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Abstract A coherent risk measure with a proper continuity condition cannot be defined on
a large set of random variables. However, if one relaxes the sub-additivity condition and
replaces it with co-monotone sub-additivity, the proper domain of risk measures can contain
the set of all random variables. In this study, by replacing the sub-additivity axiom of law
invariant coherent risk measures with co-monotone sub-additivity, we introduce the class of
natural risk measures on the space of all bounded-below random variables. We characterize
the class of natural risk measures by providing a dual representation of its members.

Keywords Natural risk measures · Coherent risk measure · Value at risk

1 Introduction

Although value at risk (VaR) is the most popular risk measure among practitioners, it has
been heavily criticized in the theoretical literature since it does not necessarily associate
portfolio diversification with risk reduction. Therefore, axiomatically founded risk measures
such as coherent (cf. [3] for finite and [10] for infinite spaces) and, more generally, convex
(cf., [13,14]) riskmeasures havebeen introducedwhose axiomsof sub-additivity, respectively
convexity, directly ensure that diversification reduces the measured risk.

This paper argues that all types of risk measures that are studied in the literature suffer
from either of the following two drawbacks: either, like coherent and convex risk measures,
they cannot be defined on the space of all random variables (see discussions in [10]) or, like
VaR, theymight not be available for assessing the risk that arises frommodel uncertainty (see
example 3 below). To address both shortcomings, we are going to introduce and axiomatically
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characterize the class of natural risk measures. In contrast to the sub-additivity axiom of
coherent risk measures, natural risk measures require sub-additivity only for co-monotonic
random variables. Note that VaR, first, satisfies additivity for co-monotonic random variables
and is, second, well-defined on the space of all random variables. To relax sub-additivity in
favor of co-monotonic sub-additivity therefore amounts to studying a general class of risk
measures that contains VaR and is well-defined on large spaces of random variables.

The representation of natural risk measures, provided in Theorem 1, can be regarded as a
convexification of the representation of insurance risk premiums in [25].1 However, we will
see that this convexification is not mathematically straightforward and needs a significant
amount of further mathematical work. Whereas [25] used results attributed to Greco in
[11] (see [15] in Italian) to provide the dual representation of insurance risk premiums,
we use Daniell integrals to extend the representation of natural risk statistics (see [1,17])
on finite probability spaces to the set of all bounded-below random variables. In addition,
our representation in Theorem 1 sheds some light on the axiomatic foundations of the VaR
criterion versus the [18] representation, and provides further tools to develop theories of risk
measures and risk premiums for large spaces.

The paper is organized as follows: in Sect. 2, we provide some preliminary mathematical
definitions and introduce natural riskmeasures and the weak continuity. In Sect. 3, we present
examples of natural risk measures that are different from VaR but are also co-monotone sub-
additive (and not necessarily additive) in the presence of model uncertainty. In Sect. 4, we
state our main result for Theorem 1, which gives a dual representation of weakly continuous
natural risk measures.

2 Preliminaries and definitions

In this section, we will introduce preliminary mathematical tools and definitions with the
necessary economic and financial concepts that we will use in our discussions.

2.1 Mathematical framework

Let (�,F, P)be an atom-less probability space,where� represents the “states of the nature”,
F is the sigma-field of all measurable sets, and P is the physical probability measure. In
this study, we consider that L0, the set of all measurable functions or random variables on
(�,F, P), represents the set of individual loss variables.2 Let us also denote the set of all
bounded-below random variables by L0

B . The space L0 is a metric space whose metric is
defined as d (X, Y ) = E (min {|X − Y | , 1}), where E denotes the expectation. Convergence
in this topology is equivalent to convergence in probability, i.e., d (Xn, X) → 0 iff ∀ε >

0, P (|Xn − X | > ε) → 0. The space L p , for 0 < p, is the space of all random variables
with pth finite moment, i.e., L p = {

X ∈ L0|E (|X |p) < ∞}
. L∞ is the set of all almost

surely bounded members of L0.
The cumulative distribution function of a random variable X ∈ L0 is denoted by FX .

For any X ∈ L0, FX is a càdlàg3 and non-decreasing function, with a left inverse given by

1 This convexification can only be regarded as a technical extension since in [25] the authors have a different
objective: to compare their co-monotone additive premium function in a competitive market with an arbitrage-
free pricing rule, where additivity holds for all risks.
2 Unlike in financial mathematics literature, which considers a profit variable, we found the loss variable more
convenient to deal with.
3 Càdlàg is a French acronym that translates into English as “right continuous and left limited”.
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F−1
X (α) = inf{x ∈ R : FX (x) ≥ α}, for α ∈ (0, 1), which is also a càdlàg function. If

X ∈ L0
B , one can extend the inverse to α = 0, i.e., F−1

X (0) = essinf (X), where essinf is the
essential infimum.

Two random variables X, X ′ ∈ L0 have the same distribution if and only if FX = FX ′ .
Two random variables, X and Y , are co-monotone if

(
X (ω) − X (ω′)

) (
Y (ω) − Y (ω′)

) ≥ 0 a.s. ω,ω′ ∈ �.

