (20) has a unique strictly positive solution. To
this purpose, we need the following auxiliary result which will be also used in the proof
related to the general default case. The proof is provided in the “Appendix”.

Lemma 4.1 Let g(t) := (gi (t); i = 1, . . . ,m)� satisfy the following dynamical system
given by

⎧
⎨

⎩

d

dt
g(t) = Bg(t) in (0, T ];

g(0) = ξ.

If B = (bi j )m×m satisfies bi j ≥ 0 for i �= j and ξ � 0, then g(t) � 0 for all t ∈ [0, T ].
Then we have the following lemma whose proof is given in the “Appendix”.

Lemma 4.2 The dynamical system (20) admits a unique solution which is given by, for t ∈
[0, T ],

ϕ(t, en) = 1

γ
eA

(n)(T−t)e�
m = 1

γ

∞∑

i=0

(A(n))i (T − t)i

i ! e�
m , (24)

where the m×m-dimensional matrix A(n) is given by (21). Moreover, it holds that ϕ(t, en) �
0 for all t ∈ [0, T ].

Wenext consider the general default statewith the form z = 0 j1,..., jk for 0 ≤ k ≤ n−1, i.e.,
the stocks j1, . . . , jk have defaulted and the stocks { jk+1, . . . , jn} := {1, . . . , n}\{ j1, . . . , jk}
are alive. Then, we have
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(ii) Since the stocks j1, . . . , jk have defaulted, the optimal fraction strategies for the stocks
j1, . . . , jk are given by π

(k,∗)
j = 0 for j ∈ { j1, . . . , jk} by virtue of Definition 3.1. Let

ϕ(k)(t) = (ϕ(t, i, 0 j1,..., jk ); i = 1, . . . ,m)�, p(k)(i) = p(i, 0 j1,..., jk ), and h(k)
j (i) =

h j (i, 0 j1,..., jk ) for j /∈ { j1, . . . , jk} and i = 1, . . . ,m. Therefore, the corresponding HJB
system (18) in this default state reduces to

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ϕ(k)(t) = − A(k)ϕ(k)(t) − G(k)(t, ϕ(k)(t)), in [0, T );

ϕ(k)(T ) = 1

γ
e�
m .

(25)

Here, the m × m-dimensional matrix A(k) is given by

A(k) = diag

⎡

⎣

⎛

⎝γ r(i) −
∑

j /∈{ j1,..., jk }
h(k)
j (i); i = 1, . . . ,m

⎞

⎠

⎤

⎦+ Q. (26)

The coefficient G(k)(t, x) = (G(k)
i (t, x); i = 1, . . . ,m)� for (t, x) ∈ [0, T ] × Rm is

given by, for i = 1, . . . ,m,

G(k)
i (t, x) = sup

(π(k),l)∈U (k)

⎧
⎨

⎩

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)xi

⎫
⎬

⎭
,

(27)

where the policy space in this default case is given by

U (k) :=
{
(π(k), l) = (π(k)(t, i), l(t, i)) ∈ (−∞, 1]n−k × [0,∞); 1 − lg(i) ≥ 0

}
.

(28)

The function ϕ(k+1), j (t, i) := ϕ(t, i, 0 j1,..., jk , j ) for j /∈ { j1, . . . , jk} corresponds to
the i-th element of the positive solution of the HJB system (18) at the default state
z = 0 j1,..., jk , j . The function H (k)((π(k), l), i) is given by, for (π(k), l) ∈ U (k), and
i = 1, . . . ,m,

H (k)((π(k), l), i) =γ
{
(π(k))�θ(k)(i) + (p(k)(i) − c(i))l

}+ γ (γ − 1)

2

{
(π(k))�σ (k)(i)σ (k)(i)�π(k)

+ l2
[
φ(i)φ(i)� + φ̄(i)φ̄(i)�

]− 2l(π(k))�σ (k)(i)φ(i)�
}

+ [(1 − lg(i))γ − 1
]
ν(k)(i). (29)

Here, for each i = 1, . . . ,m, we used notations π(k) = (π
(k)
j ; j /∈ { j1, . . . , jk})�,

θ(k)(i) = (θ j (i); j /∈ { j1, . . . , jk})�, σ (k)(i) = (σ jκ(i); j /∈ { j1, . . . , jk}, κ ∈
{1, . . . , d}), and ν(k)(i) = ν(i, 0 j1,..., jk ).

From the expression of G(k)
i (t, x) given by (27), it can be seen that the solution ϕ(k)(t) on

t ∈ [0, T ] of Eq. (18) at z = 0 j1,..., jk depends on the solution ϕ(k+1), j (t) on t ∈ [0, T ] of
Eq. (18) at z = 0 j1,..., jk , j for j /∈ { j1, . . . , jk}. In particular, for k = n − 1, the solution
ϕ(k+1), j (t) = ϕ(t, en) � 0 corresponding to the solution to Eq. (18) at z = en (i.e., k = n)
has been obtained in Lemma 4.2. This suggests solving the HJB system (18) backward
recursively in terms of default states z = 0 j1,..., jk . Thus, in order to analyze the existence and
uniqueness of a positive (classical) solution to the dynamical system (25), we first assume that
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the HJB system (18) admits a positive unique (classical) solution ϕ(k+1), j (t) on t ∈ [0, T ]
for j /∈ { j1, . . . , jk}.

We have the following estimate onG(k)(t, x) given by (27) which is stated in the following
lemma. The proof is reported in the “Appendix”.

Lemma 4.3 For each k = 0, 1, . . . , n−1, assume that the HJB system (18) admits a positive
unique (classical) solution ϕ(k+1), j (t) on t ∈ [0, T ] for j /∈ { j1, . . . , jk}. Then, for any
x, y ∈ Rm satisfying x, y ≥ εe�

m with ε > 0, there exists a positive constant C = C(ε)

depending on ε > 0 only such that
∥
∥
∥G(k)(t, x) − G(k)(t, y)

∥
∥
∥ ≤ C ‖x − y‖ . (30)

Here ‖ · ‖ denotes the Euclidian norm.

In order to study the existence and uniqueness of solutions to the HJB system (25), we
also need the following comparison result. The proof is delegated to the “Appendix”.

