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Abstract We consider the problem of optimal trading for a power producer in the context of
intraday electricitymarkets. The aim is tominimize the imbalance cost induced by the random
residual demand in electricity, i.e. the consumption from the clients minus the production
from renewable energy. For a simple linear price impact model and a quadratic criterion, we
explicitly obtain approximate optimal strategies in the intraday market and thermal power
generation, and exhibit some remarkable properties of the trading rate. Furthermore, we study
the case when there are jumps on the demand forecast and on the intraday price, typically
due to error in the prediction of wind power generation. Finally, we solve the problem when
taking into account delay constraints in thermal power production.
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1 Introduction

The development of renewable energy sources in Europe as a response to global climate
change has led to an increase of exchange in the intraday electricity markets. For instance,
the exchanged volumeon theEuropeanEnergyExchange (EEX) forGermanyhas grown from
2TWh in 2008 to 25 TWh in 2013. This increase is mainly due to the level of forecasting error
of wind production, which leads power producers owning a large share of wind production to
turnmore than ever to intradaymarkets in order to adjust their position and avoid penalties for
their imbalances. The accuracy of forecasts for renewable power production from wind and
solar may vary considerably depending on the agreggation level (local vs regional forecast)
and the time horizon. For a complete survey on this problem, the reader can consult Giebel et
al. [5], and may have in mind that the root mean square error (RMSE) of the error forecast for
the production of a wind farm in 6 h can reach 20 % of its installed capacity. Many different
intraday markets have been designed and are subject to different sets of regulation. But, in all
cases, intraday markets offer power producer the possibility to buy or sell power for the next
(say) 9–32 h (case of the French electricity market of EpexSpot). These trades can occur after
the closing of the day-ahead market or during the clearing phase of the day-ahead market.
Moreover, there is a clear evidence that traders take the existence of some market impact into
account. Indeed, for a given hour of delivery, the average volume sold or purchased in 2014
is of order of magnitude 340 MW while the average trade order volume is of approximate
size 20 MW (source: Epexspot). This point indicates that traders split their sales or their
purchases into small quantities to reduce their impact.

The problem of trading management in the intraday electricity market for a balancing
purpose has already drawn the attention in the literature. Henriot [7] studied the problem
of how the intraday market can help a power producer to deal with the wind production
error forecast in a stylized discrete time model. In his model, the power producer is a wind
producerwho is trying tominimize her sourcing cost on the intradaymarketwhilemaintaining
a balance position between her forecast production and her sales. Henriot’s model takes into
account the impact of the wind power producer on the intraday price with a deterministic
inverse demand function, and the intraday price is not a risk factor. The only risk factor comes
from the error forecast of the wind production and its auto-correlation. Garnier andMadlener
[4] studies the trade-off between entering into a deal in the intraday market right now and
postponing it in a discrete time decision model where intraday prices follow a geometric
Brownian model and wind production error forecast follows an arithmetic Brownian motion.
In their framework, the power producer is supposed to have no impact on intraday prices.
Liquidity risk is taken into account as a probability of not finding a counter-party at the next
trading window.

In this paper, we consider a power producer having at disposal some renewable energy
sources (e.g. wind and solar), and thermal plants (e.g. coal, gas, oil, and nuclear sources), and
who can buy/sell energy in the intraday markets. Her purpose is to minimize the imbalance
cost, i.e. the cost induced by the difference between the demand of her clients minus the
electricity produced and traded, plus the production and trading costs. In contrast with ther-
mal power plants whose generation can be controlled, the power generated from renewable
sources is subject to non controllable fluctuations or risks (wind speed, weather forecast) and
is then considered here as a random factor just like the demand. We then call the residual
demand the demand minus the energy generated by renewable energy. Thus, the problem of
the power producer is to minimize the imbalance costs arising from her residual demand by
relying both on her own controllable thermal assets and on the intraday market. As in [4], we
assume that the power producer has access to a continuously updated forecast of the residual
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demand to be satisfied at terminal date T and that this forecast evolves randomly. Moreover,
the intraday price for delivery at time T evolves also randomly and is correlated with the
residual demand forecast. However, compared with [4], the intraday market can be used for
optimization purposes. We develop a model that allows us to study how power producers can
take advantage of the interaction between the dynamics of the residual demand forecast and
the dynamics of the intraday prices.

