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Abstract Weconsider families of strongly consistentmultivariate conditional riskmeasures.
We show that under strong consistency these families admit a decomposition into a conditional
aggregation function and a univariate conditional risk measure as introduced Hoffmann et al.
(Stoch Process Appl 126(7):2014–2037, 2016). Further, in analogy to the univariate case in
Föllmer (Stat Risk Model 31(1):79–103, 2014), we prove that under law-invariance strong
consistency implies that multivariate conditional risk measures are necessarily multivariate
conditional certainty equivalents.
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1 Introduction

Over the recent years the study of multivariate risk measures

ρ : L∞d (F)→ R, (1.1)
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that associate a risk level ρ(X) to a d-dimensional vector X = (X1, . . . , Xd) of random
risk factors at a given future time horizon T has increasingly gained importance. Here,
L∞d (F) denotes the space of d-dimensional bounded random vectors on a probability space
(�,F,P).

A natural extension of the static viewpoint of deterministic risk measurement in (1.1)
is to consider conditional risk measures which allow for risk measurement under varying
information. A conditional multivariate risk measure is a map

ρG : L∞d (F)→ L∞(G), (1.2)

that associates to a d-dimensional risk factor a G-measurable bounded random variable,
where G ⊆ F is a sub-σ -algebra. We interpret ρG(X) as the risk of X given the informa-
tion G. In the present literature, conditional risk measures have mostly been studied within
the framework of univariate dynamic risk measures, where one adjusts the risk measure-
ment in response to the flow of information that is revealed when time elapses. For a good
overview on univariate dynamic risk measures we refer the reader to Acciaio and Penner
[1] or Tutsch [23]. One possible motivation to study conditional multivariate risk mea-
sures is thus the extension from univariate to multivariate dynamic risk measures, and to
study the question of what happens to the risk of a system as new information arises in
the course of time. In the context of multivariate risk measures, however, also a second
interesting and important dimension of conditioning arises, besides dynamic condition-
ing: Risk measurement conditional on information in space in order to identify systemic
relevant structures. In that case G represents for example information on the state of a
subsystem, and one is interested in questions of the type: How is the overall risk of the
system affected, given that a subsystem is in distress? Or how is the risk of a single insti-
tution affected, given the entire system is in distress? In Föllmer [12] and Föllmer and
Klüppelberg [13] the authors analyze such spatial conditioning in the context of univari-
ate conditional risk measures, so-called spatial risk measures. Another field of application
where these questions are important are systemic risk measures, which measure the risk of
a financial network. For instance the systemic risk measures CoVaR of Adrian and Brun-
nermeier [3] or the systemic expected shortfall of Acharya et al. [2] can be considered to
be examples of conditional multivariate risk measures. We refer to Hoffmann et al. [17]
and the references therein for a thorough discussion about the relation to systemic risk
measures.

When dealing with families of conditional risk measures, a frequently imposed require-
ment is that the conditional riskmeasurement behaves consistent in a certain waywith respect
to the flow of information. In particular, in the literature on univariate dynamic risk mea-
sures most often the so-called strong consistency is studied; c.f. Detlefsen and Scandolo
[10], Cheridito et al. [7], Cheridito and Kupper [8], Kupper and Schachermayer [20], Penner
[21]. Two univariate conditional risk measures ρG and ρH with corresponding σ -algebras
G ⊆ H ⊆ F are called strongly consistent if for all X, Y ∈ L∞(F)

ρH(X) ≤ ρH(Y ) �⇒ ρG(X) ≤ ρG(Y ), (1.3)

i.e. strong consistency states that if Y is riskier than X given the informationH, then this risk
preference also holds under less information.

The purpose of this paper is to study the concept of strong consistency for multivariate
conditional risk measures. Note that the motivation and interpretation of strong consistency
in (1.3) remains perfectly meaningful when extending to the multivariate case. In analogy
to the univariate case we thus define strong consistency of two multivariate conditional risk
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measures ρG and ρH with G ⊆ H ⊆ F as in (1.3) for any d-dimensional risk vectors X and Y
in L∞d (F). In the literature on dynamic consistency of univariate conditional risk measures a
number of weaker consistency concepts have been suggested which could also be considered
in the multivariate setting. For instance, one could consider acceptance consistency

ρH(X) ≤ α �⇒ ρG(X) ≤ α,

or rejection consistency

ρH(X) ≥ α �⇒ ρG(X) ≥ α,

where α ∈ G denotes a risk level below (resp. above) which a risk X is considered to be
acceptable (or is rejected, resp.) in every state, see Weber [24] or Tutsch [23]. This level
is typically set to be 0 in the cash-additive case (cash-additivity is defined below). In this
paper we only consider the stronger property of strong consistency given in (1.3). Our results,
however, show how restrictive strong consistency is and may be interpreted as supporting
weaker notions of consistency which are to be studied in future research.

As a first main result we prove that under some conditions the members of any family of
strongly consistent multivariate conditional risk measures are necessarily of the following
from:

ρG(X) = ηG (�G(X)) , (1.4)

where ηG : L∞(F)→ L∞(G) is a univariate conditional risk measure, and�G : L∞d (F)→
L∞(F) is a (conditional) aggregation function. This subclass of multivariate conditional risk
measures corresponds to the idea that we first aggregate the risk factors X and then evaluate
the risk of the aggregated values. In factmany prominent examples ofmultivariate conditional
risk measures are of type (1.4), for instance the Contagion Index of Cont et al. [9] or the
SystRisk of Brunnermeier and Cheridito [5] from the systemic risk literature. Chen et al. [6]
were the first to axiomatically describe this intuitive type of multivariate risk measures on
a finite state space, and in Kromer et al. [18] this has been extended to general L p-spaces,
whereas the conditional framework was studied in Hoffmann et al. [17]. We also remark that
in Kromer et al. [19] the authors study consistency of risk measures over time which can be
decomposed as in (1.4). However, their definition of consistency differs from ours in (1.3)
as they require consistency of the underlying univariate risk measure and the aggregation
function in (1.4) simultaneously. We will comment more on that in Remark 4.10.

A requirement on the strongly consistent family of multivariate conditional risk measures
we ask for here—which is automatically satisfied in the univariate case—is that it contains a
terminal riskmeasure ρF : L∞d (F)→ L∞(F) under full informationF . Such a terminal risk
measure is nothing but a statewise aggregation rule for the components of a risk X ∈ L∞d (F).
In the univariate case, if X ∈ L∞(F), there is of course no aggregation necessary. Indeed
letting the terminal risk measure correspond to the identity mapping, i.e. ρF = − id, we
have that any univariate risk measure ρG with G ⊆ F is strongly consistent with ρF by
monotonicity, so the existence of a terminal risk measure which is strongly consistent with
the other risk measures of the family is no further restriction. In the truly multivariate case,
however, it is very natural that also under full information there is a rule for aggregating
risk over the dimensions, and the risk measures in the family should be consistent with this
terminal aggregation rule. Another requirement is that the aggregation of constants under
ρG and ρF basically coincide. In case these requirements are fulfilled, we show, as already
mentioned, that the members of the family are necessarily of type (1.4). Indeed we show
that by strong consistency the risk measures inherit a property called risk-antitonicity in
Hoffmann et al. [17] from the terminal risk measure. This property is the essential axiom
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behind allowing for a decomposition of type (1.4); see Theorem 3.9. A consequence of
(1.4) and the stated requirements is that if the family of strongly consistent multivariate risk
measures includes a deterministic risk measure ρ{∅,�}, then all aggregations functions must
necessarily be deterministic, and in fact monotone transformations of each other.

Along the path to this result we characterize strong consistency in terms of a tower prop-
erty. It is well-known that for univariate conditional risk measures which are normalized on
constants (ηG(a) = −a for all a ∈ L∞(G)), strong consistency (1.3) is equivalent to the
following tower property:

ρG(X) = ρG
(− ρH(X)

)
for all X ∈ L∞(F), (1.5)

see e.g. Föllmer and Penner [14], Bion-Nadal [4], Tutsch [23], and the references therein. The
recursive formulation (1.5) is oftenmore useful than (1.3) when analyzing strong consistency.
The formulation (1.5), however, cannot be extended in a straight forward manner to the
multivariate case. Firstly, note that (1.5) is not evenwell-defined in themultivariate case since
ρH(X) is not a d-dimensional random vector but a random number. Secondly, also in the
univariate case the equivalence (1.3)⇔ (1.5) only holds for riskmeasures that are normalized
on constants, which in the monetary univariate case is implied up to a normalization by
requiring that this class of risk measures satisfy cash-additivity (ηG(X + a) = ηG(X)− a).
For multivariate risk measures there is neither a canonical extension of the concept of cash-
additivity nor is it clear that such a property is desirable at all. One could of course think of
generalized versions of cash-additivity in terms of eligible assets as in Farkas et al. [11] but
this would have no effect on the problem that strong consistency cannot be characterized by
(1.5). Nevertheless, we prove that there is a generalization of the recursive formulation (1.5)
of strong consistency which holds for multivariate risk measures without any normalized on
constants or cash-additivity assumption. Indeed, under some typical regularity assumptions,
one of our first results is that two multivariate conditional risk measures ρG and ρH with
G ⊆ H ⊆ F are strongly consistent if and only if for all X ∈ L∞d (F)

ρG(X) = ρG
(
f −1ρH(ρH(X))1d

)
, (1.6)

where 1d is a d-dimensional vector with all entries equal to 1, and f −1ρH is the (well-defined)
inverse of the function fρH associated to ρH given by

fρH : L∞(H)→ L∞(H);α �→ ρH(α1d). (1.7)

The map fρH describes the risk of a system where each component is equipped with the
same amount of (H-constant) cash α. Note that if ρH is a univariate risk measure that is
normalized on constants then fρH = − id is minus the identity map and (1.6) reduces to
(1.5). We call a multivariate risk measure ρH normalized whenever fρH = − id. In the
multivariate normalized case (1.6) thus becomes

ρG(X) = ρG
(− ρH(X)1d

)
.

Further, we remark that one can always ”normalize” a given conditional risk measure ρH by
putting

ρ̄H(X) := − f −1ρH ◦ ρH(X). (1.8)

Then ρ̄H is a multivariate conditional risk measure with fρ̄H = − id.
After studying strong consistency for general families of multivariate conditional risk

measures, we move on to give a characterization of strongly consistent multivariate condi-
tional risk measures which are also conditionally law-invariant. In contrast to before we do
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not require consistency with respect to a risk measure under full information, but with respect
to the initial risk measure given the trivial information {∅,�}. These studies were triggered
by the results obtained in Föllmer [12] for univariate risk measures, where it is shown that the
only family of univariate, strongly consistent, conditional, cash-additive, convex risk mea-
sures is the family of conditional entropic risk measures, i.e. conditional certainty equivalents
of the form

ρH(X) = −u−1 (EP [u(X) | H]) , X ∈ L∞(F),

with deterministic utility function u(x) = a + beβx or u(x) = a + bx, where a ∈ R and
b, β > 0 are constants. We also remark that Kupper and Schachermayer [20] showed this
characterization for the case of dynamic risk measures by an alternative proof. In the mul-
tivariate case we will see that every strongly consistent family of multivariate conditionally
law-invariant conditional risk measures consists of risk measures of type

ρH(X) = fρH
(
f −1u

(
EP [u(X) | H]

))
, X ∈ L∞d (F), (1.9)

where u : Rd → R is a multivariate utility function and fu(x) := u(x1d), x ∈ R. In
other words the normalized risk measure ρ̄H equals a multivariate conditional certainty
equivalent ρ̄H(X) = − ( f −1u

(
EP [u(X) | H]

))
. For the study of univariate conditional

certainty equivalents and their dynamic behavior we refer the interested reader to Frittelli
and Maggis [16].

1.1 Structure of the paper

In Sect. 2 we introduce our notation and multivariate conditional risk measures. In Sects. 3
and 4 we prove our main results outlined above for two strongly consistent conditional risk
measures, where the law-invariant case is studied in Sect. 4. Throughout Sect. 5 we extend
these results to families ofmultivariate conditional riskmeasures.Auxiliary results and longer
proofs are collected in the “Appendix”.