Lemma 4.4 Let gκ (t) := (gκi (t); i = 1, . . . ,m)� with κ = 1, 2 satisfy the following
dynamical systems on [0, T ] respectively
⎧
⎨

⎩

d

dt
g1(t) = f (t, g1(t)) + f̃ (t, g1(t)), in (0, T ];
g1(0) =ξ1,

⎧
⎨

⎩

d

dt
g2(t) = f (t, g2(t)), in (0, T ];
g2(0) =ξ2.

Here the functions f (t, x), f̃ (t, x) : [0, T ] × Rm → Rm are Lipschitz continuous w.r.t.
x ∈ Rm uniformly in t ∈ [0, T ]. The function f (t, ·) satisfies the type K condition for each
t ∈ [0, T ] (i.e., for any x, y ∈ Rm satisfying x ≤ y and xi = yi for some i = 1, . . . ,m, it
holds that fi (t, x) ≤ fi (t, y) for each t ∈ [0, T ]). If f̃ (t, x) ≥ 0 for (t, x) ∈ [0, T ] × Rm

and ξ1 ≥ ξ2, then g1(t) ≥ g2(t) for all t ∈ [0, T ].
We are now at the position to state the result of existence and uniqueness of positive

(classical) solutions to the HJB system (25).

Theorem 4.5 For each k = 0, 1, . . . , n−1, assume that theHJB system (18) admits a positive
unique (classical) solution ϕ(k+1), j (t) on t ∈ [0, T ] for j /∈ { j1, . . . , jk}. Then, there exists a
unique positive (classical) solution ϕ(k)(t) on t ∈ [0, T ] of the HJB system (18) at the default
state z = 0 j1,..., jk (i.e., the HJB system (25) admits a unique positive (classical) solution).

Proof For a constant a > 0, consider the following truncated dynamical system given by
⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ϕ(k)
a (t) = − A(k)ϕ(k)

a (t) − G(k)
a (t, ϕ(k)

a (t)), in [0, T );

ϕ(k)
a (T ) = 1

γ
e�
m ,

(31)

where the truncated nonlinearity G(k)
a (t, x) := G(k)(t, x ∨ ae�

m ) for (t, x) ∈ [0, T ] × Rm .
Thanks to Lemma 4.3, there exists a positive constant C = C(a) which depends on a > 0
only such that for all t ∈ [0, T ],

∥
∥G(k)

a (t, x) − G(k)
a (t, y)

∥
∥ ≤ C‖x − y‖, x, y,∈ Rm, (32)

i.e., G(k)
a (t, x) is globally Lipschitz continuous w.r.t. x ∈ Rm uniformly in t ∈ [0, T ]. By

reversing the flow of time, consider ϕ̃
(k)
a (t) := ϕ

(k)
a (T − t) for t ∈ [0, T ]. Then ϕ̃

(k)
a (t)

satisfies the following dynamical system given by
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⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ϕ̃(k)
a (t) =A(k)ϕ̃(k)

a (t) + G(k)
a (T − t, ϕ̃(k)

a (t)), in (0, T ];

ϕ̃(k)
a (0) = 1

γ
e�
m .

(33)

Let ψ(k)(t) = (ψ
(k)
i (t); i = 1, . . . ,m)� satisfy the following dynamical system:

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ψ(k)(t) =A(k)ψ(k)(t), in (0, T ];

ψ(k)(0) = 1

γ
e�
m .

(34)

Recall the m ×m-dimensional matrix of coefficients A(k) given by (26). Then, we have that
[A(k)]i j = qi j for all i �= j using (26). Since Q = (qi j )m×m is the generator of the Markov
chain, it holds that qi j ≥ 0 for all i �= j . Hence [A(k)]i j ≥ 0 for all i �= j and thus the linear
function A(k)x is of type K in x ∈ Rm . Also since ψ(k)(0) = 1

γ
e�
m � 0, it follows from

Lemma 4.1 that the dynamical system (34) admits a unique (classical) solution ψ(k)(t) on
[0, T ] and moreover ψ(k)(t) � 0 for all t ∈ [0, T ]. Set

ε(k) := min
i=1,...,m

{

inf
t∈[0,T ] ψ

(k)
i (t)

}

. (35)

Then, by the continuity ofψ(k)(t) in t ∈ [0, T ] and the fact thatψ(k)(t) � 0 for all t ∈ [0, T ],
we have that ε(k) > 0. Further, by virtue of estimates (32) and (A.7) in the Appendix, together
with the initial condition ϕ

(k)
a (0) = ψ(k)(0) = 1

γ
e�
m � 0, it follows from Lemma 4.4 that

ϕ̃(k)
a (t) ≥ ψ(k)(t) ≥ ε(k)e�

m , for all t ∈ [0, T ]. (36)

Notice that the positive constant ε(k) is independent of a > 0. Then, for a ∈ (0, ε(k)), it holds
that

G(k)
a (T − t, ϕ̃(k)

a (t)) = G(k)(T − t, ϕ̃(k)
a (t) ∨ ae�

m

) = G(k)(T − t, ϕ̃(k)
a (t)).

This yields that for a ∈ (0, ε(k)), the function ϕ̃
(k)
a (t) solves the dynamical system given by

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ϕ̃(k)
a (t) =A(k)ϕ̃(k)

a (t) + G(k)(T − t, ϕ̃(k)
a (t)), in (0, T ];

ϕ̃(k)
a (0) = 1

γ
e�
m .

By the uniqueness of the solution to the dynamical system (33) and using the estimate (36),
it follows that, for a ∈ (0, ε(k)), ϕ

(k)
a (t) := ϕ̃

(k)
a (T − t) on [0, T ] is the unique (classical)

solution to the HJB system (25). Thus, we complete the proof of the theorem. ��
We next turn to the characterization of the optimal strategy (π(k), l) ∈ U (k) at the default

state z = 0 j1,..., jk where k = 0, 1, . . . , n − 1. Let us recall the HJB system (25), i.e.,
⎧
⎪⎪⎨

⎪⎪⎩

d

dt
ϕ(k)(t) = − A(k)ϕ(k)(t) − G(k)(t, ϕ(k)(t)), in [0, T );

ϕ(k)(T ) = 1

γ
e�
m .