Our model shares some links with optimal order execution problems, as introduced in the
seminal paper by Almgren and Chriss [2], and then largely studied in the recent literature, see
e.g. the survey paper [10]. In our context, the original feature with respect to this literature
is the consideration of a random demand target and the possibility for the agent to use her
thermal power production. This connection with optimal execution is fruitful in the sense
that it allows us to take into account several features of intraday markets while maintaining
the tractability of the model sufficiently high to allow analytical solutions. Hence, we take
into account liquidity risk through a market impact, both permanent and temporary, on the
electricity price generated by a power producer when trading in the intraday market. As in
optimal execution problems, this impact is always in the adverse direction: when the producer
sells, the price decreases and when she buys, the price increases. Our setting is a continuous-
time decision problem representing the possibility for the producer to make a deal at each
time she wants and not only at pre-specified windows. Moreover, it is general enough as
it permits us to study the limiting cases of a pure retailer (no production function), a pure
trader (no demand commitment) and an integrated player (player owning both clients and
generation), small or large.

The main goal of this paper is to derive analytical results, which provide explicit solutions
for the (approximate) optimal control, hence giving enlightening economic interpretations
of the optimal trading strategies. In order to achieve such analytical tractability, we have to
make some simplifying assumptions on the dynamics of the price process and of the residual
demand forecast, as well as on the cost function, assumed to be of quadratic form meaning
a simple linear growth of the marginal cost of production with respect to the production
level. We first consider a simple model for a continuous price process with linear impact, and
demand forecast driven by an arithmetic Brownianmotion, and neglect in a first step the delay
of production when using thermal power plants. We then study an auxiliary control problem
by relaxing the nonnegativity constraint on the generation level, for which we are able to
derive explicit solutions. The approximation error induced by this relaxation constraint is
analyzed. In next steps, we consider more realistic situations and investigate two extensions:
(i) On one hand, we incorporate the case where the residual demand forecast is subject to
sudden changes, related to prediction error for wind or solar power production, which may be
quite important due to the difficulties for estimating wind speed and forecasting weather, see
[3]. This is formalized by jumps in the dynamics of the demand process, and consequently
also on the price process. Again, we are able to obtain explicit solutions. Actually, the key tool
in the derivation of all these analytical results is a suitable treatment of the linear-quadratic
structure of our stochastic control problem. (ii) On the other hand, we introduce natural delay
constraints in the production, and show how the optimal decision problem can be explicitly
solved by a suitable reduction to a problem without delay.

Our (approximate) optimal trading strategies present some remarkable properties. When
the intraday price process is a martingale, the optimal trading rate inherits the martingale
property, which implies in particular that the net position of electricity shares has a constant
growth rate on average. Moreover, the optimal strategy consists in making at each time the
forecast marginal cost equal to the forecast intraday price. This property follows the common
sense of intraday traders. Consequently, if the producer has made sales or purchases on the
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day-ahead such that her forecast marginal cost equals the day-ahead price and if the initial
condition of the intraday price is the day-ahead price, thus, on average, the producer optimal
trading rate is zero. This fact is no longer true when the demand forecast and the price
follow processes with jumps. In this case, the optimal trading rate is a supermartingale or a
submartingale depending on the relative probability and size of positive and negative jumps
on the price process. For this reason, contrary to the case without jumps, the power producer
may need to have a non-zero initial trading rate even if she has made sales or purchases on the
day-ahead such that her forecast marginal cost equals the day-ahead price and if the initial
condition of the intraday price is the day-ahead price. We also quantify explicitly the impact
of delay in production on the trading strategies. When the price process is a martingale, the
net inventory in electricity shares grows linearly on average, with a change of slope (which
is smaller) at the time decision for the production.

The outline of the paper is organized as follows. We formulate the optimal trading pro-
blem in Sect. 2. In Sect. 3, we study the optimal trading problem without delay. We first
solve explicitly the auxiliary optimal execution problem, and then study the approximation
on the solution to the original problem, by focusing in particular on the error asymptotics.
We illustrate our results with some numerical tests and simulations. We extend in Sect. 4 our
results to the case where jumps in demand forecast may arise. In Sect. 5, we show how the
optimal trading problem with delay in production can be reduced to a problem without delay,
and then leads to explicit solutions. Finally, the Appendix collects the explicit derivations of
our solutions, which are justified by verification theorems.

2 Problem formulation

We consider an agent on an intraday energy market, who is required to guarantee her equilib-
rium supply/demand for a given fixed time T : she has to satisfy the demand of her customers
by purchase/sale of energy on the intraday market at time T and also by means of her thermal
power generation. We denote by Xt the net position of sales/purchases of electricity at time
t ≤ T for a delivery at terminal time T , assumed to be described by an absolutely continuous
trajectory up to time T , and by qt = Ẋt the trading rate: qt > 0 means an instantaneous
purchase of electricity, while qt < 0 represents an instantaneous sale at time t :

Xt = X0 +
∫ t

0
qsds, 0 ≤ t ≤ T . (2.1)

Given the trading rate, the transactions occur with a market price impact:

Pt (q) = P̂t +
∫ t

0
g(qs)ds + f (qt ).