2 Setup

Throughout this paper (�,F,P) is a probability space. For d ∈ N we denote by L∞d (F) :=
{X = (X1, . . . , Xd) : Xi ∈ L∞(�,F,P) ∀i} the space of equivalence classes of F-
measurable, P-almost surely (a.s.) bounded random vectors. It is a Banach space when
equipped with the norm ‖X‖d,∞ := maxi=1,...,d ‖Xi‖∞ where ‖F‖∞ := esssup |F | is the
supremum norm for F ∈ L∞(�,F,P). We will use the usual componentwise orderings on
R
d and L∞d (F), i.e. x = (x1, . . . , xd) ≥ y = (y1, . . . , yd) for x, y ∈ R

d if and only if xi ≥ yi
for all i = 1, . . . , d , and similarly X ≥ Y if and only if Xi ≥ Yi P-a.s. for all i = 1, . . . , d .
Note that, as usual, we identify random variables with the P-a.s. equivalence classes they
induce, and conversely any such equivalence class with an arbitrary representative, whenever
this causes no confusion. 1d and 0d denote the d-dimensional vectors whose entries are all
equal to 1 or all equal to 0, respectively.

Definition 2.1 Let G ⊆ F . A conditional risk measure (CRM) is a function

ρG : L∞d (F)→ L∞(G),

possessing the following properties:
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(i) There exists a position with zero risk, i.e. 0 ∈ Im ρG .
(ii) Strict Antitonicity: X ≥ Y and P(X > Y ) > 0 implies ρG(X) ≤ ρG(Y ) and

P
(
ρG(X) < ρG(Y )

)
> 0.

(iii) G-Locality: For all A ∈ G we have ρG(X1A + Y1AC ) = ρG(X)1A + ρG(Y )1AC .
(iv) Lebesgue property: If (Xn)n∈N ⊂ L∞d (F) is a ‖ · ‖d,∞-bounded sequence such that

Xn → X P-a.s., then

ρG(X) = lim
n→∞ ρG(Xn) P-a.s.

We remark that the properties in Definition 2.1 are standard in the literature on conditional
risk measures. Note that strict antitonicity is sometimes also referred to as strong sensitivity
in the literature. In order to stress the dimension we often use the term univariate conditional
risk measure for a conditional risk measure as defined in Definition 2.1 with d = 1 and
we typically denote it by ηG . For d > 1 the risk measure ρG of Definition 2.1 is called
multivariate conditional risk measure.

A standard assumption on univariate CRMs is cash-additivity, i.e. ηG(X+α) = ηG(X)−α

for all α ∈ L∞(G), which in particular implies that we postulate a certain behavior of the
risk measure ηG on (G)-constants α ∈ L∞(G) which turns out to be helpful in the study of
consistency in dimension 1. Given that a multivariate analogue of cash-additivity is tricky to
define and probably not reasonable to ask for, we do not require such a property. However,
we will have to extract the behavior of a CRM on constants in the following way.

Definition 2.2 For every CRM ρG : L∞d (F)→ L∞(G) we introduce the function

fρG : L∞(G)→ L∞(G);α �→ ρG(α1d)

and the corresponding inverse function

f −1ρG : Im fρG → L∞(G);β �→ α such that fρG (α) = β.

We call ρG normalized on constants if

fρG (α) = −α for all α ∈ L∞(G).

For any CRM ρG : L∞d (F)→ L∞(G), let ρ̄G := − f −1ρG ◦ρG be the normalized CRM of ρG .

In “Appendix A” we show that f −1ρG is well-defined. Also, it follows from Lemma A.1 and
Lemma A.2 that ρ̄G is indeed a CRM which is normalized on constants.

Example 2.3 Consider a strictly increasing continuous function u : R→ R such that u(0) =
0 and define

ρG(X) := −EP

[

u

(
1

d

d∑

i=1
Xi

) ∣∣∣∣∣
G
]

, X = (X1, . . . , Xd) ∈ L∞d (F).

Then ρG is a CRM, and fρG (α) = −u(α), α ∈ L∞(G), whereas f −1ρG (β) = u−1(−β), β ∈
Im fρG . The corresponding normalized risk measure is the conditional certainty equivalent

ρ̄G(X) = −u−1
(

EP

[

u

(
1

d

d∑

i=1
Xi

) ∣∣∣∣∣
G
])

, X = (X1, . . . , Xd) ∈ L∞d (F).
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3 Strong consistency

In this section we study consistency of CRMs. We consider the most frequently used con-
sistency condition for univariate risk measures in the literature which is known as strong
consistency and extend it to the multivariate case. We refer to Detlefsen and Scandolo [10],
Cheridito et al. [7], Cheridito and Kupper [8], Kupper and Schachermayer [20], and Penner
[21] for more information on strong consistency of univariate risk measures. Kromer et al.
[19] also study a kind of consistency for multivariate risk measures, however, as we will point
out in Remark 4.10 below, their definition of consistency differs from our approach. For the
remainder of this section we let G and H be two sub-σ -algebras of F such that G ⊆ H, and
let ρG : L∞d (F)→ L∞(G) and ρH : L∞d (F)→ L∞(H) be the corresponding CRMs.

Definition 3.1 (Strong consistency) The pair {ρG, ρH} is called strongly consistent if
ρH(X) ≤ ρH(Y ) ⇒ ρG(X) ≤ ρG(Y ) (X, Y ∈ L∞d (F)). (3.1)

Strong consistency states that if one risk is preferred to another risk in almost surely all
states under more information, then this preference already holds under less information. Our
first result shows that strong consistency can be equivalently defined by a recursive relation.

Lemma 3.2 Equivalent are:

(i) {ρG, ρH} is strongly consistent;
(ii) For all X ∈ L∞d (F) it holds that

ρG(X) = ρG
(
f −1ρH

(
ρH(X)

)
1d
)
,

where f −1ρH was defined in Definition 2.2.

Proof (i)⇒(ii): As for all X ∈ L∞d (F)

ρH(X) = ρH
(
f −1ρH (ρH(X)) 1d

)
,

it follows from strong consistency that

ρG(X) = ρG
(
f −1ρH (ρH(X)) 1d

)
.

(ii)⇒(i): Let X, Y ∈ L∞d (F) be such that ρH(X) ≤ ρH(Y ). Then by antitonicity of f −1ρH
(see Lemma A.1) and ρG it follows that

ρG(X) = ρG
(
f −1ρH

(
ρH(X)

)
1d
)
≤ ρG

(
f −1ρH

(
ρH(Y )

)
1d
)
= ρG(Y ).

��
Remark 3.3 Let ηG and ηH be two univariate CRMs, where ηH is normalized on constants,
i.e. ηH(α) = −α for all α ∈ L∞(H). Then fηH(α) = f −1ηH (α) = −α and thus strong
consistency is equivalent to the tower property [see (1.5)]

ηG(F) = ηG
(− ηH(F)

)
, F ∈ L∞(F).

Remark 3.4 If {ρG, ρH} is strongly consistent so is the pair of normalized CRMs {ρ̄G, ρ̄H}
as defined in Definition 2.2 and vice versa, because fρG , fρH and their inverse functions
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are antitone (Lemma A.1). Since fρ̄G = fρ̄H = − id strong consistency of the normalized
CRMs is equivalent to

ρ̄G(F) = ρ̄G
(− ρ̄H(F)1d

)
, F ∈ L∞(F),

in analogy to Remark 3.3.

Lemma 3.5 If {ρG, ρH} is strongly consistent, then ρG uniquely determines the normalized
CRM ρ̄H = − f −1ρH ◦ ρH.

Proof Suppose that there are two CRMs ρ1
H and ρ2

H which are strongly consistent with
respect to ρG , i.e.

ρG
(
f −1
ρ1
H

(
ρ1
H(X)

)
1d
)
= ρG(X) = ρG

(
f −1
ρ2
H

(
ρ2
H(X)

)
1d
)
, X ∈ L∞d (F).

We will show that f −1
ρ1
H

(
ρ1
H(X)

) = f −1
ρ2
H

(
ρ2
H(X)

)
. Suppose that there exists an X ∈ L∞d (F)

such that A :=
{
f −1
ρ1
H

(
ρ1
H(X)

)
> f −1

ρ2
H

(
ρ2
H(X)

)
}
∈ H has positive probability. Then, by the

H-locality of ρ1
H and ρ2

H and of f −1
ρ1
H

and f −1
ρ2
H

(Lemma A.1), we obtain

ρG(X1A) = ρG
(
f −1
ρ1
H

(
ρ1
H(X1A)

)
1d
)
= ρG

(
f −1
ρ1
H

(
ρ1
H(X)

)
1A1d

)

≤ ρG
(
f −1
ρ2
H

(
ρ2
H(X)

)
1A1d

)
= ρG

(
f −1
ρ2
H

(
ρ2
H(X1A)

)
1d
)

= ρG(X1A). (3.2)

where the inequality (3.2) is strict with positive probability as ρG is strictly antitone, and
hence we have a contradiction. Reverting the role of ρ1

H and ρ2
H in the definition of A proves

the lemma. ��
In Hoffmann et al. [17] we studied under which conditions a (multivariate) conditional

risk measure can be decomposed as in (1.4), i.e. into a conditional aggregation function and
a univariate conditional risk measure. We will pursue showing that strong consistency of
{ρG, ρF } is already sufficient to guarantee a decomposition (1.4) for both ρG and ρF . To this
end we need to clarify what we mean by a conditional aggregation function:

Definition 3.6 Wecall a function� : L∞d (F)→ L∞(F) a conditional aggregation function
if it fulfills the following properties:

Strict isotonicity: X ≥ Y and P(X > Y ) > 0 implies �(X) ≥ �(Y ) and P
(
�(X) >

�(Y )
)

> 0.
F-Locality: �(X1A + Y1AC ) = �(X)1A +�(Y )1AC for all A ∈ F ;

Lebesgue property: For any uniformly bounded sequence (Xn)n∈N in L∞d (F) such that
Xn → X P-a.s., we have that

�(X) = lim
n→∞�(Xn) P-a.s.

If in addition

�(L∞d (J )) ⊆ L∞(J ) for all H ⊆ J ⊆ F,

whereH ⊂ F we call� aH-conditional aggregation function.Moreover, for any conditional
aggregation function � : L∞d (F)→ L∞(F) let

f� : L∞(F)→ L∞(F); F �→ �(F1d)
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and

f −1� : Im f� → L∞(F);G �→ F such that f�(F) = G.

Remark 3.7 The name H-conditional aggregation function refers to the fact that �(x) ∈
L∞(H) for all x ∈ R

d . Thus every conditional aggregation function is at leastF-conditional.

Before we state our decomposition result for strongly consistent CRMs in Theorem 3.9
we need the following definition.

Definition 3.8 A realization ρG(·, ·) of a function ρG : L∞d (F)→ L∞(G) is a selection of
one representative ρG(X, ·) of the equivalence class ρG(X) ∈ L∞(G) for each X ∈ L∞d (F).
We call such a realization continuos whenever Rd ×� � (x, ω) �→ ρG(x, ω) is continuous
in its first argument P-a.s. Here we identify x ∈ R

d with the equivalence class in L∞d (F)

determined by the corresponding constant random vector.

Theorem 3.9 Let ρG : L∞d (F)→ L∞(G) and ρF : L∞d (F)→ L∞(F) be CRMs such that
{ρG, ρF } is strongly consistent. Moreover, suppose that

ρ̄G(x) = ρ̄F (x) for all x ∈ R
d . (3.3)

If ρG has a continuous realization ρG(·, ·), then there exists a G-conditional aggregation
function �G : L∞d (F)→ L∞(F) and a univariate CRM ηG : Im�G → L∞(G) such that

ρG(X) = ηG
(
�G(X)

)
for all X ∈ L∞d (F) (3.4)

and
ηG
(
�G(X)

) = −�G(X) for all X ∈ L∞d (G). (3.5)

Let �F := −ρF and ηF := − id so that ρF = ηF ◦ �F for the conditional aggregation
function �F and the univariate CRM ηF . Then �F (α) ∈ L∞(G) for all α ∈ L∞d (G) and

�F (X) ≤ �F (Y ) �⇒ �G(X) ≤ �G(Y ) (X, Y ∈ L∞d (F)), (3.6)

i.e. �G and �F are strongly consistent.
Conversely, suppose that the CRM ρG : L∞d (F)→ L∞(G) satisfies (3.4) and (3.5), then

{ρG, ρF } is strongly consistent and satisfies (3.3), where ρF := −�G is a CRM.