Theorem 4.5 shows that the above system admits a unique positive (classical) solution
ϕ(k)(t) on [0, T ] and moreover ϕ(k)(t) ≥ ε(k)e�

m for all t ∈ [0, T ] using (36). Here ε(k) > 0
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is given by (35). Then, by virtue of the equality (A.8) given in the Appendix, there exists a
positive constant C(ε(k)) depending on ε(k) > 0 such that for each i = 1, . . . ,m,

G(k)
i (t, ϕ(k)(t, i))

= sup
(π(k),l)∈U (k)

‖π(k)‖2+l2≤C(ε(k))

⎧
⎨

⎩

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)ϕ(k)(t, i)

⎫
⎬

⎭
.

(37)

Here, for each i = 1, . . . ,m, ϕ(k+1), j (t, i) on t ∈ [0, T ] is the i-th element of the positive
(classical) solution ϕ(k+1), j (t) of the HJB system (18) at the default state z = 0 j1,..., jk , j for
j /∈ { j1, . . . , jk}. It is not difficult to verify that, for each i = 1, . . . ,m and fixed t ∈ [0, T ],

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)ϕ(k)(t, i)

is strictly concave in (π(k), l) ∈ U (k). Also notice that the space U (k) ∩ {(π(k), l); ‖π(k)‖2 +
|l|2 ≤ C(ε(k))} is compact. Hence, there exists a unique optimum (π(k,∗), l∗) ∈ U (k) such
that

(π(k,∗), l∗) = (π(k,∗)(t, i), l∗(t, i))

= argmax
(π(k),l)∈U (k)

‖π(k)‖2+l2≤C(ε(k))

⎧
⎨

⎩

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)ϕ(k)(t, i)

⎫
⎬

⎭

= argmax
(π(k),l)∈U (k)

⎧
⎨

⎩

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)ϕ(k)(t, i)

⎫
⎬

⎭

(38)

for all i = 1, . . . ,m.
We conclude this section with a verification theorem whose proof is reported in the

“Appendix”.

Theorem 4.6 At any default state z = 0 j1,..., jk for k = 0, 1, . . . , n, let ϕ(t, z) be the unique
positive (classical) solution to the dynamical system of HJB equations (18) (i.e., for k = n,
ϕ(t, z) = ϕ(t, en) is given in Lemma 4.2 and for k = 0, 1, . . . , n − 1, ϕ(t, z) = ϕ(k)(t) is
given in Theorem 4.5). Also let the optimal strategy (π∗, l∗) = (π∗(t, i, z), l∗(t, i, z)) for
i = 1, . . . ,m be given by (23) for k = n and given by (38) for k = 0, 1, . . . , n − 1. Then,
we have that

(i) For (t, x, i, z) ∈ [0, T ] × R+ × {1, . . . ,m} × S, and any admissible feedback strategy
(π, l) ∈ U , it holds that

xγ ϕ(t, i, z) ≥ E
[
U (Xπ,l(T )) | Xπ,l(t) = x, Y (t) = i, Z(t) = z

]
.

(ii) The value function V (t, x, i, z) for (t, x, i, z) ∈ [0, T ] × R+ × {1, . . . ,m} × S admits
the following representation

V (t, x, i, z) = E
[
U (Xπ∗,l∗(T ))|Xπ∗,l∗(t) = x, Y (t) = i, Z(t) = z

] = xγ ϕ(t, i, z).
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Table 1 Market parameters values

μ(1) μ(2) r(1) r(2) p(1) p(2) c(1) c(2)

(1, 0.55) (1.4, 0.8) 0.1 0.06 0.8 0.5 0.1 0.05

φ̄(1) φ̄(2) g(1) g(2) h(1,0)
2 h(0,1)

1 h(0,0)
1 h(0,0)

2
0.3 0.6 0.2 0.1 (0.9, 1.3) (0.7, 1) (0.5, 0.75) (0.75, 1.1)

φ(1) φ(2) ν(0,0)(1) ν(0,0)(2) ν(1,0)(1) ν(1,0)(2) ν(0,1)(1) ν(0,1)(2)

(0.4, 0.8) (0.7, 1.2) 2 3 2.5 4 2.3 3.7

ν(1,1)(1) ν(1,1)(2)

2.6 5

5 Numerical analysis

In this section, we investigate the sensitivity of the optimal strategy of stocks and risk control
to changes in market parameters. The sensitivity analysis is performed on a simple market
model consisting of two defaultable stocks and a riskless bond, i.e., n = 2. In this market
model, it follows from (3) that the pre-default prices of stocks are given by

⎧
⎪⎨

⎪⎩

dS1(t)
S1(t)

= {μ1(Y (t)) + h1(Y (t), Z(t))}dt +∑2
j=1 σ1 j (Y (t))dWj (t);

dS2(t)
S2(t)

= {μ2(Y (t)) + h2(Y (t), Z(t))}dt +∑2
j=1 σ2 j (Y (t))dWj (t),

where Z := (Z1, Z2) ∈ S = {0, 1}2 is the two-dimensional default state process of stocks
andW is a two-dimensional Brownian motion (i.e., d = 2). The regime-switching process Y
is a continuous-time (conservative) Markov chain with state space {1, 2} (i.e., m = 2). The
claim (risk) per policy in the risk control is then given by

dC(t) = c(Y (t))dt +
2∑

j=1

φ j (Y (t))dWj (t) + φ̄(Y (t))dW̄ (t)

+
∑

(i,z)∈{1,2}×{0,1}2
g(Y (t−))1Y (t−)=i,Z(t−)=zdNi,z(t).

Here W̄ is a scalar Brownian motion (i.e., d̄ = 1) and Ni,z for (i, z) ∈ {1, 2} × {0, 1}2
are independent Poisson processes with respective intensities νz(i) := ν(i, z). Throughout
the section, we use the following benchmark parameters given in Table 1. In particular, we
use the notation hzk := (hk(1, z), hk(2, z)) to represent the vector of default intensities of the
k-th stock at the default state z ∈ {0, 1}2.