Here, (P̂t )t is the unaffected intraday electricity price process on a filtered probability space
(�,F,F = (Ft )t∈[0,T ],P), carrying some part of randomness of the market, and following
the terminology in the seminal paper by Almgren and Chriss [2], the term f (qt ) refers to the
temporary price impact, while

∫ t
0 g(qs)ds describes the permanent price impact. The price

(P̂t )t may be seen as a forward price, evolving in real time, for delivery at time T . Let us then
denote by Y the intraday electricity price impacted by the past trading rate q of the agent,
defined by:

Yt := P̂t +
∫ t

0
g(qs)ds.
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We assume that Yt is observable and quoted, which means actually that the agent is a large
trader and electricity producer, whose actions directly impact the intraday electricity price.
The case where the agent is a small producer can be also dealt with by simply considering a
zero permanent impact function g ≡ 0. Notice that the transacted price is equal to the sum
of the quoted price Y and the temporary price impact:

Pt (q) = Yt + f (qt ). (2.2)

The residual demand DT is the consumption of clients of the agent minus the production
from renewable energy at terminal date T , and we assume that the agent has access to a
continuously updated forecast (Dt )t of the residual demand. The agent can use her thermal
power production with a quantity ξ at cost c(ξ) in order to match as close as possible the
target demand DT . In practice, generation of electricity cannot be obtained instantaneously
and needs a delay to reach a required level of production. Hence, the decision to produce
a quantity ξ should be taken at time T − h, where h ∈ [0, T ] is the delay. Thus, for a
controlled trading rate q = (qt )t ∈ A, the set of real-valued F-adapted processes satisfying
some integrability conditions to be precised later, a production quantity ξ ∈ L0+(FT −h), the
set of nonnegative FT −h-measurable random variables, the total cost is:

∫ T

0
qt Pt (q)dt + C(DT − XT , ξ) :=

∫ T

0
qt Pt (q)dt + c(ξ) + η

2
(DT − XT − ξ)2.

(2.3)

The first term in (2.3) represents the total running cost arising from the trading in the intraday
electricity market, and the last term, where η > 0, represents the quadratic penalization when
the net position in sales/purchases of electricity XT + ξ (including the production quantity
ξ at cost c(ξ)) at terminal date T does not fit the effective demand DT . The objective of the
agent is then to minimize over q and ξ the expected total cost:

minimize over q ∈ A, ξ ∈ L0+(FT −h) E

[ ∫ T

0
qt Pt (q)dt + C(DT − XT , ξ)

]
. (2.4)

Remark 2.1 (1) The imbalance of the agent (DT − XT − ξ ) is penalized by the transport
system operator (TSO) because if a producer generates less power than her demand, then
the TSO has to buy the energy from another producer to insure that the total production
of all producers is equal to the total demand of the electric system. When the producer
generates too much power, she is not truly penalized, but this excess of energy is bought
back by the TSO at a price that is lower than the marginal cost of the producer. The
penalization term in the objective function above is a simplification of the effective
penalization process that can be found in real electricity markets. For instance, the
penalization of imbalances in the French electricity market depends both on the sign of
the imbalance of the electricity system and on the price of imbalances (see [1, chap 2,
Sec. 2.2.1]). Nevertheless, the positive coefficient η captures the main objective of the
penalization process. The agent has no incentive of being either too long or too short.

(2) On realmarkets, trading ends some time before the date of delivery, atwhich the agent has
to ensure equilibrium (e.g. on the French electricity market, there is a delay of 45 mins).
We do not include that practical fact in our framework, by considering that the delay is
null for the sake of clarity. There is no mathematical consequence: it is enough to have
in mind that the delivery and production do not really take place at T , but at T plus some
delay.
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(3) The larger is η, the stronger is the incentive for the agent to be as close as possible to the
equilibrium supply-demand. At the limit, when η goes to infinity, the agent is formally
constrained to fit supply and demand. However, the limiting problem when η = ∞ is
not mathematically well-posed since such perfect equilibrium constraint is in general
not achievable. Indeed, the demand at terminal date T is random, typically modelled
via a Gaussian noise, and the inventory X which is of finite variation, may exceed or
underperform with positive probability the demand DT at terminal date T . Hence, in the
scenario where XT > DT , and since by nature the production quantity ξ is nonnegative,
it is not possible to realize the equilibrium XT +ξ = DT , even if there is no delay. In the
sequel, we fix η > 0 (which may be large, but finite), and study the stochastic control
problem (2.4).