In this study, we use a version of co-monotonicity due to Denneberg (cf. Proposition 2 in
[25]), which says that X and Y are co-monotone if there are two non-decreasing real functions
f and g and a random variable U such that X = f (U ) and Y = g (U ). Finally, as usual,
B [0, 1] denotes the set of all Borel measurable subsets of [0, 1].

2.2 Natural risk measures

Now we introduce the class of natural risk measures

Definition 1 Anatural riskmeasure4 � is amapping from L0
B toR that satisfies the following

conditions:

1. Positive homogeneity: �(λX) = λ�(X),∀λ > 0 and ∀X ∈ L0
B ;

2. Cash invariance: �(X + c) = �(X) + c, ∀X ∈ L0
B and ∀c ∈ R;

3. Monotonicity: �(X) ≤ �(Y ), ∀X, Y ∈ L0
B and X ≤ Y ;

4. Co-monotone sub-additivity: �(X + Y ) ≤ �(X) + �(Y ),∀X, Y ∈ L0
B ; X and Y are

co-monotone;
5. Law invariance: �(X) = �(Y ) if FX = FY , i.e., X and Y have the same distribution.

Let

F =
⎧
⎨

⎩
K : [0, 1] → R ∪ {+∞}

∣
∣
∣
∣
∣
∣

K (0) ∈ R

K (1) ∈ R ∪ {+∞}
∀α ∈ (0, 1) , K (α) ∈ R

⎫
⎬

⎭

and A = F ∩ {non-decreasing and càdlàg functions}. It is clear that A consists of all left
inverse cumulative distribution functions with a finite essential infimum. It is known that, for
any random variable X and any random variable U with a uniform distribution on [0, 1], X
and F−1

X (U ) have the same distribution. That is why we can consider a natural risk measure
� as a well-defined function on the set of all inverse cumulative distribution functions A. We
use this fact later in the proof of our main result for Theorem 1.

Definition 2 The natural risk measure � is weakly continuous if � (Xn) −→
n→∞ � (X) when

FXn (x) −→
n→∞ FX (x) ,∀x ∈ R.

3 Examples of natural risk measures

In this section, we introduce co-monotone additive and sub-additive natural risk measures
that naturally emerge in insurance and finance applications.

4 The definition of a natural risk measure is motivated by the definition of a natural risk statistics introduced
on Rn in [17].
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Example 1 Value at risk, for a fixed tolerance level α ∈ [0, 1), is introduced as follows:

VaRα (X) = F−1
X (α), X ∈ L0

B .

Note that, since natural riskmeasures are definedon L0
B ,VaR0 (X) = F−1

X (0) = essinf (X) ∈
(−∞,+∞).

Observe that VaR is weakly continuous. To see this, let us consider FXn (x) −→
n→∞

FX (x) ,∀x ∈ R. First, we prove that there is no ε > 0 such that VaRα (Xn) ≤
VaRα (X) − ε,∀n. Indeed, if this happens, then for any y such that FX (y) ≥ α we have
that VaRα (Xn) ≤ y − ε,∀n. By right continuity and monotonicity of FXn , this implies that
α ≤ FXn (y − ε). When n tends to infinity, then this gives that α ≤ FX (y − ε). This implies
that VaRα (X) = inf {x ∈ R : FX (x) ≥ α} ≤ y− ε. Now, by taking infimum over all y such
that FX (y) ≥ α, we get that VaRα (X) ≤ VaRα (X) − ε, which is a contradiction. Now,
using the fact that VaRα (X) = −VaR1−α (−X), one can show that there is no ε > 0 such
that VaRα (Xn) ≥ VaRα (X) + ε,∀n.
Example 2 Consider an insurance company whose total loss for a fiscal year can be repre-
sented by a non-negative random variable X . Consider also that the insurance company will
have to buy a reinsurance contract 0 ≤ Y ≤ X . The premium of Y is simply given by expecta-
tion, i.e., E(Y ). Therefore, the insurance company’s global position is X −Y + E(Y ). On the
other hand, to avoid the risk of moral hazard, the contract Y should be such that both parties
feel any increase in the losses. Therefore, we consider a non-decreasing and non-negative
function f , so that x �→ x − f (x) is also non-decreasing and non-negative; see, for example,
[4,8,9]. Let us denote the set of all such functions f byC. If the insurance companymeasures
its risk by VaRα , for some α ∈ (0, 1), the optimal contract f ∗ will be found by solving

min
f ∈CVaRα ((X − f (X)) + E ( f (X))) .

Therefore, the risk of the global position is given by

� (X) = VaRα

(
X − f ∗ (X)

) + E
(
f ∗ (X)

) = min
f ∈CVaRα ((X − f (X)) + E ( f (X))) .

Following the discussions in [4,6], one can easily see that

� (X) = min
f ∈CVaRα (X − f (X)) + E ( f (X)) =

∫ 1

0
VaRt (X) dλ (t) ,

where

λ (x) = max
{
1[α,1] (x) , x

} =
{
x, α < x ≤ 1

0, 0 ≤ x ≤ α
.

Therefore, to assess the risk of the insurance company’s global position, one needs to define
a new risk measure as

� (X) = (1 − α)VaRα (X) +
∫ α

0
VaRt (X) dt,

which is different from VaRα . Note that this risk measure can be defined on the set of all
bounded-below random variables.