Moreover, we set the risk aversion parameter to γ = 0.5. The generator of the Markov
chain Y and the volatility matrix of stocks are given respectively by

Q = Q0 =
[−0.5 0.5

1 −1

]

, σ (1) =
[
0.7 0
0 1

]

, σ (2) =
[
1 0
0 1.5

]

.

We first perform a comparative statics analysis to examine how the default risk premia
affect the optimal strategies of stocks and risk control of the insurer. Figure 1 displays the
optimal strategy of stocks and risk control in a given regime at different times when the
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Fig. 1 Dependence of the optimal strategies of stocks and risk control on default intensities at a given regime.
Top panel: the dependence of the optimal strategies of stock 1 and risk control on the default intensity of stock
1 in regime 2. The default state z = (0, 1). Bottom panel: the dependence of the optimal strategies of stock 2
and risk control on the default intensity of stock 2 in regime 1. The default state z = (1, 0)

default intensity of a stock varies. Consider first the situation in which stock 1 is alive and
stock 2 has defaulted (i.e., it corresponds to the default state z = (0, 1)). The top left graph
of Fig. 1 indicates that, as the stock 1’s default intensity becomes higher in regime 2, i.e.,
h(0,1)
1 (2) increases, the insurer reduces his/her investment in the defaultable stock 1. Recall

that, for a fixed regime i ∈ {1, 2}, νz(i) represents the jump intensity of the claim (risk) per
policy in the risk control at the default state z ∈ {0, 1}2. Under the benchmark parameter
configuration, we have ν(1,1)(2) > ν(0,1)(2) and ν(1,1)(1) > ν(1,0)(1). This implies that a
default event can result in an increase in the expected number of claims that occur during a
fixed period of time. In other words, when the default intensity of a stock increases, not only
the defaultable stocks but the liabilities become riskier. The top right graph of Fig. 1 shows
that, as the default intensity of stock 1 increases, the insurer would reduce his/her investment
in the stock and cede more liabilities to reinsurers at the same time, by considering the higher
risk in both stocks and liabilities. This line of reasoning is also confirmed by the bottom
graphs of Fig. 1 in the case where stock 1 has defaulted and the default intensity of stock 2
will increase (i.e., it corresponds to the default state z = (1, 0)).

We next give an illustration of how market volatility impacts the optimal invest-
ment strategy of stocks and risk control. Figure 2 plots the optimal strategy of stocks
and risk control in regime 1 at different times when the volatility of stocks varies. The
default states considered here are z = (0, 1) and (1, 0). A comparison between the left
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Fig. 2 Dependence of optimal strategies of stocks and risk control in regime 1 on volatility of stocks at different
times

panel and the right panel of Fig. 2 shows that the insurer decreases his/her investment
in stocks and allocates a larger proportion of wealth to the liability, when the volatil-
ity of stocks increases. This is exactly consistent with the intuition. This can be also
confirmed from the right panel of Fig. 2. It also demonstrates that the optimal strat-
egy for the liability is more sensitive to the changes of volatility of stocks than that to
the changes in time. Consequently, the above comparison exploits that the optimal strat-
egy of the liability is more sensitive to the changes in risk than that to the changes in
time.

We finally assess the impact of default contagion on the optimal investment strategy
of stocks and the value function respectively. In particular, we explain how to disentangle
the direct and indirect (contagion) effects of an increase in the default intensity. Figure 3
and 4 illustrate how default contagion impacts the investment strategy of the stock. They
suggest that when the default intensity of one stock increases, the insurer tends to reduce
his/her investment in both stocks when both stocks are alive. This fact reflects the contagion
property of default in this model: when one asset has higher default probability, the contagion
property of default makes the investor reduce his/her investment in the other asset as well.
As it appears from the left panel of Fig. 3, when the default contagion of stock 2 increases,
the insurer decreases the proportion of wealth allocated to stock 1. This occurs because at the
default of stock 2, the default intensity of stock 1 will instantaneously increase (an upward
jump in the default intensity from h(0,0)

1 = (0.5, 0.75) to h(0,1)
1 = (0.7, 1)), inducing a

higher default risk of stock 1. Consequently, the risk averse insurer would allocate a smaller
proportion of wealth to this stock. Notice that at the default of stock 1, the default intensity of
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Fig. 3 Dependence of the optimal strategy of both stocks on the default intensity h(0,0)
2 (1) of stock 2 in regime

1. The current default state z = (0, 0), i.e. both stocks are alive. Left panel: dependence of the optimal strategy

of stock 1 on the default intensity h(0,0)
2 (1) of stock 2 in regime 1; Right panel: dependence of the optimal

strategy of stock 2 on the default intensity h(0,0)
2 (1) of stock 2 in regime 1

Fig. 4 Dependence of the optimal strategy of both stocks on the default intensity h(0,0)
1 (2) of stock 1 in regime

2. The current default state z = (0, 0), i.e. both stocks are alive. Left panel: dependence of the optimal strategy

of stock 2 in regime 2 on the default intensity h(0,0)
1 (2) of stock 1 in regime 2; Right panel: dependence of the

optimal strategy of stock 1 in regime 2 on the default intensity h(0,0)
1 (2) of stock 1 in regime 2

stock 2 will instantaneously increase because there is an upward jump in the default intensity
from h(0,0)

2 = (0.75, 1.1) to h(1,0)
2 = (0.9, 1.3). The right panel of Fig. 4 confirms a similar

trend for stock 2, however, the indirect contagion effect becomes more pronounced for the
case of stock 2.