A proof of Theorem 3.9 is provided in “Appendix B”. We remark that in Theorem 3.9 we
require consistency of the pair {ρG, ρF } where ρF is a CRM given the full information F .
Note that ρF is (apart from the sign) simply a conditional aggregation function as defined in
Definition 3.6, so ρG is required to be consistent with some aggregation function under full
information. This also explains �F . For d = 1 this consistency is automatically satisfied
by monotonicity, the aggregation is simply the identity function, and clearly the assertion is
trivial anyway. For higher dimensions, Theorem 3.9 states that if there exists an aggregation
function which is consistent with ρG , then ρG is automatically of type (3.4). Clearly, if we
already know that (3.4) holds true, then ρG is consistent with ρF = −�G .

Condition (3.3) is a strengthening of strong consistency in absence of any risk, that is
for constants, since it states that in that case aggregation under ρG equals aggregation under
full information ρF up to normalization with f −1ρG and f −1ρF , respectively . Note that we may

replace condition (3.3) by requiring ρ̄F (x) ∈ L∞(G) for all x ∈ R
d . Indeed, in the setting of

Theorem 3.9, assuming (3.3), the theorem shows that ρF (α) = −�F (α) ∈ L∞(G) for all

123



422 Math Finan Econ (2018) 12:413–444

α ∈ L∞d (G) and thus the same is true for ρ̄F . Conversely, if ρ̄F (x) ∈ L∞(G), then by strong
consistency we have that

ρ̄G(x) = ρ̄G
(− ρ̄F (x)1d

) = ρ̄F (x), x ∈ R
d ,

which is condition (3.3). As regards the required existence of a continuous realization of ρG ,
sufficient criteria are well-known, e.g. Kolmogorov’s criterion; see Theorem 2.1 in Revuz
and Yor [22].

Remark 3.10 We show in Lemma A.3 that the inverse function f −1�G
of f�G is isotone and

that �G(X) = �G
(
f −1�G

(�G(X))1d
)
for all X ∈ L∞d (F). Therefore it can be shown as in

Lemma 3.2, that (3.6) is equivalent to

f −1�G

(
�G(X)

) = f −1�F

(
�F (X)

)
, for all X ∈ L∞d (F).

Note that we cannot write the recursive form of the strong consistency of two CRMs ρG and
ρF as above, since fρG is only defined on L∞(G) and not on L∞(F) in contrast to f�G .

The following Theorem 3.11 extends the results in Hoffmann et al. [17] for strong con-
sistency based on our findings in Theorem 3.9.

Theorem 3.11 If ρG : L∞d (F)→ L∞(G) is a CRM with a continuous realization ρG(·, ·),
then the following three statements are equivalent

(i) ρG(·, ·) is risk-antitone, that is ρG(X (ω), ω) ≥ ρG(Y (ω), ω) P-a.s., implies ρG(X) ≥
ρG(Y );

(ii) ρG is decomposable as in (3.4);
(iii) ρG is strongly consistent with some aggregation function � : L∞d (F)→ L∞(F), i.e.

{ρG,−�} is strongly consistent, and ρ̄G(x) = − f −1�F

(
�F (x)

)
for all x ∈ R

d .

Proof The equivalence of (ii) and (iii) has been shown in Theorem 3.9 and that (i) implies
(ii) follows from Proposition B.1. Finally, the proof of Theorem 3.9 shows that (iii) implies
(i). ��
Example 3.12 Recall Example 2.3. In that case ρ̄G(x) = − 1

d

∑d
i=1 xi for all x =

(x1, . . . , xd) ∈ R
d , so condition (3.3) is satisfied whenever ρF (X) = −l(∑d

i=1 Xi ) for
some strictly increasing function l : R→ R, so in particular for l = u. Moreover, we may
choose the realization of ρG such that ρG(x, ω) = −u( 1d

∑d
i=1 xi ), x = (x1, . . . , xd) ∈ R

d ,
which is obviously continuous in x . Replacing the sum by a conditional aggregation function,
for instance −ρF (x) = �F (x) = ∑d

i=1 ai xi1A +∑d
i=1 bi xi1Ac , x = (x1, . . . , xd) ∈ R

d ,
where ai , bi > 0 are weights and P(A) > 0, then indeed (3.3) requires that A ∈ G.

4 Conditional law-invariance and strong consistency

As in the previous section, if not otherwise stated, throughout this section we let G and
H be two sub-σ -algebras of F such that G ⊆ H, and let ρG : L∞d (F) → L∞(G) and
ρH : L∞d (F)→ L∞(H) be the corresponding CRMs.

Definition 4.1 A CRM ρG is conditional law-invariant if ρG(X) = ρG(Y ) whenever the
G-conditional distributions μX (·|G) and μY (·|G) of X, Y ∈ L∞d (F) are equal, i.e. if P(X ∈
A | G) = P(Y ∈ A | G) for all Borel sets A ∈ B(Rd). In case G = {∅,�} is trivial,
conditional law-invariance of ρG is also referred to as law-invariance.
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In the law-invariant case we will often have to require a little more regularity of the
underlying probability space (�,F,P):

Definition 4.2 We say that (�,F,P) is

atomless, if (�,F,P) supports a random variable with con-
tinuous distribution;

conditionally atomless given H ⊂ F , if (�,F,P) supports a random variable with con-
tinuous distribution which is independent of H.

The next lemma shows that conditional law-invariance is passed from ρG (forward) to ρH
by strong consistency. The proof is based on Föllmer [12].

Lemma 4.3 If {ρG, ρH} is strongly consistent and ρG is conditionally law-invariant, then
ρH is also conditionally law-invariant.

Proof Let X, Y ∈ L∞(F) such thatμX (·|H) = μY (·|H) and let A := {ρH(X) > ρH(Y )} ∈
H. Then the random variables X1A and Y1A have the same conditional distribution given
G. As ρG is conditionally law-invariant and strongly consistent with ρH we obtain

ρG
(
f −1ρH

(
ρH(X)1A + ρH(0d)1AC

)
1d
)
= ρG(X1A) = ρG(Y1A)

= ρG
(
f −1ρH

(
ρH(Y )1A + ρH(0d)1AC

)
1d
)
.

On the other hand, by strict antitonicity of ρG and f −1ρH

ρG
(
f −1ρH

(
ρH(X)1A + ρH(0d)1AC

)
1d
)
≥ ρG

(
f −1ρH

(
ρH(Y )1A + ρH(0d)1AC

)
1d
)
,

and the inequality is strict with positive probability ifP(A) > 0. Thus Amust be aP-nullset
and interchanging X and Y in the definition of A shows that indeed ρH(X) = ρH(Y ). ��

While in Theorem 3.9 we had to require that the strongly consistent pair {ρG, ρH} satisfies
H = F , in this sectionwe in some sense require the opposite extreme, namely thatG = {∅,�}
is trivial while H ⊆ F .

Assumption 1 For the rest of the section we assume that G = {∅,�}. For simplicity we will
write ρ := ρG = ρ{∅,�}.

In the following we extend the representation result of Föllmer [12] to multivariate CRMs.

Theorem 4.4 Let (�,H,P) be atomless and let (�,F,P) be conditionally atomless given
H. Suppose that ρ is law-invariant. Then, {ρ, ρH} is strongly consistent if and only if ρ and
ρH are of the form

ρ(X) = g
(
f −1u

(
EP [u(X)]

))
for all X ∈ L∞d (F) (4.1)

and
ρH(X) = gH

(
f −1u

(
EP [u(X) | H]

))
for all X ∈ L∞d (F) (4.2)

where u : Rd → R is strictly increasing and continuous, f −1u : Im fu → R is the inverse
function of

fu : R→ R; x �→ u(x1d)
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and g : R → R and gH : L∞(H) → L∞(H) are strictly antitone, fulfill the Lebesgue
property, 0 ∈ Im g ∩ Im gH, and gH is H-local.

In particular, for any CRM ρ of type (4.1) we have that g = fρ , and similarly for any
CRM ρH of type (4.2) we have gH = fρH , where fρ and fρH are defined in Definition 2.2.

The proof of Theorem 4.4 is provided in “Appendix C”. Note that the common function
u : Rd → R appearing in (4.1) and (4.2) can be seen as a multivariate utility where u being
strictly increasing means that x, y ∈ R

d with x ≥ y and x �= y implies u(x) > u(y).
So f −1u

(
EP [u(·)] ) and f −1u

(
EP [u(·) | H]

)
are (conditional) certainty equivalents – in the

univariate case (d = 1) we clearly have f −1u = u−1. Thus if ρ and/or ρH in Theorem 4.4
are normalized on constants (and hence fρ ≡ − id or fρH ≡ − id), then ρ and/or ρH equal
(minus) certainty equivalents. But (4.1) and (4.2) also comprise other prominent classes of
risk measures. For instance if fρ = − fu or fρH = − fu , then ρH(X) = −EP [u(X)]
is an multivariate expected utility whereas ρH(X) = −EP [u(X) | H] is a multivariate
conditional expected utility.

Example 4.5 We have seen in Theorem 4.4 that under some mild technical assumptions on
the probability space every pair {ρ, ρH} of law-invariant CRMs is strongly consistent if and
only if it is of the form (4.1) and (4.2). This class comprises two important subclasses: Firstly,
if fρ = − id and fρH = − id, then

ρ(X) = − f −1u (EP [u(X)]) and ρH(X) = − f −1u (EP [u(X) | H]) ,

which are multivariate conditional certainty equivalents with deterministic utility function u.
Secondly, if fρ = − fu and fρH = − fu , then

ρ(X) = −EP [u(X)] and ρH(X) = −EP [u(X) | H] ,

is a multivariate conditional expected utility.

Recall Theorem 3.9 where we proved that if a multivariate CRM ρH is strongly consistent
in a forward looking way with an aggregation ρF under full information F (and ρF fulfills
(3.3)), then the multivariate CRM can be decomposed as in (3.4). The following Theorem 4.6
shows thatwe also obtain such a decomposition (3.4) under law-invariance by requiring strong
consistency of ρH in a backward looking way with ρ given trivial information {∅,�}.

When stating Theorem 4.6 we will need an extension of fρH to L∞(F): Suppose that
the process R � a �→ fρH(a) allows for a continuous realization. Due to the fact that ρH
is strictly antitone and H-local, we can find a possibly different realization fρH(·, ·) such
that f̃ρH : R × � → R : x �→ fρH(x, ω) is continuous and strictly decreasing in the first
argument for all ω ∈ �. Note that there exists a well-defined inverse f̃ −1ρH(·, ω) of f̃ρH(·, ω)

for all ω ∈ �. Now define the functions

f̄ρH : L∞(F)→ L∞(F); F �→ f̃ρH(F(ω), ω) (4.3)

and

f̄ −1ρH : Im f̄ρH → L∞(F); F �→ f̃ −1ρH(F(ω), ω),

where we with the standard abuse of notation identify the random variable f̃ρH(F(ω), ω) or
f̃ −1ρH(F(ω), ω) with the equivalence classes they generate in L∞(F).

By construction of f̄ρH we have that

f̄ρH(L∞(J )) ⊆ L∞(J )
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for all σ -algebras J such that σ
(
fρH(a, ·), a ∈ R

) ⊆ J ⊆ F , c.f. Hoffmann et al. [17,
Lemma 3.1]. By definition f̄ρH is also F-local and has the Lebesgue property due to conti-
nuity of R � a �→ f̃ρH(a, ω). Moreover, H-locality and continuity also imply that indeed
f̄ρH(X) = fρH(X) for all X ∈ H (approximation by simple random variables), so f̄ρH is
indeed an extension of fρH to L∞(F).