By abusing the notation, one can consider λ as a measure on [0, 1] defined as λ (a, b] =
λ (b) − λ (a). Observe that the support of λ as a measure is [0, α). According to Theorem 1
in Sect. 4, this condition implies the weak continuity of the risk measure �.
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The following simple example shows how in the presence of model uncertainty, when a
robust analysis approach needs to be conducted, one may have a co-monotone sub-additive
risk measure.5

Example 3 Let us consider an insurance company that needs to issue a deposit insurance on
an asset value that follows a geometric Brownian motion dynamics

{
dSt = μStdt + σ StdWt

S0 > 0
, 0 < t ≤ T .

Here {Wt }Tt=0 is a standard Brownian motion on [0, T ] , μ ∈ R is the drift, and σ > 0 is the
volatility. After solving this stochastic differential equation, we get that St = S0 exp((μ −
σ 2

2 )t+σWt ), 0 ≤ t ≤ T . Let us assume that the losses of the financial company (which needs
to be insured) can be given by X = L (ST ), where L is a non-increasing real function (e.g.,
L (x) = max

{
erT S0 − x, 0

}
, where r > 0 is the risk-free rate). As discussed before, in order

to avoid the risk of moral hazard, one needs to consider a contract like f (L), where f ∈ C,
implying that a contract Y is a non-increasing function of ST . Now the market premium of
the contract Y can be found as its market value (since it is a European option) given by the
discounted expectation under the risk neutral probability:

π (Y ) := e−rT E (ϕY ) ,

where

ϕ = exp

((
1

2
m2/σ 2 − m/2

)
T

)(
exp (−rT ) ST

S0

)−m/σ 2

.

Here we have m = μ − r . For instance, see [19] for further details. As one can see, if
0 < m < σ 2, then ϕ is also a non-increasing function of ST . Following [5], one can see that

E(ϕY ) =
∫ 1

0
VaRt (ϕ)VaRt (Y )dt =

∫ 1

0
VaRt (Y )dλ1(t),

where λ1(x) = ∫ x
0 VaRt (ϕ)dt . One can show further that λ1 (x) = N (N−1(x) − m

√
T

σ
),

where N (x) = 1√
2π

∫ x
−∞ e− t2

2 dt is the cumulative distribution function of the standard
normal distribution. Similar to the previous example, the risk of the global position will be
assessed by a risk measure � given by

� (X) =
∫ 1

0
VaRt (X) dλ (t) , (1)

where λ (x) = max
{
1[α,1] (x) , λ1 (x)

}
.

Now, let us consider that there is uncertainty in estimating the volatility σ . That means
that, for two positive numbers σmin and σmax, we only know σ ∈ [σmin, σmax], where 0 <

m < σ 2
min. In that case, the risk has to be assessed in a robust manner

5 Robust optimization is an approach to model uncertainty when the uncertain parameters are known to be
within certain bounds. For more reading on the robust analysis approach, see [7,20,26,27].
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�Robust (X) = sup
σmin≤σ≤σmax

∫ 1

0
VaRt (X) dλσ (t)

= (1 − α)VaRα (X) +
∫ α

0
VaRt (X) d

(

N

(

N−1(t) − m
√
T

σ

))

= (1 − α)VaRα (X) + sup
σmin≤σ≤σmax

e
−m2T
2σ2

∫ α

0
VaRt (X) e

m
√
T N−1(t)

σ dt,

where λσ is from (1). As one can see, �Robust is co-monotone sub-additive but not necessarily
co-monotone additive. Note that this risk measure can be defined on the set of all bounded-
below random variables. With a similar argument as in the previous example, if we look at
λσ as a measure, the support of all measures in {λσ }σ∈[σmin,σmax] is [0, α). Again, according
to Theorem 1 in Sect. 4, this shows that �Robust is weakly continuous.

4 Dual characterization of natural risk measures

In this section,we characterize the family ofweak continuous natural riskmeasures.However,
in order to present our main result, we need to introduce some further notations.

LetC [0, 1] be the space of all continuous functions on [0, 1] with the uniform norm ‖.‖∞.
Then it is known that the topological dual of C [0, 1] is the space of all bounded variation
functions on [0, 1], denoted by BV [0, 1], with the total variation on [0, 1] as its norm. The
dual relation between C [0, 1] and BV [0, 1] is defined as

〈H, K 〉 =
∫ 1

0
K (t) dH (t) , ∀ (K , H) ∈ C [0, 1] × BV [0, 1] ,

where the integral is the Riemann–Stieltjes integral. In the following discussions, 〈H, K 〉
is used to show

∫ 1
0 K (t) dH (t) when in general K is H integrable. The same bilinear

operator introduces the smallest topology on BV [0, 1], with the topological dual C [0, 1].
This topology is denoted by σ (BV [0, 1] ,C [0, 1]).6

Now we are in a position to state the main result of this study.

Theorem 1 Let � : L0
B → R be a natural risk measure characterized by Definition 1. Then

� is weakly continuous if and only if there exists a compact set � in σ(BV [0, 1],C[0, 1])
such that

1. Each λ ∈ � is a probability measure on ([0, 1] ,B [0, 1]);
2. There exists ε0 > 0 such that ∀λ ∈ �, supp (λ) = [0, 1 − ε0)

7

and

� (X) = sup
λ∈�

∫ 1

0
VaRt (X) dλ (t) . (2)

Moreover, if � is co-monotone additive, then � = {λ}.
Before presenting the proof of the theorem, we need to introduce some notations and

recall some statements from the convex analysis that we will use in the proof.