The direct effect of the default intensity is shown in the right panel of Fig. 3 (resp. in
the right panel of Fig. 4). For a fixed default intensity of stock 1 (resp. stock 2), the insurer
will invest less wealth in stock 1 (resp. stock 2) when the time to maturity decreases. In this
regard, it might be noted that the conditional survival probability of stocks P(τi > T |Gt )with
t < T is given by 1τi>tE[e− ∫ Tt hZ(s)

i (Y (s))ds |Gt ]. As expected, this probability is decreasing
with respect to the default intensity hzi and for shorter time to maturity, all else being equal,
the rate of change of this probability with respect to the default intensity becomes smaller
(i.e., all else being equal, the conditional survival probability is not too sensitive to the default
intensity when t tends to T ). Therefore, at an increase in the default intensity of stock 1 (resp.
stock 2), the insurer tends to decrease investment in stock 1 (resp. stock 2) for shorter time
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Fig. 5 The difference of value functions between two regimes given different generators of Markov chain Y
at different default states z = (0, 0), (1, 0), (0, 1) and (0, 0)

to maturity. Moreover, the insurer will allocate less proportion of his/her wealth to stock 1
(resp. stock 2) as the default intensity of stock 1 (resp. stock 2) increases. Similar observation
has also been made in Jiao et al. [12].

Figure 5 depicts the difference of value functions between two regimes at four different
default states z = (0, 0), (1, 0), (0, 1) and (1, 1) respectively. The graphs in Fig. 5 confirm
how the change of the absolute values of elements in the generator Q affects the difference of
value functions between two regimes. At each default state, the difference of value functions
between two regimes becomes tinier for larger absolute values of elements in the generator
Q. This happens because a larger absolute value of the elements in Q will result in a more
frequent regime switching of the Markov chain. Consequently, the insurer relies more on
his/her investment strategy rather than the regime he/she is in when faced with a market with
frequent regime switching.
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Technical proofs

Proof of Lemma 4.1. Define f (x) = Bx for x ∈ Rm . By virtue of Proposition 1.1 of Charter
3 in Smith [19], it suffices to verify that f : Rm → Rm is of type K , i.e., for any x, y ∈ Rm

satisfying x ≤ y and xi = yi for some i = 1, . . . ,m, then fi (x) ≤ fi (y). Notice that bi j ≥ 0
for all i �= j . Then, it holds that

fi (x) = (Bx)i =
m∑

j=1

bi j x j = bii xi +
m∑

j=1, j �=i

bi j x j

= bii yi +
m∑

j=1, j �=i

bi j x j ≤ bii yi +
m∑

j=1, j �=i

bi j y j = fi (y), (A.1)

and hence f is of type K . Thus, we complete the proof of the lemma. ��
Proof of Lemma 4.2. The expression of the solution ϕ(t, en) given by (24) is obvious. Notice
that em � 0 and qi j ≥ 0 for all i �= j since Q = (qi j )m×m is the generator of the Markov
chain. Then, in order to prove ϕ(t, en) � 0 for all t ∈ [0, T ], using Lemma 4.1, it suffices to
verify [A(n)]i j ≥ 0 for all i �= j , however, [A(n)]i j = qi j for all i �= j using (21). Thus, we
have verified the condition given in Lemma 4.1, and hence ϕ(t, en) � 0 for all t ∈ [0, T ]. ��
Proof of Lemma 4.3. It suffices to prove that, for any x, y ∈ Rm satisfying x, y ≥ εe�

m
with ε > 0, there exists a constant C = C(ε) > 0 depending on ε > 0 only such that
|G(k)

i (t, x) − G(k)
i (t, y)| ≤ C‖x − y‖ for each i = 1, . . . ,m. Since σ(i)σ (i)� is also

positive definite, σ (k)(i)σ (k)(i)� is positive definite. Hence, there exists a constant δ > 0
such that (π(k))�σ (k)(i)σ (k)(i)�π(k) ≥ δ‖π(k)‖2. Then, for any (π(k), l) ∈ U (k), there exists
a positive constant C1 > 0 such that

γ (γ − 1)

2

{
(π(k))�σ (k)(i)σ (k)(i)�π(k) + l2

(
φ(i)φ(i)� + φ̄(i)φ̄(i)�

)− 2l(π(k))�σ (k)(i)φ(i)
}

= γ (γ − 1)

2

{
l2φ̄(i)φ̄(i)� + ‖σ (k)(i)�π(k) − lφ(i)‖2

}

≤ γ (γ − 1)

2

{

αl2φ̄(i)φ̄(i)� + 1

2
(1 − α)‖σ (k)(i)�π(k)‖2 − (1 − α)‖lφ(i)‖2

}

= γ (γ − 1)

2

{

l2(αφ̄(i)φ̄(i)� − (1 − α)‖φ(i)‖2) + 1

2
(1 − α)‖σ (k)(i)�π(k)‖2

}

≤ −C1(‖π(k)‖2 + l2), (A.2)

where the constant α ∈ (maxi=1,...,m
{ ‖φ(i)‖2

φ̄(i)φ̄(i)�+‖φ(i)‖2
}
, 1). On the other hand, for any

(π(k), l) ∈ U (k), it holds that

γ
{
(π(k))�θ(k)(i) + (p(k)(i) − c(i))l

} ≤ γ ‖θ(k)(i)‖‖π(k)‖ + γ |p(k)(i) − c(i)|l
≤ C2

√

‖π(k)‖2 + l2, (A.3)

where the constant C2 := maxi=1,...,m
{
γ
√‖θ(k)(i)‖2 + |p(k)(i) − c(i)|2} > 0. Finally, for

any (π(k), l) ∈ U (k), we have that {(1 − lg(i))γ − 1}ν(k)(i) ≤ C3l, where the constant
C3 := maxi=1,...,m{γ g(i)ν(k)(i)} > 0. Then, by virtue of (29), it follows that, for any
(π(k), l) ∈ U (k) and i = 1, . . . ,m,
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H (k)((π(k), l), i) ≤ −C1
(‖π(k)‖2 + l2

)+ C4

√

‖π(k)‖2 + l2. (A.4)

Here C4 = C2 + C3. This yields that there exists a constant C5 > 0 such that when
(π(k), l) ∈ U (k) and ‖π(k)‖2 + l2 > C5, we have H (k)((π(k), l), i) < 0 for all i = 1, . . . ,m,
and meanwhile, for x ≥ εe�

m with ε > 0,

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(l+1), j (t, i) + H (k)((π(k), l), i)xi

≤ (1 + ‖π(k)‖)γ
∑

j /∈{ j1,..., jk }
h(k)
j (i)ϕ(l+1), j (t, i) + εH (k)((π(k), l), i)