Theorem 4.6 Under the same conditions as in Theorem 4.4 let {ρ, ρH} be strongly consis-
tent. Then ρ can be decomposed as

ρ = η ◦�,

where

� : L∞d (F)→ L∞(F); X �→ − fρ
(
f −1u (u(X))

)

is a {∅,�}-conditional aggregation function,

η : Im�→ R; F �→ −U−1 (EP [U (F)])

is a law-invariant univariate certainty equivalent given by the (deterministic) utility

U : Im ρ → R; a �→ fu
(
f −1ρ (−a)

)

which is strictly increasing and continuous. Here u : Rd → R is the multivariate utility
function from Theorem 4.4.
If the function R � a �→ fρH(a) has a continuous realization, then ρH can be decomposed
as

ρH = ηH ◦�H,

with

ηH (�H(X)) = −�H(X), for all X ∈ L∞d (H),

where

• �H : L∞d (F) → L∞(F); X �→ − f̄ρH
(
f −1u (u(X))

)
is a σ

(
fρH(a, ·) : a ∈ R

)
-

conditional aggregation function ( fρH(a, ·) denotes a continuous realizationwith strictly
increasing paths);
• ηH : Im�H → L∞(H); F �→ −U−1H (EP [UH(F) | H]) is a univariate conditional

certainty equivalent;

• the stochastic utilityUH : Im�H → L∞(F); F �→ fu
(
f̄ −1ρH(−F)

)
is strictly isotone,

F-local, fulfills the Lebesgue property and U−1H (ImUH ∩ L∞(H)) ⊆ L∞(H);
• f̄ρH is given in (4.3).

Moreover, it holds that
UH ◦�H = u = U ◦� (4.4)

are deterministic and independent of the chosen information H or {�,∅}.
Finally we also have that f −1�H

◦�H = f −1u ◦u = f −1� ◦�, i.e. {�,�H} is strongly consistent
as defined in (3.6).

Proof By Theorem 4.4 we have that

ρH(X) = fρH
(
f −1u (EP [u(X) | H])

)

= f̄ρH

(
f −1u

(
EP

[
fu
(
f̄ −1ρH

(
f̄ρH

(
f −1u (u(X))

))) ∣∣∣ H
]))

,
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where u and fu are given in Theorem 4.4. Hence, recalling the definitions of UH, ηH, and
�H, we haveρH = ηH◦�H. It can be readily seen thatUH aswell asU−1H , and thus also�H,
are F-local, strictly isotone, and fulfill the Lebesgue property. As f̄ρH(L∞(J )) ⊆ L∞(J )

for all σ -algebras J such that σ
(
fρH(a, ω) : a ∈ R

) ⊆ J ⊆ F , the same also applies to
�H = − f̄ρH ◦ f −1u ◦ u and we conclude that �H is a σ

(
fρH(a, ω) : a ∈ R

)
-conditional

aggregation function. Moreover, for X ∈ L∞d (H)

ηH (�H(X)) = f̄ρH
(
f −1u (u(X))

) = −U−1H
(
u(X)

) = −�H(X).

The result forρ follows similarly to the proof abovewithout requiring a continuous realization
and by using the canonical extension of fρ from R to L∞d (F), i.e. f̄ρ(F)(ω) = fρ(F(ω))

for all ω ∈ � and F ∈ L∞(F). ��
We remark that (4.4) is the crucial fact which ensures that ρ and ρH are strongly consistent

and (conditionally) law-invariant.
In Theorem 4.6 we have seen that basically every CRM which is strongly consistent with

a law-invariant CRM under trivial information can be decomposed into a conditional aggre-
gation function and a univariate conditional certainty equivalent. For the rest of this section
we study the effect of additional properties of the CRMs on this decomposition. For instance,
we want to identify conditions under which the univariate conditional certainty equivalent is
generated by a deterministic (instead of a stochastic) utility function; see Corollary 4.7. Also
we study what happens if the univariate CRMs η and ηH from Theorem 4.6 are required to
be strongly consistent; see Corollary 4.9.

Corollary 4.7 In the situation of Theorem 4.6, if ρ is normalized on constants, then

�(X) = f −1u (u(X)), X ∈ L∞d (F),

and

η(F) = ρ(F1d) = − f −1u (EP [ fu(F)]), F ∈ L∞(F).

If ρH is normalized on constants, then similarly

�H(X) = f −1u (u(X)), X ∈ L∞d (F),

and

ηH(F) = ρH(F1d) = − f −1u (EP [ fu(F) | H]), F ∈ L∞(F).

In particular the univariate conditional certainty equivalent ηH is now given by the deter-
ministic univariate utility function fu, and thus ηH is conditionally law-invariant.
If both ρ and ρH are normalized on constants, then � = �H.

Example 4.8 Suppose that ρ and ρH from Theorem 4.6 are normalized on constants and that
for all F,G ∈ L∞(F), m, λ ∈ R with λ ∈ (0, 1)

ρ(F1d + m1d) = ρ(F1d)− m (4.5)

as well as
ρ
(
λF1d + (1− λ)G1d

) ≤ λρ(F1d)+ (1− λ)ρ(G1d). (4.6)

Recalling Corollary 4.7 it follows that η(F) = ρ(F1d) is cash-additive (4.5) and convex
(4.6). Since fu is a deterministic function it can be easily checked that η and ηH are strongly
consistent (conditionally) law-invariant univariate CRMs. Therefore we are in the framework
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of Föllmer [12]. There it is shown that the univariate CRMsmust be either linear or of entropic
type, i.e.

fu(x) = ax + b or fu(x) = −ae−βx + b, x ∈ R,

for constants a, b, β ∈ R with a, β > 0, which implies that

ηH(F) = EP [−F | H] or ηH(F) = 1

β
log

(
EP

[
e−βF

∣
∣
∣ H

])

and similarly for η. Clearly, this also has consequences for the aggregation function � =
�H = f −1u ◦ u since x �→ u(x1d) = fu(x) is either of linear or exponential form. For
instance, a possible aggregation would be given by u(x1, . . . , xd) = a

∑d
i=1 wi xi + b,

where wi ∈ (0, 1) for i = 1, . . . , d such that
∑d

i=1 wi = 1, because fu(x) = ax + b. In this
case the aggregation function is simply �(x) =∑d

i=1 wi xi .

Corollary 4.9 In the situation of Theorem 4.6, suppose that η and ηH are defined on all of
L∞(F). Then {η, ηH} are strongly consistent if and only if

η = −ũ−1 (EP [̃u(F)]) and ηH = −ũ−1 (EP [ ũ(F) | H])

for a continuous and strictly increasing utility function ũ : R → R. Moreover, the corre-
sponding (conditional) aggregation functions are given by

� = − fρ ◦ f −1u ◦ u and �H = − fρ ◦ f −1u ◦ aH ◦ u,

where aH(F) = αF + β, F ∈ L∞(F), is a positive affine transformation given by α, β ∈
L∞(H) with P(α > 0) = 1.

Proof Asη is law-invariant, it follows fromLemma4.3 thatηH is conditionally law-invariant.
Moreover, fη ≡ fηH ≡ − id, i.e.η andηH are normalized on constants. Thus byTheorem4.4
we obtain that

η = −ũ−1 (EP [̃u(F)]) and ηH = −ũ−1 (EP [ ũ(F) | H])

for a continuous and strictly increasing function ũ : R→ R. It follows from Proposition D.1
thatU as well asUH are affine transformations of ũ. This in turn implies thatUH = ãH ◦U ,
where ãH(F) = α̃F + β̃ for α̃, β̃ ∈ L∞(H) with P(α̃ > 0) = 1. Finally we obtain that the
σ
(
fρH(a, ω), a ∈ R

)
-conditional aggregation function �H is given by

�H = U−1H ◦ u = U−1 ◦ ã−1H ◦ u = − fρ ◦ f −1u ◦ ã−1H ◦ u.

Since the inverse aH := ã−1H of an affine function is affine the result follows. ��
Remark 4.10 Our notion of consistency is defined in terms of the multivariate CRMs. In
contrast in Kromer et al. [19] it is a priori assumed that the multivariate CRMs are of the
decomposable form ρ = η ◦ � as in (3.4) and they define ”consistency” of {ρG, ρH} by
requiring strong consistency of both pairs {ηG, ηH} and {�G,�H}. Note that these definitions
of consistency are not equivalent, in particular strong consistency of both {ηG, ηH} and
{�G,�H} does not imply strong consistency of {ρG, ρH}. Kromer et al. [19] also study the
interplay of the strong consistency of {ρG, ρH} and of strong consistency of both {ηG, ηH}
and {�G,�H}. As Corollary 4.9 shows in the law-invariant case this requirement is quite
restrictive.
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5 Consistency of a family of conditional risk measures

So far we only considered consistency for two multivariate CRMs. In this section we extend
our results on strong consistency to families of multivariate CRMs. We begin with some
motivating examples.

Example 5.1 (Dynamic risk measures) If one is interested in a dynamic risk measurement
under growing information in time up to a terminal time T > 0, this can be modeled by a
family of CRMs (ρt )t∈[0,T ] and a filtration (Ft )t∈[0,T ] such that ρt : L∞d (FT )→ L∞(Ft ).

In systemic risk measurement conditioning on varying information in space rather than in
time is of interest. In that situation, as opposed to Example 5.1, the family of multivariate
CRMs is not necessarily indexed by a filtration. To exemplify this we recall a multivariate
version of the spatial riskmeasureswhich have been introduced byFöllmer [12] in a univariate
framework.

Example 5.2 (Multivariate spatial riskmeasures) Let I = {1, . . . , d} denote a set of financial
institutions and let (S,S) be a measurable space. Each financial institution i ∈ I can be in
some state s ∈ S, and � = SI = {ω = (ω)i∈I : ωi ∈ S} denotes all possible states of
the system. Then the σ -algebra FJ on � which is generated by the canonical projections
on the j-th coordinate for j ∈ J describes the observable information within the subsystem
of financial institutions J ⊆ I . Finally let P be a probability measure on (�,F), where
F := FI . Then the risk evolution under varying spatial information can be modeled by the
family of CRMs (ρJ )J⊆I , where each ρJ : L∞d (F) → L∞(FJ ), i.e. ρJ is the risk of the
system given the information on the state of the financial institutions within the subsystem
J .

From the viewpoint of a regulator, systemic risk measurement contingent on information
in space is helpful in identifying systemic relevant structures, i.e. in analyzing questions like:
”How much is the system affected given that a specific institution or subgroup of institutions
is in distress?”, or ”How resilient is a specific institution or subgroup of institutions given that
the system is in distress?”. In Example 5.2 the spatial conditioning is based on a σ -algebra
which is generated by all possible states of the institutions within a given subsystem. To treat
questions of the type mentioned before one might alternatively consider conditioning with
respect to more granular information in space. For instance, in the spirit of the systemic risk
measures CoVaR in Adrian and Brunnermeier [3] or Systemic Expected Shortfall in Acharya
et al. [2] one could condition on a single crisis eventwith respect to a given subsystem, e.g. that
all financial institutions within the subsystem are below their individual value-at-risk levels.

In Example 5.1 as well as Example 5.2 the families of CRMs are indexed by one-
dimensional information structure. However, in Frittelli and Maggis [16], they propose
conditional certainty equivalents based on a one-dimensional information structure caused
by the fact that utilities of agents may vary over time:

Example 5.3 (Conditional certainty equivalents) Let (�,F, (Ft )t∈R+ ,P) be an atomless
filtered probability space and let ut : R×�→ R be a function which is strictly increasing
and continuous in the first argument andFt -measurable in the second argument for all t ∈ R

+.
Suppose that the rangeRt := {ut (x, ω) : x ∈ R} is independent of ω ∈ �, thatRt ⊆ Rs for
all s ≤ t , and denote the pathwise inverse function of u by u−1t (y) ∈ L∞(Ft ) for all y ∈ Rt ,
where ut (x) and u

−1
t (y) is the shorthand for ut (x, ·) and u−1t (y, ·), resp. Then the backward

conditional certainty equivalent is given by

Cs,t : L∞(Ft )→ L∞(Fs); F �→ Cs,t (F) = −u−1s

(
EP [ut (F) | Fs]

)
.