6 In general, for any two topological vector spaces V, V ′ with bilinear dual relation (v.v′), σ(V, V ′) denotes
the smallest topology on V under which all members of V ′ are continuous.
7 supp (λ) stands for support of λ.
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Let V be a topological vector space, and let V ′ be its topological dual. Recall the Alaoglu
theorem that states that for any set C ⊆ V , with a non-empty σ

(
V, V ′)-interior and any

c ∈ R+, the set {H ∈ V ′| supK∈C 〈H, K 〉 ≤ c} is σ
(
V ′, V

)
compact. Also, recall that V

has the Dunford–Pettis property if for any sequence {(Fn, Hn)}∞n=1 ⊆ V × V ′ converging
in σ

(
V, V ′) × σ

(
V ′, V

)
to (F, H) , {〈Fn, Hn〉}∞n=1 converges to 〈F, H〉. It is known that

C [0, 1] has this property.
Let us assume that V is a locally convex topological vector space. Recall that

the domain of any convex function φ : V → R ∪ {+∞}, denoted by dom(φ), is
equal to {K ∈ V |φ(K ) < ∞}. The dual of φ, denoted by φ∗, is defined as φ∗(K ) =
supH∈V ′ {〈H, K 〉 − φ(H)}. A convex function is said to be lower semicontinuous iff
φ = φ∗∗. For a closed convex set C ⊆ V, the indicator function of C , denoted by χC ,
is introduced as χC (X) = 0 if X ∈ C and +∞ otherwise. For any positive homogeneous
convex function φ, let

�φ = {
H ∈ V ′| 〈H, K 〉 ≤ φ(K ),∀K ∈ V

}
.

It is easy to see that φ∗ = χ�φ . Therefore, any positive homogeneous function φ can be
represented as φ(K ) = sup

H∈�φ

〈H, K 〉. If φ is continuous, then by the Alaoglu theorem we

know that �φ is σ
(
V ′, V

)
-compact.

Remark 1 For the reader’s benefit, we recommend [16] for the functional analysis discus-
sions. This book contains all the tools and definitions that are used in this paper, in particular
the Alaoglu and the Dunford-Pettis theorems. One can also read [23,24] for further informa-
tion. For the convex analysis part, we also recommend to see [12,21].

Proof of Theorem 1 First,weprove the simple implication that� in (2) is aweakly continuous
natural riskmeasure.We leave it to the reader to check that� satisfies the condition of a natural
risk measure. We only check that any functional, in the form of (2), is weakly continuous.

Given that for every X ∈ L0, VaRt (X) is a non-decreasing function of t , � is finite on L0+.
Now, let us consider that Xn ≥ 0 converges weakly to X , as n tends to infinity. This implies
that VaRt (Xn) converges pointwise to VaRt (X) for t < 1. Let N ∈ N be large enough such
that VaR1−ε0 (Xn) ≤ VaR1−ε0 (X) + 1, for all n ≥ N . Since VaRt (.) is non-decreasing in t ,
this implies that 0 ≤ VaRt (Xn) ≤ VaR1−ε0 (X)+ 1, t ≤ 1− ε0, for all n ≥ N . Let {Kn}∞n=1
be a sequence of continuous functions such that |VaRt (Xn) − VaRt (X)| ≤ Kn (t) , t ∈
[0, 1 − ε0] , n = N , N + 1, ..., and Kn → 0, pointwise. Since |VaRt (Xn) − VaRt (X)| ≤
2VaR1−ε0 (X)+ 1 for t ∈ [0, 1 − ε0] and n = N , N + 1, ..., one can consider that {Kn}∞n=N
is bounded above. Therefore, for every μ ∈ BV [0, 1], by using the dominated conver-
gence theorem, we have that

∫ 1
0 Kn (t) d |μ| (t) → 0.8 This implies that Kn → 0 in

σ (C [0, 1] , BV [0, 1]). Since � is σ (BV [0, 1] ,C [0, 1]) compact, for each n ≥ 1 there
exists λn ∈ � such that supλ∈�

∫ 1
0 Kn (t) dλ (t) = ∫ 1

0 Kn (t) dλn (t).
We prove the continuity of � by way of contradiction. Assume there exist δ > 0 and a

sub-sequence {Xni }∞i=1 such that
∣
∣�
(
Xni

) − � (X)
∣
∣ ≥ δ. Let {λnik }∞k=1 be a sub-sequence

that converges to λ ∈ � in σ (BV [0, 1] ,C [0, 1]); then sinceC [0, 1] has the Dunford–Pettis
property, it follows that

∫ 1
0 Knik

(t) dλnik
(t) → 0 as k → ∞. Now we have

8 |μ| = μ+ + μ− is the absolute value of μ.
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0 < δ ≤
∣
∣
∣�
(
Xnik

)
− � (X)