≤ C6
(
1 + ‖π(k)‖γ

) ∑

j /∈{ j1,..., jk }
h(k)
j (i) + ε

{

−C1(‖π(k)‖2 + l2) + C4

√

‖π(k)‖2 + l2
}

≤ −εC1
(‖π(k)‖2 + l2

)+ εC4

√

‖π(k)‖2 + l2 + C7
(√‖π(k)‖2 + l2

)γ + C8, (A.5)

for some constants C6,C7,C8 > 0. Notice that we used the recursive assumption that the
HJB system (18) admits a positive unique (classical) solution ϕ(k+1), j (t) on t ∈ [0, T ] for
j /∈ { j1, . . . , jk}. Then ϕ(k+1), j (t) is continuous on [0, T ], and hence ϕ(k+1), j (t) is bounded
on [0, T ]. From the estimate (A.5), it follows that, for any x ≥ εe�

m , there exists a positive
constant C9 = C9(ε) such that when (π(k), l) ∈ U (k), ‖π(k)‖2 + l2 > C9 and x ≥ εe�

m , it
holds that, for each i = 1, . . . ,m,

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(l+1), j (t, i) + H (k)((π(k), l), i)xi < 0. (A.6)

On the other hand, for i = 1, . . . ,m, it holds that

G(k)
i (t, x) = sup

(π(k),l)∈U (k)

⎧
⎨

⎩

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)xi

⎫
⎬

⎭

≥
∑

j /∈{ j1,..., jk }
h(k)
j (i)ϕ(k+1), j (t, i) + H (k)((0e�

n−k, 0), i)xi

=
∑

j /∈{ j1,..., jk }
h(k)
j (i)ϕ(k+1), j (t, i) > 0. (A.7)

Thus, using the estimate (A.6), we have that, for all x ≥ εe�
m ,

G(k)
i (t, x) = sup

(π(k),l)∈U (k)

‖π(k)‖2+l2≤C9(ε)

⎧
⎨

⎩

∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)xi

⎫
⎬

⎭
.

(A.8)
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It follows from (A.8) and (29) that, for all x, y ≥ εe�
m ,

G(k)
i (t, x) = sup

(π(k),l)∈U (k)

‖π(k)‖2+l2≤C9(ε)

{ ∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)yi

+ H (k)((π(k), l), i)(xi − yi )

}

≤ sup
(π(k),l)∈U (k)

‖π(k)‖2+l2≤C9(ε)

{ ∑

j /∈{ j1,..., jk }
(1 − π

(k)
j )γ h(k)

j (i)ϕ(k+1), j (t, i) + H (k)((π(k), l), i)yi

+
∣
∣
∣H (k)((π(k), l), i)

∣
∣
∣ |xi − yi |

}

≤G(k)
i (t, y) + |xi − yi | sup

(π(k),l)∈U (k)

‖π(k)‖2+l2≤C9(ε)

{∣
∣
∣H (k)((π(k), l), i)

∣
∣
∣
}

≤G(k)
i (t, y) + C(ε) |xi − yi | , (A.9)

where C(ε) > 0 is a constant which depends on ε > 0 only. Then, the above estimate
results in the validity of the estimate (30) for all x, y ∈ Rm satisfying x, y ≥ εe�

m . Thus, we
complete the proof of the lemma. ��

Proof of Lemma 4.4. For p > 0, let g(p)
1 (t) = (g(p)

1i (t); i = 1, . . . ,m)� be the solution to
the following dynamical system given by

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
g(p)
1 (t) = f (t, g(p)

1 (t)) + f̃ (t, g(p)
1 (t)) + 1

p
e�
m , in (0, T ];

g(p)
1 (0) =ξ1 + 1

p
e�
m .

(A.10)

Then, for all t ∈ (0, T ], it holds that

‖g(p)
1 (t) − g1(t)‖ ≤‖g(p)

1 (0) − g1(0)‖ +
∫ t

0

∥
∥ f (s, g(p)

1 (s)) − f (s, g1(s))
∥
∥ds

+
∫ t

0

∥
∥ f̃ (s, g(p)

1 (s)) − f̃ (s, g1(s))
∥
∥ds + 1

p

∫ t

0
‖em‖ds

≤ 2

p
‖em‖ + (C + C̃)

∫ t

0

∥
∥g(p)

1 (s) − g1(s)
∥
∥ds.

Here C > 0 (resp. C̃ > 0) is the Lipschitz constant of f (t, x) (resp. f̃ (t, x)) in x . Then,
the Gronwall’s lemma yields that g(p)

1 (t) → g1(t) for all t ∈ [0, T ] as p → ∞. We claim

that g(p)
1 (t) � g2(t) for all t ∈ [0, T ]. If the claim were false, notice that g(p)

1 (0) � g2(0),

and g(p)
1 (t), g2(t) are continuous on [0, T ], then there exists a t0 ∈ (0, T ] such that g(p)

1 (s) ≥
g2(s) on s ∈ [0, t0] and g(p)

1i (t0) = g2i (t0) for some i ∈ {1, . . . ,m}. Since t0 > 0, g(p)
1 (t)

and g2(t) are differentiable on (0, T ], we have that

d

dt
g(p)
1i (t)

∣
∣
t=t0

= lim
ε→0

g(p)
1i (t0) − g(p)

1i (t0 − ε)

ε
≤ lim

ε→0

g2i (t0) − g2i (t0 − ε)

ε
= d

dt
g2i (t)

∣
∣
t=t0

.
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On the other hand, since f (t, ·) satisfies the type K condition for each t ∈ [0, T ] and
f̃ (t, x) ≥ 0 for all (t, x) ∈ [0, T ] × Rm , for the above i , we also have that

d

dt
g(p)
1i (t)

∣
∣
t=t0

= fi (t0, g
(p)
1i (t0)) + f̃i (t0, g

(p)
1 (t0)) + 1

p

> fi (t0, g
(p)
1i (t0)) ≥ fi (t0, g2(t0)) = d

dt
g2i (t)

∣
∣
t=t0

. (A.11)