123



Math Finan Econ (2018) 12:413–444 429

It has been shown in Frittelli and Maggis [16, Proposition 1.1] that for a fixed T ∈ R
+, we

have that the family (Ct,T )t≤T is consistent, i.e. for all s ≤ t ≤ T

Ct,T (F) ≥ Ct,T (G) �⇒ Cs,T (F) ≥ Cs,T (G) (F,G ∈ L∞(FT )).

Also in the context of conditioning on spatial information a two-dimensional information
structure could be of interest, for example to represent risk measurement policies that differ
locally in the financial system.

Example 5.4 (Local regulatory policies) In the context of Example 5.2, let I = {1, . . . , d} be
a network of financial institutions that is of interest for supervisory authorities associated to
different levelswith possibly different regulatory policies. For example, think of I as theEuro-
pean financial system. Then regulatory policies of authorities on the European level might
differ from policies on the national levels which again might differ from regional policies. To
include these different regulatory viewpoints into the framework of spatial risk measures one
could consider a family of CRMs (ρJ,K )J⊆K⊆I , where each ρJ,K : L∞d (FK )→ L∞(FJ ).
Here the first index J has the same meaning as in Example 5.2, i.e. the risk measurement is
performed conditioned on the state of the institutions in subsystem J . The second index K
identifies the type of regulatory policy on the riskmanagement prevailing in subsystem K , for
example expected shortfall measures at different significance levels according to European
(K = I ), national, or regional standards. Even though regulatory policies may differ depend-
ing on the level of authority, it might still be desirable that these policies behave consistently
in some way, i.e. the family (ρJ,K )J⊆K⊆I should be consistent not only with respect to the
contingent information implied by the index J but also with respect to the different policies
implied by the index K . In the following, this question will be considered.

Motivated by the examples above, we will consider the following types of families of
CRMs in this section: Let I1 and I2 be sets of sub-σ -algebras of F such that I1 contains
the trivial σ -algebra and denote by E := {(H, T ) ∈ I1 × I2 : H ⊆ T }. In the following
we denote by ρH,T a multivariate CRM which maps L∞d (T ) to L∞(H) and we consider
families of CRMs of type (ρH,T )(H,T )∈E . In order to allow for a comparison of the risks of
two random risk factors under different information, we assume for the rest of this section
that ρH,T1(L

∞
d (T1)) = ρH,T2(L

∞
d (T2)) for all (H, T1), (H, T2) ∈ E . Sometimes it will also

be convenient to consider only a subfamily of E where the second σ -algebra is fixed. In that
case we denote the corresponding index set by E(T ) := {H ∈ I1 : H ⊆ T } for T ∈ I2.
Note that the structure of the families of CRMs discussed in Example 5.1 and Example 5.2
is covered by this framework by letting I2 := {F}.
Definition 5.5 A family of CRMs (ρH,T )(H,T )∈E is strongly consistent if for all G ⊆ H ⊆
T1 ∩ T2

ρH,T1(X) ≥ ρH,T2(Y ) �⇒ ρG,T1(X) ≥ ρG,T2(Y ), (X ∈ L∞(T1), Y ∈ L∞d (T2)).

It can be easily checked that the conditional certainty equivalents of Frittelli and Maggis
[16] (see Example 5.3) are strongly consistent. Analogously to Lemma 3.2 strong consistency
is equivalent to the following recursive relation between the CRMs.

Lemma 5.6 Let (ρH,T )(H,T )∈E be family of CRMs, then the following statements are equiv-
alent:

(i) (ρH,T )(H,T )∈E is strongly consistent;
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(ii) For all G ⊆ H ⊆ T1 ∩ T2 and X ∈ L∞d (T1)

ρG,T1(X) = ρG,T2

(
f −1ρH,T2

(
ρH,T1(X)

)
1d
)

.

Clearly, our results from the previous sections carry over to families of CRM.We illustrate
this in the following by giving the straightforward extensions ofTheorem3.9 andTheorem4.4
to a family of CRMs.

Theorem 5.7 Let (ρH,T )(H,T )∈E be a family of strongly consistent CRMs.Moreover, if there
exists a T ∈ I2 such that

ρ̄H,T (x) = ρ̄T ,T (x) for all x ∈ R
d and all H ∈ E(T ), (5.1)

then each multivariate CRM ρH,T of the subfamily (ρH,T )H∈E(T ) which has a continuous
realization ρH,T (·, ·) can be decomposed into aH-conditional aggregation function�H,T :
L∞d (T )→ L∞(T ) and a univariate CRM ηH,T : Im�H,T → L∞(H) such that

ρH,T = ηH,T ◦�H,T

and ρH,T (X) = ηH,T
(
�H,T (X)

) = −�H,T (X) for all X ∈ L∞d (H). Moreover, for those
ρH,T ,H ∈ E(T ), for which a decomposition exists the corresponding conditional aggrega-
tion functions are strongly consistent.

As in the discussion of Theorem 3.9, if there is aminimal elementG in E(T ), then (5.1) can
be replaced by ρ̄T ,T (x) ∈ L∞(G) for all x ∈ R

d . In particular if {∅,�} ∈ E(T ), then (5.1)
requires ρ̄T ,T (x) ∈ R

d for all x ∈ R
d , so all aggregation functions �H,T are necessarily

deterministic, H ∈ E(T ).

Theorem 5.8 Let (ρH,T )(H,T )∈E be a family of CRMs. Furthermore, suppose that there
exists an (G, T ) ∈ E such that (�, T ,P) is a conditionally atomless probability space
given G, (�,G,P) is atomless and ρT := ρ{∅,�},T is law-invariant. Then the subfamily
(ρH,T )H∈E(T ) is strongly consistent if and only if for each H ∈ E(T ) the CRM ρH,T is of
the form

ρH,T (X) = gH,T
(
f −1uT

(
EP [uT (X) | H]

))
, for all X ∈ L∞d (T ), (5.2)

where uT : Rd → R is strictly increasing and continuous, f −1uT : Im fuT → R is the unique
inverse function of fuT : R→ R; x �→ uT (x1d) and gH,T : L∞(H)→ L∞(H) is strictly
antitone, H-local, fulfills the Lebesgue property and 0 ∈ Im gH,T .
In particular, for any CRM of type (5.2) we have that gH,T = fρH,T , where fρH,T is defined
in Definition 2.2.

Note that the latter results, being extensions from the two-CRM-case of the previous
sections, only used the strong consistency as a pairwise strong consistency of the elements in
subfamilies (ρH,T )(H,T )∈E(T ) of (ρH,T )(H,T )∈E . But if I2 contains more than just one σ -
algebra, then the definition of strong consistency given in Definition 5.5 also has implications
on the relations between these subfamilies corresponding to different sets E(T ) for T ∈ I2.

Assumption 2 In order to have sufficiently many subfamilies we suppose for the remainder
of this section that I1 = I2 =: I.
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Proposition 5.9 Let (ρH,T )(H,T )∈E be a strongly consistent family such that (5.2) holds for
all (H, T ) ∈ E . Then for all T1, T2 ∈ I and H ∈ T1 ∩ T2, H ∈ I,

ρH,T1(X) = fρH,T2

(
f −1uT2

(
aT1,T2EP

[
uT1(X)

∣
∣ H

]+ bH,T1,T2

))
,

where aT1,T2 ∈ R
+\{0}, bH,T1,T2 ∈ L∞(H) andEP

[
bH,T1,T2

∣
∣ G
] = bG,T1,T2 for all G ∈ I

with G ⊆ H.

The proof of Proposition 5.9 is provided in “Appendix E”. From Proposition 5.9 it follows
that any strongly consistent family (ρH,T )(H,T )∈E (underAssumption 2) is basically a family
of conditional certainty equivalents as in Frittelli and Maggis [16]:

Corollary 5.10 In the situation of Proposition 5.9, if aT1,T2 = 1, bH,T1,T2 = 0 for all
H ⊆ T1 ∩ T2 where H ∈ I and T1, T2 ∈ I, and if ρT ,T are normalized on constants for all
T ∈ I, then (ρH,T )(H,T )∈E satisfies

ρH,T (X) = − f −1uH

(
EP [uT (X) | H]

)
, X ∈ L∞d (T ). (5.3)

Proof If aT1,T2 = 1 and bH,T1,T2 = 0 for all H ⊆ T1 ∩ T2, then

ρH,T1(X) = fρH,T2

(
f −1uT2

(
EP

[
uT1(X)

∣∣ H
] ))

,

and thus by choosing T2 = H and since ρH,H is normalized on constants we get (5.3). ��

A Auxiliary results

Note that the strict antitonicity of ρG implies that the inverse function f −1ρG in Definition 2.2 is
well-defined. Indeed letβ ∈ Im fρG andα1, α2 ∈ L∞(G) such that fρG (α1) = β = fρG (α2).
Suppose thatP(A) > 0where A := {α1 > α2} ∈ G. Then by strict antitonicity andG-locality
we obtain that

β1A + ρG(0d)1AC = ρG(α11d)1A + ρG(0d)1AC = ρG(α11d1A)

≤ ρG(α21d1A) = ρG(α21d)1A + ρG(0d)1AC

= β1A + ρG(0d)1AC ,

and the inequality is strict with positive probability which is a contradiction. Thus we have
that P(α1 > α2) = 0. The same argument for {α1 < α2} yields α1 = α2 P-a.s.

Next we will show that properties of ρG transfer to fρG and f −1ρG . Since the domain of

f −1ρG might be only a subset of L∞(G), we need to adapt the definition of the Lebesgue

property for f −1ρG in the following way: If (βn)n∈N ⊂ Im fρG is a sequence which is lower-

and upper-bounded by some β, β ∈ Im fρG , i.e. β ≤ βn ≤ β for all n ∈ N, and such that

βn → β P-a.s., then f −1ρG (βn)→ f −1ρG (β) P-a.s. Note that this alternative definition of the
Lebesgue property is equivalent to Definition 2.1 (iv) if the domain is L∞(G). The properties
’strict antitonicity’ and ’locality’ of fρG or f −1ρG are defined analogous to Definition 2.1 (ii)
and (iii).

Lemma A.1 Let fρG and f −1ρG be as inDefinition 2.2. Then fρG and f −1ρG are strictly antitone,
G-local and fulfill the Lebesgue property.
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Proof For fρG the statement follows immediately from the definition and the corresponding
properties of ρG . Concerning the properties of f −1ρG , we start by proving strict antitonicity.
Let β1, β2 ∈ Im fρG such that β1 ≥ β2 andP(β1 > β2) > 0. Suppose thatP(A) > 0 where

A :=
{
f −1ρG (β1) > f −1ρG (β2)

}
∈ G. Then

β11A + fρG (0)1AC = fρG

(
f −1ρG (β1)

)
1A + fρG (0)1AC = fρG

(
f −1ρG (β1)1A

)

≤ fρG

(
f −1ρG (β2)1A

)
= β21A + fρG (0)1AC ,

and the inequality is strict on a set with positive probability since fρG is strictly antitone.
This of course contradicts β1 ≥ β2. Hence f −1ρG (β1) ≤ f −1ρG (β2). Moreover, as

P(β1 > β2) = P
(
fρG

(
f −1ρG (β1)

)
> fρG

(
f −1ρG (β2)

))
> 0

we must have f −1ρG (β1) �= f −1ρG (β2) with positive probability, i.e.

P
(
f −1ρG (β1) < f −1ρG (β2)

)
> 0.

Nowwe show that f −1ρG is G-local. Let β1, β2 ∈ Im fρG as well as A ∈ G be arbitrary. Further

let αi = f −1ρG (βi ), i = 1, 2, i.e. fρG (αi ) = βi . Then we have that

fρG (α11A + α21AC ) = fρG (α1)1A + fρG (α2)1AC = β11A + β21AC .

Thus f −1ρG (β11A + β21AC ) = α11A + α21AC .