∣
∣
∣ ≤

∣
∣
∣
∣sup
λ∈�

∫ 1

0
VaRt

(
Xnik

)
dλ (t) − sup

λ∈�

∫ 1

0
VaRt (X) dλ (t)

∣
∣
∣
∣

≤ sup
λ∈�

∫ 1

0

∣
∣
∣VaRt

(
Xnik

)
− VaRt (X)

∣
∣
∣ dλ (t)

≤ sup
λ∈�

∫ 1

0
Knik

(t) dλ (t)

=
∫ 1

0
Knik

(t) dλnik
(t) → 0,

which is a contradiction. This completes the proof of the first implication.
Now we prove the second implication, i.e., we show that, if � is a weakly continuous

natural risk measure, then there exists a compact set � in σ(BV [0, 1],C[0, 1]) as described
by conditions 1 and 2 in the theorem statement such that � (X) = supλ∈�

∫ 1
0 VaRt (X) dλ (t).

First, we give an outline of the proof as follows:

1. We restrict � to

Sn :=
⎧
⎨

⎩

2n∑

i=1

xi1[ i−1
2n , i

2n

) + x2n+11{1}
∣
∣
∣(xi )2

n+1
i=1 ∈ R

2n+1

⎫
⎬

⎭
.

Then it is clear that �|Sn is a natural risk statistics.9

2. Using the previous step, we extend � to
⋃∞

n=1 Sn .
3. By using the previous step and the conditional expectation on the partition {[ i−1

2n , i
2n
)
,

i = 1, ..., 2n, {1}}, we extend � to C [0, 1].
4. We give the Fenchel–Moreau representation of � on C [0, 1].
5. By using the Daniell integral, we extend the C [0, 1]- Fenchel-Moreau representation of

� to A.

Let us fix a uniformly distributed random variableU . We introduce the risk measure � on A

by

�(H) = � (H (U )) .

Let H1, H2 ∈ A, then it is clear that H1 (U ) and H2 (U ) are co-monotone. Since � is co-
monotone sub-additive, it implies that � is sub-additive over A. It is also clear that � is a
positive homogeneous mapping of degree 1 on A.

Now, let us introduce the following functions from R
2n+1 to A:

Tn (x) =
2n∑

i=1

xi1[ i−1
2n , i

2n

) + x2n+11{1}, ∀x = (xi )
2n+1
i=1 ,

and

T̃n (w) = 2n
2n∑

i=1

wi1[ i−1
2n , i

2n

) + w2n+11{1}, ∀w = (wi )
2n+1
i=1 .

9 One would wonder why we use the term ‘statistics’ instead of ‘statistic.’ Actually, there is no reason except
that it is the exact term that has been used in the literature; see, e.g. [1].
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Let Sn = Tn
(
R
2n+1

)
and S = ∪∞

n=1Sn . We introduce a natural risk statistics �n on R
2n+1,

for n ≥ 1, as follows:

�n (x1, ..., x2n+1) = �
(
Tn

(
xos

)) = �

⎛

⎝
2n∑

i=1

xosi 1[ i−1
2n , i

2n

) + xos2n+11{1}

⎞

⎠ ,

where xos = (
xosi

)2n+1
i=1 is the order statistics of x = (xi )

2n+1
i=1 , i.e., xos1 ≤ xos2 ≤ ... ≤ xos2n+1.

Define the dual relation between R
2n+1 and itself, with the Euclidean norm, as

〈w, x〉n =
2n+1∑

i=1

wi xi , ∀ (w, x) ∈ R
2n+1 × R

2n+1.

In [1], it is shown that �n can be represented as follows:

�n (x) = sup
w∈�n

〈
w, xos

〉
n , ∀x ∈ R

2n+1,

where �n is a closed convex subset of

�n =
⎧
⎨

⎩
w ∈ R

2n+1
∣
∣wi ≥ 0, i = 1, ..., 2n + 1,

2n+1∑

i=1

wi = 1

⎫
⎬

⎭
.

Let us introduce �n as

�n (x) = sup
w∈�n

〈w, x〉n , ∀x ∈ R
2n+1.

Note that, since �n is translation invariant, it is continuous (using the sup norm) on R
2n+1.

Given this, and the discussions we had in the previous section, �n is easily given as follows:

�n =
{
w ∈ R

2n+1
∣
∣
∣〈w, x〉n ≤ �n (x) ,∀x ∈ R

2n+1
}

.

We now introduce the following mapping from R
2n+1 to R

2n+1+1:

dn (x1, x2, ..., x2n+1) = (x1, x1, x2, x2, ..., x2n , x2n , x2n+1) .

Notice that

�n (x) = �(Tn (x))

= �

⎛

⎝
2n∑

i=1

xi1[ i−1
2n , i

2n

) + x2n+11{1}

⎞

⎠

= �

⎛

⎝
2n∑

i=1

(
xi1[ 2i−2

2n+1 , 2i−1
2n+1

) + xi1[ 2i−1
2n+1 , 2i

2n+1

)
)

+ x2n+11{1}

⎞

⎠

= �(Tn+1 (x1, x1, x2, x2, ..., x2n , x2n , x2n+1))

= �n+1 (dn (x)) ,

therefore �n = �n+1 ◦ dn . Let us define a mapping from R
2n+1+1 to R

2n+1

dn
(
w1, ..., w2n+1+1

) = (
w1 + w2, w3 + w4, ..., w2n+1−1 + w2n+1 , w2n+1+1

)
.
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It is very simple to check that

〈w,dn (x)〉n+1 = 〈
dn (w) , x

〉
n ,∀ (w, x) ∈ R

2n+1+1 × R
2n+1.