This results in a contradiction, and hence g(p)
1 (t) � g2(t) for all t ∈ [0, T ]. Thus, it holds

that g1(t) ≥ g2(t) for all t ∈ [0, T ] by letting p tend to infinity. ��

Proof of Theorem 4.6. For (t, x, i, z) ∈ [0, T ]×R+ ×{1, . . . ,m}×S, note that ϕ(T , i, z) =
1
γ
. Then, by virtue of Itô’s formula, for all (π, l) ∈ Ũ , it follows that

1

γ
(Xπ,l(T ))γ = (Xπ,l(t))γ ϕ(t, Y (t), Z(t)) +

∫ T

t
(Xπ,l(s))γ

∂ϕ(s, Y (s), Z(s))

∂s
ds

+
∫ T

t
γ (Xπ,l

s )γ−1ϕ(s, Y (s), Z(s))dXπ,l (s)c

+ γ (γ − 1)

2

∫ T

t
(Xπ,l(s))γ−2ϕ(s, Y (s), Z(s))d[Xπ,l , Xπ,l ]c(s)

+
∫ T

t
ϕ(s, Y (s−), Z(s−))(Xπ,l (s−))γ [(1 − l(s)g(Y (s−)))γ − 1]dN (s)

+
n∑

j=1

∫ T

t
(Xπ,l(s−))γ

[
(1 − π j (s−))γ ϕ(s, Y (s−), Z j (s−)) − ϕ(s, Y (s−), Z(s−))

]
dZ j (s)

+
∫ T

t

∑

j �=Y (s−)

(Xπ,l(s−))γ
[
ϕ(s, j, Z(s−)) − ϕ(s, Y (s−), Z(s−))

]
dHY (s−), j (s)

= (Xπ,l(t))γ ϕ(t, Y (t), Z(t)) +
∫ T

t
(Xπ,l(s))γA(π, l; s, Y (s), Z(s))ds + Mπ,l(T ) − Mπ,l(t).

Here for (π, l) ∈ (−∞, 1]n×[0,∞) and (t, i, z) ∈ [0, T ]×{1, . . . ,m}×S, the coefficient
is given by

A(π, l; t, i, z)

= ∂ϕ(t, i, z)

∂t
+
{

γ
[
r(i) + π�(I − diag(z))θ(i, z) + π�(I − diag(z))h(i, z) + (p(i, z) − c(i))l

]

+ γ (γ − 1)

2

[
π�(I − diag(z))σ (i)σ (i)�(I − diag(z))π + l2

(
φ(i)φ(i)� + ¯φ(i) ¯φ(i)

�)

− 2lπ�(I − diag(z))σ (i)φ(i)�
]

+ [(1 − lg(i))γ − 1]ν(i, z)

}

ϕ(t, i, z)

+
n∑

j=1

[(1 − π j )
γ ϕ(t, i, z j ) − ϕ(t, i, z)](1 − z j )h j (i, z) +

∑

j �=i

[ϕ(t, j, z) − ϕ(t, i, z)]qi j ,
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and the P-(local) martingale is defined as

Mπ,l (t) =
∫ t

0
γ (Xπ,l (s))γ ϕ(s, Y (s), Z(s))

[
π(s)�(I − diag(Z(s)))σ (Y (s)) − l(s)φ(Y (s))

]
dW (s)

+
∫ t

0
γ (Xπ,l (s))γ ϕ(s, Y (s), Z(s))l(s)φ̄(Y (s))dW̄ (s)

+
∫ t

0
(Xπ,l (s))γ ϕ(s, Y (s−), Z(s−))[(1 − l(s)g(Y (s−)))γ − 1]d Ñ (s)

+
n∑

j=1

∫ T

0
(Xπ,l (s−))γ [(1 − π j (s))

γ ϕ(s, Y (s−), Z(s−) j ) − ϕ(s, Y (s−), Z(s−))]dMj (s)

+
∫ t

0

∑

j �=Y (s−)

(Xπ,l (s−))γ
[
ϕ(s, j, Z(s−)) − ϕ(s, Y (s−), Z(s−))]d H̃Y (s−), j (s),

where we used the following P-martingale processes given by, for t ∈ [0, T ],

Ñ (t) := N (t) −
∫ t

0
ν(Y (s), Z(s))ds, H̃i j (t) := Hi j (t) −

∫ t

0
qi j1Y (s)=i ds,

for all i, j ∈ {1, . . . ,m} and i �= j . Here, we recall that the process Hi j (t) is defined by (15).
Using (18), (23) and (38), for t ∈ [0, T ] × {1, . . . ,m} × S, we have that A(π, l; t, i, z) ≤
A(π∗, l∗; t, i, z) = 0 for all (π, l) ∈ U . Moreover, define τa := inf{s ≥ t; |Xπ,l(s)| > a}
for a > 0. Eq. (12) gives that, for s ∈ [t, T ],
Xπ,l(s ∧ τa) =Xπ,l(s ∧ τa−)

× [1 − π̃�(s ∧ τa)�M(s ∧ τa) − l̃(s ∧ τa)g(Y (s ∧ τa−))�N (s ∧ τa)],
(A.12)

where the feedback controls are given by

π̃(s ∧ τa) = π
(
s ∧ τa, X

π,l(s ∧ τa−), Y (s ∧ τa−), Z(s ∧ τa−)
)
,

l̃(s ∧ τa) = l
(
s ∧ τa, X

π,l(s ∧ τa−), Y (s ∧ τa−), Z(s ∧ τa−)
)
.