Finally for the Lebesgue property let β, β ∈ Im fρG and let (βn)n∈N ⊂ Im fρG be a sequence

with β ≤ βn ≤ β for all n ∈ N and βn → β P-a.s. Consider the bounded sequences

βu
n := supk≥n βk and βd

n := infk≥n βk , n ∈ N which converge monotonically almost surely
to β, i.e. βu

n ↓ β P-a.s. and βd
n ↑ β P-a.s. Since β ≤ βu

n ≤ β for all n ∈ N which by

antitonicity of f −1ρG yields f −1ρG (β) ≤ f −1ρG (βu
n ) ≤ f −1ρG (β), we observe that the sequence

(
f −1ρG (βu

n )
)

n∈N is uniformly bounded in L∞(G). Note that by the same argumentation also

the sequences
(
f −1ρG (βd

n )
)

n∈N and
(
f −1ρG (βn)

)

n∈N are uniformly bounded in L∞(G). Next

we will show that βu
n ∈ Im fρG for all n ∈ N. Fix n ∈ N and set recursively

An
n−1 := {βu

n = β} and An
k := {βu

n = βk}\
k−1⋃

i=n−1
An
i , k ≥ n,

then it follows from induction that An
k ∈ G, k ≥ n − 1. Since sup {β, βk : k ≥ n} =

max {β, βk : k ≥ n}, we have that (⋃k≥n−1 An
k

)C is a P-nullset. It follows from G-locality
and the Lebesgue property of fρG that
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fρG

⎛

⎝ f −1ρG (β)1An
n−1 +

∑

k≥n
f −1ρG (βk)1An

k

⎞

⎠

= β1An
n−1 + fρG

(

lim
m→∞

m∑

k=n
f −1ρG (βk)1An

k

)

1⋃
k≥n An

k

= β1An
n−1 + lim

m→∞

(
m∑

k=n
βk1An

k
+ fρG (0)1⋃

k≥m An
k

)

= β1An
n−1 +

∑

k≥n
βk1An

k
= βu

n ,

which implies βu
n ∈ Im fρG . By a similar argumentation we obtain βd

n ∈ Im fρG . Recall

that βu
n ↓ β P-a.s. which by antitonicity of f −1ρG implies that the sequence

(
f −1ρG (βu

n )
)

n∈N
is isotone and thus α = limn→∞ f −1ρG (βu

n ) exists in L∞(G). It follows from antitonicity and
the Lebesgue property of fρG that

β = lim
n→∞βu

n = lim
n→∞ fρG

(
f −1ρG (βu

n )
)
= fρG (α),

and hence that indeed α = f −1ρG (β). Analogously, we obtain that fρG (α̂) = β for α̂ =
limn→∞ f −1ρG (βd

n ), and thus α̂ = α = f −1ρG (β). Hence, by antitonicity of f −1ρG

f −1ρG (β) = lim
n→∞ f −1ρG (βu

n ) ≤ lim inf
n→∞ f −1ρG (βn)

≤ lim sup
n→∞

f −1ρG (βn) ≤ lim
n→∞ f −1ρG (βd

n ) = f −1ρG (β),

so limn→∞ f −1ρG (βn) = f −1ρG (β), i.e. f −1ρG has the Lebesgue property. ��

An important observation is that the domain of f −1ρG is equal to the image of ρG , i.e.

f −1ρG (ρG(X)) is well-defined for all X ∈ L∞d (F).

Lemma A.2 For a CRM ρG : L∞d (F)→ L∞(G) it holds that

ρG(L∞d (F)) = fρG (L∞(G)).

Proof Clearly, ρG(L∞d (F)) ⊇ fρG (L∞(G)).
For the reverse inclusion let X ∈ L∞d (F). Our aim is to show that there exists an α∗ ∈ L∞(G)

such that
ρG(X) = fρG (α∗). (A.1)

Define

P := {α ∈ L∞(G) : fρG (α) ≥ ρG(X)
}
.

As −‖X‖d,∞1d ≤ X ≤ ‖X‖d,∞1d we have that −‖X‖d,∞ ∈ P , so P �= ∅. Moreover, P is
bounded from above by ‖X‖d,∞ since if A := {α > ‖X‖d,∞} for α ∈ L∞(G) has positive
probability, then by G-locality and strict antitonicity

fρG (α)1A = fρG (α1A)1A ≤ fρG (‖X‖d,∞1A)1A = fρG (‖X‖d,∞)1A ≤ ρG(X)1A
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where the first inequality is strict with positive probability, so α /∈ P . By G-locality it also
follows that P is upwards directed. Hence, for

α∗:= esssup P

there is a uniformly bounded sequence (αn)n∈N ⊂ P such that α∗ = limn→∞ αn P-a.s.; see
Föllmer and Schied [15, Theorem A.33]. Thus it follows that α∗ ∈ L∞(G) and

fρG (α∗) = lim
n→∞ fρG (αn) ≥ ρG(X),

i.e. α∗ ∈ P . Let

B := { fρG (α∗) > ρG(X)}
and note that by the Lebesgue property

B =
⋃

n∈N
{ fρG (α∗ + 1/n) > ρG(X)} P-a.s.

Hence, if P(B) > 0 it follows that P(Bn) > 0 for some Bn := { fρG (α∗ + 1/n) > ρG(X)}.
Note that Bn ∈ G and that

α∗1BC
n
+ (α∗ + 1/n)1Bn ∈ P

by G-locality of fρG . But this contradicts the definition of α∗. Hence, P(B) = 0. ��
Lemma A.3 Let� : L∞d (F)→ L∞(F)be a conditional aggregation function. Then f� and

f −1� are strictly isotone, F-local, and fulfill the Lebesgue property. Moreover, �(L∞d (F)) =
f�(L∞(F)) and �(X) = �

(
f −1� (�(X))1d

)
for all X ∈ L∞d (F).

The well-definedness of f −1� follows similarly to the well-definedness of f −1ρG . Further the
proof of Lemma A.3 is analogous to the proofs of Lemma A.1 and Lemma A.2 and therefore
omitted here.

B Proof of Theorem 3.9

The Proof of Theorem 3.9 is based on a result from Hoffmann et al. [17] which we in the
following present in a version adapted to the framework of this paper.

Proposition B.1 Let ρG : L∞d (F) → L∞(G) be a CRM and suppose that there exists a
continuous realization ρG(·, ·) which satisfies risk-antitonicity:

ρG(X (ω), ω) ≥ ρG(Y (ω), ω)P -a.s., implies ρG(X) ≥ ρG(Y ).

Then there exists a G-conditional aggregation function �G : L∞d (F) → L∞(F) and a
univariate CRM ηG : Im�G → L∞(G) such that

ρG (X) = ηG (�G(X)) for all X ∈ L∞d (F)

and
ηG (�G(X)) = −�G(X) for all X ∈ L∞d (G). (B.1)

This decomposition is unique.
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Proof Since ρG is antitone, Rd � x �→ ρG(x) is antitone. It has been shown in Hoffmann et
al. [17, Theorem 2.10] that this property in conjunction with the fact that ρG has a continuous
realization which fulfills risk-antitonicity is sufficient for the existence and uniqueness of
a function �G : L∞d (F) → L∞(F) which is isotone, F-local and fulfills the Lebesgue
property and a function ηG : Im�G → L∞(G) which is antitone such that

ρG = ηG ◦�G and ηG
(
�G(x)

) = −�G(x) for all x ∈ R
d . (B.2)

Note that in the proof of Theorem 2.10 in Hoffmann et al. [17] �G is basically constructed
by setting �G(X)(ω) = −ρG(X (ω), ω), which implies that �G is necessarily F-local even
though this is not directly mentioned in the paper. Indeed in Hoffmann et al. [17] we do not
require or mention locality at all.

It remains to be shown that �G is a G-conditional aggregation function, ηG is a univariate
CRM on Im�G , and that (B.1) holds. First of all, we show that F-locality and (B.2) imply
(B.1). To this end denote by S the set of F-measurable simple random vectors, i.e. X ∈ S
if X is of the form X = ∑k

i=1 xi1Ai , where k ∈ N, xi ∈ R
d and Ai ∈ F , i = 1, . . . , k,

are disjoint sets such that P(Ai ) > 0 and P(
⋃k

i=1 Ai ) = 1. Now let X ∈ L∞d (G). Pick a

uniformly bounded sequence (Xn)n∈N =
(∑kn

i=1 x
n
i 1An

i

)

n∈N ⊂ S such that An
i ∈ G for all

i = 1, . . . , kn , n ∈ N, and Xn → X P-a.s. Then by (B.2), F-locality and the Lebesgue
property of �G and ρG we infer that

−�G(X) = − lim
n→∞�G(Xn) = lim

n→∞

kn∑

i=1
−�G(xni )1An

i

= lim
n→∞

kn∑

i=1
ρG(xni )1An

i
= lim

n→∞ ρG(Xn) = ρG(X),

which proves (B.1). Next we show that �G is a G-conditional aggregation function. The
yet missing properties which need to be verified are strict antitonicity and that �G is G-
conditional. The latter follows fromHoffmann et al. [17, Lemma3.1].As for strict antitonicity
let X, Y ∈ L∞d (F) with X ≥ Y such that P(X > Y ) > 0. Then by isotonicity of �G we
have that �G(X) ≥ �G(Y ). Suppose that �G(X) = �G(Y ) P-a.s., then

ρG(X) = ηG(�G(X)) = ηG(�G(Y )) = ρG(Y )

which contradicts strict antitonicity of ρG . Thus �G fulfills all properties of a G-conditional
aggregation function.
As for ηG , note that by Lemma A.3 for all F ∈ Im�G we have that

ηG(F) = ηG
(
�G

(
f −1�G

(F)1d
)) = ρG

(
f −1�G

(F)1d
)
. (B.3)

Since ρG and f −1�G
are strictly monotone, G-local, and fulfill the Lebesgue property, so does

ηG , i.e. ηG is a univariate CRM on Im�G . ��
The proof of Theorem 3.9 is now based on the following observations: ρF is necessarily

risk-antitone as defined in Proposition B.1. Strong consistency in turn implies that risk-
antitonicity of ρF is passed on (backwards) to ρG , and hence Proposition B.1 applies.

Proof of Theorem 3.9 In case we already know that (3.4) holds, then by antitonicity of ηG
it follows that {ρG,−�G} is strongly consistent, and clearly −�G : L∞d (F) → L∞(F) is
also a CRM. Thus the last assertion of Theorem 3.9 is proved.
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In order to show the first part of Theorem 3.9, we recall that the only property which
remains to be shown in order to apply Proposition B.1 is risk-antitonicity of ρG : For this
purposewefirst consider simple randomvectors X, Y ∈ S whereS was defined in the proof of
Proposition B.1. Note that there is no loss of generality by assuming that X =∑n

i=1 xi1Ai ∈
S and Y = ∑n

i=1 yi1Ai ∈ S, i.e. the partition (Ai )i=1,...,n of � is the same for X and Y .
Suppose that ρG(X (ω), ω) ≥ ρG(Y (ω), ω) P-a.s. It follows that ρG(xi , ω) ≥ ρG(yi , ω) for
all ω ∈ Ai\N , i = 1, . . . , n, where N is a P-nullset. Let Bi := {ω ∈ � | ρG(xi , ω) ≥
ρG(yi , ω)} ∈ G. As (Ai \ N ) ⊆ Bi , using antitonicity and G-locality of f −1ρG we obtain

f −1ρG

(
ρG(xi )

)
1Ai = f −1ρG

(
ρG(xi )1Bi

)
1Ai ≤ f −1ρG

(
ρG(yi )1Bi

)
1Ai = f −1ρG

(
ρG(yi )

)
1Ai .

Now by strong consistency of {ρG, ρF }, F-locality of ρF and f −1ρF , and by (3.3) as well as
antitonicity of ρG we arrive at

ρG(X) = ρG
(
f −1ρF

(
ρF (X)

)
1d
)
= ρG

(
n∑

i=1
f −1ρF

(
ρF (xi )

)
1Ai 1d

)

= ρG

(
n∑

i=1
f −1ρG

(
ρG(xi )

)
1Ai 1d

)

≥ ρG

(
n∑

i=1
f −1ρG

(
ρG(yi )

)
1Ai 1d

)

= ρG(Y ),

which proves risk-antitonicity for simple random vectors X, Y ∈ S. For general X, Y ∈
L∞d (F)with ρG(X (ω), ω) ≥ ρG(Y (ω), ω) forP-a.e. ω ∈ �we can find uniformly bounded
sequences (Xn)n∈N, (Yn)n∈N ⊂ S such that Xn ↗ X and Yn ↘ Y P-a.s. for n→∞. Then
by antitonicity

ρG(Xn(ω), ω) ≥ ρG(X (ω), ω) ≥ ρG(Y (ω), ω) ≥ ρG(Yn(ω), ω) P-a.s.