We claim that dn (�n+1) = �n , and to see this, observe that

�n (x) = �n+1 (dn (x))

= sup
w∈�n+1

〈w, dn (x)〉n+1

= sup
w∈�n+1

〈
dn (w) , x

〉
n

= sup
w∈dn(�n+1)

〈w, x〉n .

Introduce �n = T̃n (�n) and

Ln (K ) := sup
H∈�n

〈H, K 〉 , K ∈ L0,

then it is easy to verify that for all (w, x) ∈ R
2n+1+1 × R

2n+1

〈w, x〉n =
〈
T̃n (w) , Tn (x)

〉
.

This implies that

Ln (Tn (x)) = �n (x) ,∀x ∈ R
2n+1.

Also note that if x ∈ R
2n+1 is a non-decreasing sequence, then Tn (x) is non-decreasing and

thus
Ln (Tn (x)) = �n (x) = �(Tn (x)) . (3)

Let Tn (x) ∈ Sn and T̃n+1 (w) ∈ Sn+1. It can be easily checked that
〈
T̃n+1 (w) , Tn (x)

〉
= 〈

dn (w) , x
〉
n ,

which implies that

Ln+1 (Tn (x)) = sup
H∈�n+1

〈H, Tn (x)〉

= sup
w∈�n+1

〈
T̃n+1 (w) , Tn (x)

〉

= sup
w∈�n+1

〈
dn (w) , x

〉
n

= sup
w∈�n+1

〈w, dn (x)〉n
= �n+1 ◦ dn (x)

= �n (x)

= Ln (Tn (x)) .

This shows that

Ln+1 (Tn (x)) = Ln (Tn (x)) . (4)
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Let us introduce the mapping from the set of continuous functions, C [0, 1], to Sn with

En (K ) =
2n∑

i=1

(
1

2n

∫ i
2n

i−1
2n

K (t) dt

)

1[ i−1
2n , i

2n

) +
(

1

2n

∫ 1

2n−1
2n

K (t) dt

)

1{1}, K ∈ C [0, 1] .

From a probabilistic point of view, this is the conditional expectation with respect to the
sigma-algebra induced by partition {[ i−1

2n , i
2n ), i = 1, ..., 2n−1, [ 2n−1

2n , 1]}. For a continuous
function K , it is clear that En (K ) converges pointwise to K . Now,we introduce the following
function Lc on C [0, 1]

Lc (K ) = lim sup
n

Ln (En (K )) .

First of all, it is clear that min (K ) ≤ Lc (K ) ≤ max (K ); therefore Lc (K ) is a finite number,
whichmeans dom (Lc) = C [0, 1]. Note that any convex function is continuous in the interior
of its domain. Now let us consider a continuous and non-decreasing member K ∈ C [0, 1];
then it is clear that En (K ) is a non-decreasing member of Sn . Therefore, as discussed earlier,
L (En (K )) = �(En (K )). However, since En (K ) converges pointwise to K , we have that
�(En (K )) → �(K ), as n → ∞. Therefore, by using (4) and (3),

Lc (K ) = lim sup
n

Ln (En (K )) = Ln (En (K )) = � (K ) . (5)

It can be easily checked that Lc is sub-additive and positive homogeneous of degree 1, that
it is non-decreasing, and that Lc (K + c) = Lc (K ) + c. The last-mentioned property easily
results in the continuity of Lc (note Lc (K )− Lc (H) ≤ Lc (H − K ) ≤ Lc (‖H − K‖∞) =
‖H − K‖∞ , for all K , H ∈ C [0, 1]). Let C = {K ∈ C [0, 1] |Lc (K ) ≥ 0} and

� =
{
μ ∈ BV [0, 1] |∀K ∈ C,

∫ 1

0
K (t) dμ (t) ≥ 0 and

∫ 1

0
dμ (t) = 1

}
.

Since C [0, 1]+ ⊆ C , then all members of � are non-negative and it is also easy to see that
� is a closed convex set in BV [0, 1]. Like in the proof of Theorem 2.3 in [10], one can show
that

Lc (K ) = sup
μ∈�

∫ 1

0
K (t) dμ (t) .

By using the Alaoglu theorem, we find that the continuity of Lc results in � being
σ (BV [0, 1] ,C [0, 1])-compact.