Notice that (π, l) ∈ U is locally bounded, and hence

|π̃(s ∧ τa)| + |l̃(s ∧ τa)| ≤ C1(π, l, a, T ), s ∈ [t, T ].
The positive constantC1 depends on (π, l), a and T only. Since |�M |∨|�N | ≤ 1, it follows
that

|Xπ,l(s ∧ τa)| ≤ C2(π, l, a, T ), s ∈ [t, T ],
where C2 is a positive constant which depends on (π, l), a and T only. This implies that
Mπ,l(· ∧ τa) is a P-martingale. Hence, it holds that

Et,x,i,z

[
U (Xπ,l(T ∧ τa)

)] ≤ xγ ϕ(t, i, z) + Et,x,i,z

[
Mπ,l(T ∧ τa) − Mπ,l(t)

]

= xγ ϕ(t, i, z), (A.13)

where we set Et,i,z[·] := E[· | Xπ,l(t) = x, Y (t) = i, Z(t) = z] for (t, x, i, z) ∈ [0, T ] ×
R+ × {1, . . . ,m} × S. It follows from Fatou’s lemma that

Et,x,i,z[U (Xπ,l(T ))] ≤ lim
a→∞

Et,x,i,z[U (Xπ,l(T ∧ τa))] ≤ xγ ϕ(t, i, z).
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This verifies the validity of the conclusion (i).
We next prove the conclusion (ii). In fact, recall that the optimal feedback strategy

(π∗, l∗) = (π∗(t, i, z), l∗(t, i, z)) for i = 1, . . . ,m is given by (23) for k = n and given by
(38) for k = 0, 1, . . . , n − 1. Then, there exists a constant C > 0 which is independent of
(t, i, z) such that ‖π∗(t, i, z)‖2+|l∗(t, i, z)|2 ≤ C for all (t, i, z) ∈ [0, T ]×{1, . . . ,m}×S.
We next estimate E[(Xπ∗,l∗(T ∧ τa))

2γ ]. First of all, the dynamics of the wealth process can
be rewritten as, for s ∈ [t, T ],

dXπ∗,l∗ (s) =Xπ∗,l∗ (s)[r(Ys) + π∗(s, Y (s), Z(s))�θ(Y (s), Z(s))

+ l∗(s, Y (s), Z(s))(p(Y (s), Z(s)) − c(Y (s)))]ds
+ Xπ∗,l∗ (s)[π∗(s, Y (s), Z(s))�σ(Y (s)) − l∗(s, Y (s), Z(s))φ(Y (s))]dW (s)

− Xπ∗,l∗ (s)l∗(s, Y (s), Z(s))φ̄(Y (s))dW̄ (s)

− Xπ∗,l∗ (s−)π∗(s, Y (s), Z(s))�dZ(s)

− l∗(s−, Y (s−), Z(s−))Xπ∗,l∗ (s−)g(Y (s−))dN (s).

Then, Itô’s formula yields that for u ∈ [t, T ],

(Xπ∗,l∗(u))2γ =(Xπ∗,l∗(t))2γ + M̃π∗,l∗(u) − M̃π∗,l∗(t)

+
∫ u

t
(Xπ∗,l∗(s))2γ Ã(π∗(s, Y (s), Z(s)), l∗(s, Y (s), Z(s)); Y (s), Z(s))ds.

Here, for (π, l) ∈ (−∞, 1]n × [0,∞) and (i, z) ∈ {1, . . . ,m} × S,

Ã(π, l; i, z) =2γ
[
r(i) + π�(I − diag(z))θ(i, z) + (p(i, z) − c(i))l

]

+ γ (2γ − 1)
[
π�(I − diag(z))σ (i)σ (i)�(I − diag(z))π + l2

(
φ(i)φ(i)�

+ φ̄(i)φ̄(i)�
)

− 2lπ�(I − diag(z))σ (i)φ(i)�
]+ [(1 − lg(i))2γ − 1]ν(i, z)

+
n∑

j=1

[(1 − π j )
2γ − 1](1 − z j )h j (i, z).

The P-(local) martingale is given by, for t ∈ [0, T ],

M̃π∗,l∗ (t) :=
∫ t

0
(Xπ∗,l∗ (s))2γ [π∗(s, Y (s), Z(s))�σ(Y (s)) − l∗(s, Y (s), Z(s))φ(Y (s))]dW (s)

−
∫ t

0
(Xπ∗,l∗ (s))2γ l∗(s, Y (s), Z(s))φ̄(Y (s))dW̄ (s)

+
n∑

j=1

∫ t

0
(Xπ∗,l∗ (s−))2γ [(1 − π∗

j (s, Y (s−), Z(s−)))2γ − 1]dMj (s)

+
∫ t

0
(Xπ∗,l∗ (s−))2γ [(1 − lg(Y (s−)))2γ − 1]d Ñ (s).

As above, we have that ‖π∗(t, i, z)‖2 + |l∗(t, i, z)|2 ≤ C for all (t, i, z) ∈ [0, T ] ×
{1, . . . ,m} × S, and hence

|(1 − l∗(t, i, z)g(i))2γ − 1| ≤ (1 + γ )(|l∗(t, i, z)g(i)|2 + |l∗(t, i, z)g(i)|).
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Then, there exists a constant C > 0 such that for all (t, i, z) ∈ [0, T ] × {1, . . . ,m} × S,
|Ã(π∗(t, i, z), l∗(t, i, z), i, z)| ≤ C .

Thus, we have that for all t ∈ [0, T ],

Et,x,i,z
[
(Xπ∗,l∗ (T ∧ τa))

2γ ] = x2γ

+ Et,x,i,z

[∫ T∧τa

t
(Xπ∗,l∗ (s))2γ Ã(π∗(s, Y (s), Z(s)), l∗(s, Y (s), Z(s)); Y (s), Z(s))ds

]

≤ x2γ + Et,x,i,z

[∫ T

t
(Xπ∗,l∗ (s ∧ τa))

2γ
∣
∣Ã(π∗(s, Y (s), Z(s)), l∗(s, Y (s); Z(s)), Y (s), Z(s))

∣
∣ds

]

≤ x2γ + C
∫ T

t
Et,x,i,z[(Xπ∗,l∗ (s ∧ τa))

2γ ]ds.

The Gronwall’s inequality yields that

sup
a∈R+

Et,x,i,z
[
(Xπ∗,l∗(T ∧ τa))

2γ ] ≤ x2γ eCT ,

and hence {(Xπ∗,l∗(T ∧ τa))
γ }a∈R+ is uniformly integrable. This yields that

V (t, x, i, z) = Et,x,i,z[U (Xπ∗,l∗(T ))] = lim
a→∞Et,x,i,z[U (Xπ∗,l∗(T ∧ τa))] = xγ ϕ(t, i, z).

This verifies the validity of the conclusion (ii). ��
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