Therefore, ρG(Xn) ≥ ρG(Yn) and the Lebegue property of ρG yields

ρG(X) = lim
n→∞ ρG(Xn) ≥ lim

n→∞ ρG(Yn) = ρG(Y ).

Thus ρG is risk-antitone and we apply Proposition B.1. Hence, there is a G-conditional
aggregation function�G : L∞d (F)→ L∞(F) and a univariate CRM ηG : Im�G → L∞(G)

such that ρG = ηG ◦�G and ηG
(
�G(X)

) = −�G(X) for all X ∈ L∞d (G).
Using locality it follows that (3.3) indeed holds for all α ∈ L∞d (G)∩S and thus by continuity
ρ̄F (α) = ρ̄G(α) ∈ L∞(G) for all α ∈ L∞d (G). Thus also �F (α) = −ρF (α) ∈ L∞(G) for
all α ∈ L∞d (G). Finally by the same procedure as above, i.e. approximation via elements in
S, using locality, strong consistency, and continuity, we obtain (3.6). ��

C Proof of Theorem 4.4

Lemma C.1 Let {ρ, ρH} be strongly consistent and suppose that ρ is law-invariant (and
thusρH is conditionally law-invariant by Lemma 4.3). If (�,H,P) is an atomless probability
space and X ∈ L∞d (F) is independent of H, then

f −1ρH

(
ρH(X)

) = f −1ρ

(
ρ(X)

)
.

The proof of Lemma C.1 is adapted from Kupper and Schachermayer [20].
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Proof We distinguish three cases:

• Suppose that f −1ρH

(
ρH(X)

) ≤ f −1ρ

(
ρ(X)

)
and strictly smaller with positive probability.

Then by strong consistency

f −1ρ

(
ρ(X)

) = f −1ρ

(
ρ
(
f −1ρH

(
ρH(X)

)
1d
))

< f −1ρ

(
ρ
(
f −1ρ

(
ρ(X)

)
1d
)) = f −1ρ

(
ρ(X)

)
,

by strict antitonicity of ρ which is a contradiction.
• Analogously it follows that it is not possible that f −1ρH

(
ρH(X)

) ≥ f −1ρ

(
ρ(X)

)
and

P( f −1ρH

(
ρH(X)

)
> f −1ρ

(
ρ(X)

)
) > 0.

• There exist A, B ∈ H such that P(A) = P(B) > 0 and

f −1ρH

(
ρH(X)

)
> f −1ρ

(
ρ(X)

)
on A and f −1ρH

(
ρH(X)

)
< f −1ρ

(
ρ(X)

)
on B.

Then we have for an arbitrary m = a1d where a ∈ R that

ρ(X1A + m1AC ) = ρ
(
f −1ρH

(
ρH(X1A + m1AC )

)
1d
)

= ρ
(
f −1ρH

(
ρH(X)

)
1A1d + m1AC

)

< ρ
(
f −1ρ

(
ρ(X)

)
1A1d + m1AC

)
(C.1)

and similarly
ρ(X1B + m1BC ) > ρ

(
f −1ρ

(
ρ(X)

)
1B1d + m1BC

)
. (C.2)

However, as X is independent of H the random vector X1A + m1AC has the same
distribution under P as X1B + m1BC . Note that also f −1ρ

(
ρ(X)

)
1A + a1AC and

f −1ρ

(
ρ(X)

)
1B+a1BC share the same distribution underP. Hence, as ρ is law-invariant,

(C.1) and (C.2) yield a contradiction.

��
Proof of Theorem 4.4 For the last assertion of the theorem note that since u is a deterministic
function, we have for α ∈ L∞(H) that

fρH(α) = ρH(α1d) = gH
(
f −1u

(
EP [u(α1d) | H]

))

= gH
(
f −1u

(
fu(α)

)) = gH(α)

and analogously we obtain fρ ≡ g.
Next we prove sufficiency in the first statement of the theorem: Let ρH and ρ be as in

(4.2) and (4.1). It is easily verified that ρH and ρ are (conditionally) law-invariant CRMs.
Furthermore, since f −1u is strictly increasing and gH is strictly antitone andH-local, we have
for each X, Y ∈ L∞d (F) with ρH(X) ≥ ρH(Y ) that

EP [u(X) | H] ≤ EP [u(Y ) | H] .

But this implies that also EP [u(X)] ≤ EP [u(Y )] and thus that ρ(X) ≥ ρ(Y ), i.e. {ρ, ρH}
is strongly consistent.

Now we prove necessity in the first statement of the theorem: We assume in the following
that ρ and ρH are normalized on constants and follow the approach of Föllmer [12, Theorem
3.4]. The idea is to introduce a preference order ≺ on multivariate distributions μ, ν on
(Rd ,B(Rd)) with bounded support given by

μ ≺ ν ⇐⇒ ρ(X) > ρ(Y ), with X ∼ μ and Y ∼ ν.
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Here B(Rd) denotes the Borel-σ -algebra on R
d and X ∼ μ means that the distribution of

X ∈ L∞d (F) under P is μ. It is well-known that if this preference order fulfills a set of
conditions, then there exists a von Neumann-Morgenstern representation, that is

μ ≺ ν ⇐⇒
∫

u(x) μ(dx) <

∫
u(x) ν(dx), (C.3)

where u : Rd → R is a continuous function. Sufficient conditions to guarantee (C.3)
are that ≺ is continuous and fulfills the independence axiom; cf. Föllmer and Schied [15,
Corollary 2.28]. We refer to Föllmer and Schied [15] for a definition and comprehensive
discussion of preference orders and the mentioned properties. Suppose for the moment that
we have already proved (C.3). Note that strict antitonicity of ρ implies that δx " δy whenever
x, y ∈ R

d satisfy x ≥ y and x �= y. Hence u(x) = ∫ u(s) δx (ds) >
∫
u(s) δy(ds) = u(y),

and we conclude that u is necessarily strictly increasing as claimed.
Now we prove (C.3): The proof of continuity of ≺ is completely analogous to the corre-

sponding proof in Föllmer [12, Theorem 3.4], so we omit it here. The crucial property is the
independence axiom, which states that for any three distributions μ, ν, ϑ such that μ # ν

and for all λ ∈ (0, 1], we have
λμ+ (1− λ)ϑ # λν + (1− λ)ϑ.

Since (�,F,P) is conditionally atomless given H, we can find X, Y, Z ∈ L∞d (F) which
are independent of H such that X ∼ μ, Y ∼ ν and Z ∼ ϑ . Furthermore, since (�,H,P) is
atomless, we can find an A ∈ H with P(A) = λ. It can be easily seen that X1A + Z1AC ∼
λμ+ (1− λ)ϑ and Y1A + Z1AC ∼ λν + (1− λ)ϑ . Moreover, since μ # ν, we have that
ρ(X) ≥ ρ(Y ). As {ρ, ρH} is strongly consistent and as ρ is law-invariant, we know from
Lemma 4.3 that ρH is conditionally law-invariant. This ensures that we can apply LemmaC.1
to the random vectors X and Y which are independent ofH. Therefore, byH-locality of ρH
and recalling Remark 3.4

ρ
(
X1A + Z1AC

) = ρ
(−ρH

(
X1A + Z1AC

)
1d
)

= ρ
(−ρH(X)1A1d − ρH(Z)1AC 1d

)

= ρ
(−ρ(X)1A1d − ρH(Z)1AC 1d

)

≥ ρ
(−ρ(Y )1A1d − ρH(Z)1AC 1d

) = ρ
(
Y1A + Z1AC

)
,

which is equivalent to λμ+ (1− λ)ϑ # λν + (1− λ)ϑ . Thus there exists a von Neumann-
Morgenstern representation (C.3) with a continuous and strictly increasing utility function
u : Rd → R.

In the next step we define fu : R → R; x �→ u(x1d). Then fu is strictly increasing
and continuous and thus f −1u exists. Let μ be an arbitrary distribution on (Rd ,B(Rd)) with
bounded support and X ∼ μ. Then

ρ
(‖X‖d,∞1d

) ≤ ρ(X) ≤ ρ
(− ‖X‖d,∞1d

)

and hence

fu(−‖X‖d,∞) =
∫

u(x) δ−‖X‖d,∞1d (dx) ≤
∫

u(x) μ(dx)

≤
∫

u(x) δ‖X‖d,∞1d (dx) = fu(‖X‖d,∞).
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The intermediate value theorem now implies the existence of a constant c(μ) ∈ R such that

fu
(
c(μ)

) =
∫

u(x) μ(dx) ⇐⇒ c(μ) = f −1u

(∫
u(x) μ(dx)

)
.

Finally, since δc(μ)1d ≈ μ, we have

ρ(X) = ρ
(
c(μ)1d

) = −c(μ) = − f −1u

(∫
u(x) μ(dx)

)
= − f −1u

(
EP [u(X)]

)
.

Hence, we have proved (4.1) (with g ≡ − id). Define

ψH(X) := − f −1u

(
EP [u(X) | H]

)
, X ∈ L∞d (F),

then we have seen in the first part of the proof that ψH is a CRMwhich is strongly consistent
with ρ. Moreover, ψH is normalized on constants. Thus it follows by Lemma 3.5 that ρH =
ψH. If ρ and/or ρH are not normalized on constants, then considering the normalized CRMs
− f −1ρ ◦ ρ and − f −1ρH ◦ ρH, the result follows from ρ = fρ ◦

( − (− f −1ρ ◦ ρ)
)
and ρH =

fρH ◦
(− (− f −1ρH ◦ ρH)

)
, i.e. g = fρ and gH = fρH . ��

D Positive affine transformations of stochastic utilities

Proposition D.1 Let UH be the stochastic utility from Theorem 4.6 and let ŨH : Im�H →
L∞(F) be another function which is strictly isotone, F-local, fulfills the Lebesgue property
and ŨH(Im�H ∩ L∞(H)) ⊆ L∞(H), such that

Ũ−1H
(
EP

[
ŨH(F)

∣∣ H
]) = U−1H (EP [UH(F) | H]) , for all F ∈ Im�H. (D.1)

Then ŨH is an H-measurable positive affine transformation of UH, i.e. there exist α, β ∈
L∞(H) with P(α > 0) = 1 such that ŨH(F) = αUH(F)+ β for all F ∈ Im�H.

Proof We have seen in Theorem 4.6 that UH ◦�H = u, where u is strictly increasing and
continuous. Thus

X := ImUH = u(L∞d (F)) ⊆ L∞(F)

and it follows that for all F ∈ X there exists a sequence of F-simple random variables
(Fn)n∈N ⊆ X such that Fn → F P-a.s. Moreover, by the intermediate value theorem we can
find for each X, Y ∈ L∞d (F) and λ ∈ L∞(F) with 0 ≤ λ ≤ 1 a random variable Z such that
min{−‖X‖d,∞,−‖Y‖d,∞} ≤ Z ≤ max{‖X‖d,∞, ‖Y‖d,∞} and for all P-almost all ω ∈ �

λ(ω)u
(
X (ω)

)+ (1− λ)u
(
Y (ω)

) = u
(
Z(ω)1d

)

where X (·), Y (·) and λ(·) are arbitrary representatives of X, Y and λ. Indeed, it can be shown
by a measurable selection argument that Z can be chosen to be F-measurable and hence
X is F-conditionally convex in the sense that λF + (1 − λ)G ∈ X for all F,G ∈ X and
λ ∈ L∞(F) with 0 ≤ λ ≤ 1.