We now prove the following lemma:

Lemma 1 There exists ε0 > 0 such that

∀μ ∈ �,

∫ 1

1−ε0

dμ (t) = 0. (6)

Proof Let us consider the opposite to be true and prove it by means of contradictions.
Therefore, for any N , there exists μN such that

∫ 1
1− 1

N
dμN (t) > 0 . For each N , let us

consider a continuous, non-negative, and non-decreasing function IN such that supp (IN ) ⊆[
1 − 1

N , 1
]
and IN |[1− 1

2N ,1] = 1∫ 1
1− 1

N
dμN (t)

. Observe that IN → 0, pointwise as N → ∞,
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which implies � (IN ) → 0 as N → ∞. Since IN ∈ C [0, 1] is non-decreasing, then by (5)
we have Lc (IN ) = � (IN ). This means that Lc (IN ) → 0 as N → ∞. However,

Lc (IN ) ≥
∫ 1

0
IN (t) dμN (t)

≥
∫ 1

1− 1
2N

1
∫ 1
1− 1

N
dμN (t)

dμN (t) = 1,

which is a contradiction. ��

Now, we show that each member μ ∈ � can be considered as a measure on [0, 1]. First, we
have the following simple lemma:

Lemma 2 For μ ∈ �, let �μ (K ) = ∫ 1
0 K (t) dμ (t). � has the following properties:

(1) Linearity If K1, K2 ∈ C [0, 1], and α1, α2 are any two real numbers, then �μ(α1K1 +
α2K2) = α1�μ (K1) + α2�μ (K2).

(2) Non-negativity If K ∈ C [0, 1] and K ≥ 0, then �μ (K ) ≥ 0.
(3) Continuity If Km is a non-increasing sequence (i.e., K1 ≥ · · · ≥ Kn ≥ · · · ) of functions

in L that converges to 0 for all x in [0, 1], then �μ (Kn) → 0.

Proof The first and the second properties are clear. Note that, when K is continuous, the
integral

∫ 1
0 K (t) dμ (t) can be regarded as the Lebesgue integral for the measuremμ defined

as mμ [a, b) = μ (b) − μ (a) and mμ (1) = 0. Therefore, the third property is an easy result
of the dominated convergence theorem. ��

Let us now introduce the following Daniell integral (see [22] for instance) on the set, F,
of non-negative functions on [0, 1]: let {Kn}∞n=1 be an arbitrary increasing sequence from
C [0, 1] converging pointwise to K ∈ F, i.e., Kn ↑ F . Then, the Daniell integral of K is
defined as

Dμ (K ) = lim
n

�μ (Kn) .

Daniell has shown that, given the three properties we mentioned in the previous lemma, this
limit is independent of the choice of the sequence. It is important that the value of the Daniell
integral can be +∞, if the limit is not bounded. There is also a Borel measure μ̄, on [0, 1],
given in intervals as

μ̄ [a, b) = Dμ

(
1[a,b)

)
and μ̄ ({1}) = Dμ

(
1{1}

)
,

where

Dμ (K ) =
∫ 1

0
K (t) dμ̄ (t) .

If the sequence
∫ 1
0 Kn (t) dμ (t) is bounded above, we say K is integrable. It is easy to see that

μ̄ inherits all the properties ofμ such as non-negativity, μ̄ [0, 1] = 1, and supp (μ̄) ⊆ [0, ε0).
Now, let us consider some K ∈ A with a non-increasing sequence

{
K ′
n

}∞
n=1 from C [0, 1]

such that K ′
n ↓ K on

[
0, 1 − ε0

2

]
(we know that such sequence always exists given that K is

bounded on
[
0, 1 − ε0

2

]
). Then, given that μ̄ is non-negative and supp (μ̄) ⊆ [0, ε0) ∀μ ∈ �,
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along with the pointwise continuity of �, we have

sup
μ∈�

∫ 1

0
K (t) dμ̄ (t) = sup

μ∈�

∫ 1−ε0

0
K (t) dμ̄ (t)

≤ sup
μ∈�

∫ 1−ε0

0
K ′
n (t) dμ̄ (t)

= sup
μ∈�

∫ 1

0
K ′
n (t) dμ̄ (t)

= �
(
K ′
n

) ↓ � (K ) .

This inequality has two implications. First, K is Daniell integrable for all μ ∈ �. Second,

sup
μ∈�

∫ 1

0
K (t) dμ̄ (t) ≤ � (K ) . (7)

On the other hand, let us assume that {Kn}∞n=1 is a sequence in C [0, 1] such that Kn ↑ K
pointwise. Then we have

sup
μ∈�

∫ 1

0
K (t) dμ̄ (t) ≥ sup

μ∈�

∫ 1

0
Kn (t) dμ̄ (t) = Lc (Kn) = � (Kn) ↑ � (K ) .

This shows, on all members of A, that

sup
μ∈�

∫ 1

0
K (t) dμ̄ (t) ≥ � (K ) . (8)

Finally, (8) and (7) result in (2).
Now, let us assume that � is co-monotone additive and introduce, for any continuous

function K , the set M (K ) as follows:

M (K ) =
{

λ ∈ �

∣
∣
∣
∣

∫ 1

0
K (t) dλ (t) = sup

μ∈�

∫ 1

0
K (t) dμ (t)

}

.