Next define the strictly isotone and F-local function

VH : X → L∞(F); X �→ ŨH
(
U−1H (F)

)
,

that is ŨH = VH◦UH. Moreover, it easily follows that VH fulfills the Lebesgue property and
VH(X ∩L∞(H)) ⊆ L∞(H).We show that VH is an affine function, that is VH(F) = αF+β

123



440 Math Finan Econ (2018) 12:413–444

for all F ∈ X , where α, β ∈ L∞(F). Note that affinity can be equivalently expressed via
VH(λF + (1 − λ)G) = λVH(F)+ (1 − λ)VH(G) for all F,G ∈ X and λ ∈ L∞(F) with
0 ≤ λ ≤ 1.
We suppose that VH is not affine, i.e. there are F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1
such that

P (VH(λF + (1− λ)G) �= λVH(F)+ (1− λ)VH(G)) > 0. (D.2)

First note that it suffices to assume that (D.2) holds for deterministic F,G and λ. To see
this suppose that VH is affine on deterministic values, but not on the whole of X , i.e. (D.2)
holds for some F,G ∈ X and λ ∈ L∞(F) with 0 ≤ λ ≤ 1. We know that there exist
sequences of F-simple functions (Fn)n∈N, (Gn)n∈N ⊂ X ∩ S and (λn)n∈N ⊂ L∞(F) ∩ S
with 0 ≤ λn ≤ 1 for all n ∈ N such that Fn → F,Gn → G, λn → λ P-a.s., where S
was defined in the proof of Proposition B.1. Without loss of generality we might assume that
Fn = ∑kn

i=1 F
n
i 1An

i
,Gn = ∑kn

i=1 G
n
i 1An

i
and λn = ∑kn

i=1 λni 1An
i
have the same disjoint F-

partition (An
i )i=1,...,kn . By the F-locality and Lebesgue property and since Fn

i ,Gn
i , λ

n
i ∈ R

for all i = 1, . . . , kn and n ∈ N we have

VH(λF + (1− λ)G) = lim
n→∞ VH(λn Fn + (1− λn)Gn)

= lim
n→∞ VH

( kn∑

i=1
(λni F

n
i + (1− λni )G

n
i )1An

i

)

= lim
n→∞

kn∑

i=1
VH

(
λni F

n
i + (1− λni )G

n
i

)
1An

i

= lim
n→∞

kn∑

i=1

(
λni VH(Fn

i )+ (1− λni )VH(Gn
i )
)
1An

i

= lim
n→∞ λnVH(Fn)+ (1− λn)VH(Gn)

= λVH(F)+ (1− λ)VH(G),

which contradicts (D.2). Moreover we assume that 0 < λ < 1 since otherwise this would
also contradict (D.2). Finally, we assume w.l.o.g. that

A := {VH(λF + (1− λ)G) < λVH(F)+ (1− λ)VH(G)} ∈ H

has positive probability. Next define H1 := F1A + G1AC and H2 := G, then Hi ∈ X ∩
L∞(H), i = 1, 2 and by F-locality of VH

VH(λH1 + (1− λ)H2) ≤ λVH(H1)+ (1− λ)VH(H2)

and the inequality is strict with positive probability.
Since (�,P,F) is conditionally atomless given H there exists a B ∈ F with P(B) = λ

and which is independent of H. Since H1, H2 ∈ X and X is F-conditionally convex

H := H11B + H21BC ∈ X .
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Now by F-locality of VH, VH(X ∩ L∞(H)) ⊆ L∞(H) and B ⊥⊥ H we get

EP [VH (H) | H] = EP

[
VH

(
H11B + H21BC

) ∣∣ H
]

= VH(H1)EP [1B | H]+ VH(H2)EP

[
1BC

∣
∣ H

]

= VH(H1)EP [1B ]+ VH(H2)EP

[
1BC

]

= λVH(H1)+ (1− λ)VH(H2)

≥ VH(λH1 + (1− λ)H2)

= VH
(
EP

[
H11B + H21BC

∣
∣ H

])

= VH (EP [H | H]) ,

and the inequality is strict with positive probability. Moreover X = ImUH implies the
existence of a H̃ ∈ Im�H such that H = UH(H̃). Finally we get

Ũ−1H
(
EP

[
ŨH(H̃)

∣
∣ H

]) = U−1H

(
V−1H

(
EP

[
VH

(
UH(H̃)

) ∣∣ H
]))

= U−1H

(
V−1H (EP [VH (H) | H])

)

≥ U−1H

(
V−1H (VH (EP [H | H]))

)

= U−1H (EP [H | H])

= U−1H
(
EP

[
UH(H̃)

∣∣ H
])

,

and the inequality is strict with positive probability, since Ũ−1H and U−1H are strictly isotone
(c.f. Lemma A.1). Thus we have the desired contradiction of (D.1) and hence VH is affine,
i.e. VH(F) = αF + β for all F ∈ X , where α, β ∈ L∞(F). Moreover, since we know that
VH(x) ∈ L∞(H) for all x ∈ R ∩ X , we obtain that α, β are actually H-measurable. That
α > 0 follows immediately from the fact that ŨH,U−1H are strictly isotone. ��

E Proof of Proposition 5.9

Lemma E.1 Let u : Rd → R be a deterministic utility, i.e. u is strictly increasing and
continuous, and let G and H be a sub-σ -algebras of F such that G ⊆ H. Then

EP

[
u(L∞d (H))

∣∣ G
] = u(L∞d (G)).

Proof ”⊇”:Obvious. ”⊆”:Define theCRMρG : L∞d (H)→ L∞(G); X �→−EP [u(X) | G].
By Lemma A.2 it follows that

EP

[
u(L∞d (H))

∣∣ G
] = −ρG(L∞d (H)) = − fρG (L∞(G)) = EP

[
u(L∞(G)1d)

∣∣ G
]

⊆ EP

[
u(L∞d (G))

∣∣ G
] = u(L∞d (G)).

��
Lemma E.2 For an arbitrary T ∈ I let uT : Rd → R be a deterministic utility and define
XH := uT (L∞d (H)) for allH ∈ E(T ). Moreover, let pH : XH→ L∞(H) be functions such
that pH isH-local, strictly isotone and fulfills the Lebesgue-property. If for all G,H ∈ E(T )

with G ⊆ H and H atomless it holds that

pG (EP [ F | G]) = EP [ pH(F) | G] for all F ∈ XH, (E.1)
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then

pH(F) = aF + βH,

where a ∈ R
+\{0} and βH ∈ L∞(H) such that EP [βH | G] = βG .

Note that (E.1) is well-defined by Lemma E.1.

Proof Firstly, we consider the case where G is the trivial σ -algebra. We write p := p{�,∅}.
Note that, since p is a deterministic function, p (EP [F]) is law-invariant and thus by (E.1)
also EP [pH(F)].
Now suppose that there exist x, y ∈ X := X{�,∅} with pH(x)− pH(y) /∈ R, i.e. there exists
a c ∈ R such that P(pH(x) ≤ pH(y) + c) ∈ (0, 1). Since H is an atomless space we can
choose A1, A2, A3 ∈ H with

P(A1) = P(A2) := q > 0

such that

A1 ⊆ {pH(x) ≤ pH(y)+ c}, A2 ⊆ {pH(x) > pH(y)+ c}, A3 := (A1 ∪ A2)
C .

Moreover, we define

F1 := x1A1 + y1A2 + x1A3 and F2 := y1A1 + x1A2 + x1A3 .

Obviously F1, F2 ∼ qδy + (1 − q)δx , that is F1
d= F2. However, since pH is H-local, we

have

EP [pH(F1)]+ cq = EP

[
pH(x)1A1

]+EP

[
(pH(y)+ c)1A2

]+EP

[
pH(x)1A3

]

< EP

[
(pH(y)+ c)1A1

]+EP

[
pH(x)1A2

]+EP

[
pH(x)1A3

]

= EP [pH(F2)]+ cq,

which contradicts the law-invariance of F �→ EP [pH(F)].
Hence we have that pH(x)− pH(y) ∈ R for all x, y ∈ X . Choose an arbitrary x̃ ∈ X , and
let

a(x) := pH(x)− pH(̃x), x ∈ X ,

so a : X → R. Define β̃H := pH(̃x) ∈ L∞(H), then pH(x) = a(x)+ β̃H. The function a
is continuous, since otherwise there would exist a sequence (xn)n∈N ⊂ X with xn → x ∈ X ,
but a(xn) �→ a(x) and the Lebesgue-property would imply the contradiction

pH(x) = lim
n→∞ pH(xn) = lim

n→∞ a(xn)+ β̃H �= a(x)+ β̃H = pH(x).

Let F ∈ XH. Since the H-measurable simple random vectors are dense in L∞d (H) and
by the definition of XH there exists a sequence of H-measurable simple random variables
(Fn)n∈N ⊂ XH ∩ S with Fn =∑kn

i=1 x
n
i 1An

i
→ F P-a.s. Thus

pH(F) = lim
n→∞ pH(Fn) = lim

n→∞

kn∑

i=1
pH(xni )1An

i
= lim

n→∞

kn∑

i=1
a(xni )1An

i
+ β̃H

= lim
n→∞ a

( kn∑

i=1
xni 1An

i

)

+ β̃H = lim
n→∞ a(Fn)+ β̃H = a(F)+ β̃H.
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The function XH � F �→ EP [F] induces a preference relation on M := {μ : ∃F ∈ XH
such that F ∼ μ} via

μ � ν ⇐⇒ EP [F] ≥ EP [G] , F ∼ μ,G ∼ ν.

Moreover the function x �→ p−1(x + E[β̃H]) is strictly increasing and by (E.1)

EP [F] = p−1 (EP [pH(F)]) = p−1
(
EP [a(F)]+ E

[
β̃H
])

.

Thus EP [a(F)] is another affine numerical representation of �. It is well-known that the
affine numerical representation of � is unique up to a positive affine transformation (see
e.g. Föllmer and Schied [15, Theorem 2.21]), i.e. there exist ã, b ∈ R, ã > 0 such that
EP [a(F)] = ãEP [F]+ b for all F ∈ XH. In particular this implies that for all x ∈ X

a(x) = EP [a(x)] = aEP [x]+ b = ãx + b.

By setting b + β̃H =: βH ∈ L∞(H) we get for all F ∈ XH that

pH(F) = a(F)+ β̃H = ãF + b + β̃H = ãF + βH.

Finally we obtain by (E.1) that for every G ⊆ H and for all F ∈ XG

pG(F) = pG (EP [ F | G]) = EP [ pH(F) | G] = aF +EP [βH | G] ,
which proves the martingale property of (βG)G⊆H.

Proof of Proposition 5.9 Let (ρH,T )(H,T )∈E be a strongly consistent family such that (5.2)
holds for all (H, T ) ∈ E , i.e.

ρH,T (X) = fρH,T

(
f −1uT

(
EP [uT (X) | H]

))
, for all X ∈ L∞d (T ),

We define the functions

hH,T : uT (L∞d (H))→ L∞(H); F �→ fρH,T ◦ f −1uT (F)

and

pH,T1,T2 : uT1(L
∞
d (H))→ L∞(H); F �→ h−1H,T2

◦ hH,T1(F).

By strong consistency, we obtain for G ⊆ H ⊆ T1 ∩ T2, X ∈ L∞d (T1) and F :=
EP

[
uT1(X)

∣∣ H
]
that

pG,T1,T2 (EP [ F | G]) = h−1G,T2

(
hG,T1

(
EP

[
EP

[
uT1(X)

∣∣ H
] ∣∣ G

] ))

= h−1G,T2

(
ρG,T1(X)

)

= h−1G,T2

(
ρG,T2

(
f −1ρH,T2

(
ρH,T1(X)

)
1d
))

= EP

[
h−1H,T2

(
hH,T1

(
EP

[
uT1(X)

∣∣ H
] )) ∣∣∣ G

]

= EP

[
pH,T1,T2(F)

∣∣ G
]
. (E.2)

By Lemma E.2 (E.2) is fulfilled, if and only if

pH,T1,T2(F) = aT1,T2F + bH,T1,T2 , for all F ∈ uT1(L
∞
d (H)),

where aT1,T2 ∈ R
+\{0}, bH,T1,T2 ∈ L∞(H) andEP

[
bH,T1,T2

∣∣ G
] = bG,T1,T2 for all G ∈ I

with G ⊆ H. Thus

hH,T1(F) = hH,T2(aT1,T2F + bH,T1,T2), F ∈ uT1(L
∞
d (H)),
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which implies that

ρH,T1(X) = fρH,T2

(
f −1uT2

(
aT1,T2EP

[
uT1(X)

∣
∣ H

]+ bH,T1,T2

))
.
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