Since � is non-empty, M (K ) is also non-empty. Now, we claim that for two non-decreasing
continuous functions K1 and K2, we have M (K1 + K2) ⊆ M (K1) ∩ M (K2). Let us take
λ ∈ M (K1 + K2); then by using Lc representation

∫ 1

0
K1 (t) dλ (t) ≤ sup

μ∈�

∫ 1

0
K1 (t) dμ (t) , (9)

∫ 1

0
K2 (t) dλ (t) ≤ sup

μ∈�

∫ 1

0
K2 (t) dμ (t) (10)

and by co-monotonicity of �, we have
∫ 1

0
K2 (t) dλ (t) +

∫ 1

0
K2 (t) dλ (t) =

∫ 1

0
(K1 (t) + K2 (t)) dλ (t)

= sup
μ∈�

∫ 1

0
(K1 (t) + K2 (t)) dμ (t)

= �(K1 + K2)

= �(K1) + � (K2) . (11)
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We can see that (9), (10), and (11) imply that (9) and (10) holdwith equality, meaning that λ ∈
M (K1) ∩ M (K2). By induction, one can then infer M (K1 + K2 + · · · + Kn) ⊆ M (K1) ∩
M (K2) ∩ · · · ∩ M (Kn) for any n continuous and non-decreasing functions K1, · · · , Kn .
This means that, for every n ∈ N, M (K1)∩M (K2)∩· · ·∩M (Kn) �= ∅. By using the finite
compact intersection lemma, one can deduce that

C :=
⋂{

M (K )

∣
∣
∣
∣

K ∈ C [0, 1]
K is non-decreasing

}
�= ∅.

Let us assume λ ∈ C. Then for any continuous and non-decreasing function K , we have
�(K ) = ∫ 1

0 K (t) dλ. By using the same argument for introducing the Daniell integral

above, one can show that λ can induce a measure on [0, 1] such that � (K ) = ∫ 1
0 K (t) dλ,

for any K ∈ A. This completes the proof of Theorem 1. ��
Remark 2 Itmay be questionedwhywe did not adopt the same approach as in [1] to introduce
the following convex function

Lcc (K ) =
{

�(K ) K ∈ C [0, 1] and K is non-decreasing

+∞ o.w.
,

and used instead its Fenchel–Moreau representation given by

Lcc (K ) = sup
H∈�cc

∫ 1

0
K (t) dH (t) .

The matter of fact is, in this case (or any similar approach), to show that the set �cc has
non-negative members, we need to know that, for a continuous and non-decreasing function
K , the sub-gradient ∂Lcc (K ) is non-empty. On the other hand, ∂Lcc (K ) is non-empty if K
is in the interior of the domain:

dom
(
Lcc) = {K ∈ C [0, 1] and K is non-decreasing} .

However, it is not difficult to see that the interior of dom (Lcc) is empty.
The approach we have chosen above allows us to construct an appropriate reduction of �

to the set of non-decreasing continuous functions, which can be extended to the whole set
C[0, 1].
Remark 3 It is known that, for any non-empty set X, the set of all real functions from X to
R, endowed with the pointwise topology, is a topological vector space and each continuous
functional f on this space can be described as f (K ) = ∑n

i=1 ai K (xi ), for some n ∈ N,
(ai )ni=1 ∈ R

n , and (xi )ni=1 ∈ X
n (see, for instance, [2]). That is why one would guess, in

the first place, that the same might hold for a weakly continuous co-monotone additive risk
measure (which, as we have seen, does not).

Remark 4 Now let us compare our main result, Theorem 1, with a similar representation of
law-invariant coherent risk measures by [18]. A coherent risk measure � is a mapping from
L∞ to R, with properties 1, 2, and 3 of Definition 1, and also with the following one:

4′. Sub-additivity: �(X + Y ) ≤ �(X) + �(Y ),∀X, Y ∈ L∞.
In [18], it is shown that a law-invariant coherent risk measure � that is σ

(
L∞, L1

)
lower

semicontinuous can be represented as follows:

� (X) = sup
m∈C

∫ 1

0
CVaRα (X) dm (α) ,
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where C is a set of probability measures on [0, 1] and

CVaRα (X) = 1

1 − α

∫ 1

α

VaRt (X) dt, ∀X ∈ L∞.

However, this can be written as a double integral as follows:

� (X) = sup
m∈C

∫ 1

0

1

1 − α

∫ 1

α

VaRt (X) dtdm (α) .

By changing the variables, one gets
∫ 1

0

1

1 − α

∫ 1

α

VaRt (X) dtdm (α) =
∫ 1

0

∫ t

0

1

1 − α
VaRt (X) dm (α) dt

=
∫ 1

0
VaRt (X)

(∫ t

0

1

1 − α
dm (α)

)
dt

=
∫ 1

0
VaRt (X) dλm (t) ,

where λm (t) = ∫ t
0

∫ s
0 ( 1

1−α
dm (α))ds. Note that λm is a non-decreasing function such that

λm (0) = 1 − λm (1) = 0. Indeed, from the above, one can have

λm (1) =
∫ 1

0
VaRt (X)

(∫ t

0

1

1 − α
dm (α)

)
dt

∣
∣
∣
∣
X=1

=
∫ 1

0
CVaRα (X) dm (α)

∣
∣
∣
∣
X=1

= 1.

Therefore, by abusing the notation and using λm to denote a measure, λm (a, b] = λm (b) −
λm (a) can introduce a measure on [0, 1]. Finally, one can represent a law-invariant coherent
risk measure in the following way:

� (X) = sup
m∈C

∫ 1

0
VaRα (X) dλm (α) .

As one can see, this representation is very similar to what is expressed in Theorem 1, except
that all members of C have particular forms represented by λm (t) = ∫ t

0

∫ s
0 ( 1

1−α
dm (α))ds.
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