(4) The optimization problem (2.4) shares somes similarities with the optimal execution
problem in limit order book studied in the seminal paper by Almgren and Chriss [2],
and then extended by many authors in the literature, see e.g. the survey paper [10]. The
main difference is that in the execution problem of equities, the target is to buy or sell
a certain number of shares, i.e. lead XT to a fixed constant (meaning formally that η

goes to infinity) while in our intraday electricity markets context, the target is to realize
the equilibrium with the random demand DT , eventually with the help of production
leverage ξ . However, in contrast with the case of constant target, it is not possible in
presence of random target DT to achieve perfectly the equilibrium, which justifies the
introduction of the penalty factor η as pointed out above. ��

Themain aim of this paper is to provide explicit (or at least approximate explicit) solutions
to the optimization problem (2.4), which are easily interpreted from an economic point of
view, and also allow to measure the impact of the various parameters of the model. In order
to achieve this goal, we shall adapt our modeling as close as possible to the linear-quadratic
framework of stochastic control, andmake the following assumptions: The energy production
cost function is in the quadratic form:

c(x) = β

2
x2,

for some β > 0. Although simple, a quadratic cost function represents the increase of the
marginal cost of production with the level of production.

Remark 2.2 (Pure retailer) In the limiting case when β goes to infinity, meaning an infi-
nite cost of production, this corresponds to the framework where the agent never uses the
production leverage and only trades in the intraday-market by solving the optimal execution
problem:

minimize over q ∈ A E

[ ∫ T

0
qt Pt (q)dt + C(DT − XT , 0)

]
. (2.5)

��
As in Almgren and Chriss, we assume that the price impact (both permanent and tempo-

rary) is of linear form, i.e.

g(q) = νq, f (q) = γ q,

for some constants ν ≥ 0 and γ > 0. The unaffected intraday electricity price is taken as a
Bachelier model:

P̂t = P̂0 + σ0Wt , (2.6)
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where W is a standard Brownian motion, and σ0 > 0 is a positive constant. Such assumption
might seem a shortcoming at first sight since it allows for negative values of the unaffected
price. However, in practice, for our intraday execution problem within few hours, negative
prices occur only with negligible probability. This issue has been addressed in several works,
see for instance Footnote 8 in [2], the comments in [10], or [6]. The martingale assumption
is also standard in the market impact literature since drift effects can often be ignored due to
short trading horizon. The quoted price Y , impacted by the past trading rate q ∈ A, is then
governed by the dynamics:

dYt = νqt dt + σ0dWt . (2.7)

The dynamics of the residual demand forecast is given by

d Dt = μdt + σdd Bt , (2.8)

where μ, σd are constants, with σd > 0, and B is a Brownian motion correlated with W :
d < W, B >t= ρdt , ρ ∈ [−1, 1].

From (2.2), one can then define the value function associated to the dynamic version of
the optimal execution problem (2.4) by:

v(t, x, y, d) := inf
q∈At ,ξ∈L0+(FT −h)

J (t, x, y, d; q, ξ) (2.9)

with

J (t, x, y, d; q, ξ) := E

[ ∫ T

t
qs(Y

t,y
s + γ qs)ds + C

(
Dt,d

T − Xt,x
T , ξ

) ]
, (2.10)

for (t, x, y, d) ∈ [0, T ] × R × R × R, where At denotes the set of real-valued processes
q = (qs)t≤s≤T s.t. qs is Fs-adapted and E

[ ∫ T
t q2

s ds] < ∞, Dt,d is the solution to (2.8)
starting from d at t , and given a control q ∈ At , Y t,y denotes the solution to (2.7) starting
from y at time t , and Xt,x is the solution to (2.1) starting from x at t .

In a first step, we shall consider the case when there is no delay in the production, and
then show in the last section of this paper how to reduce the problem with delay to a no delay
problem. We shall also study the case when there are jumps in the residual demand forecast.

3 Optimal execution without delay in production

In this section, we consider the case when there is no delay in production, i.e. h = 0. In
this case, we notice that the optimization over q and ξ in (2.4) is done separately. Indeed,
the production quantity ξ ∈ L0+(FT ) is chosen at the final date T , after the decision over
the trading rate process (qt )t∈[0,T ] is achieved (leading to an inventory XT ). It is determined
optimally through the optimization a.s. at T of the terminal cost C(DT − XT , ξ), hence in
feedback form by ξ∗

T = ξ̂ tr+(DT − XT ) where

ξ̂ tr+(d) := argmin
ξ≥0

C(d, ξ) = argmin
ξ≥0

[
β

2
ξ2 + η

2
(d − ξ)2

]

= η

η + β
d1d≥0, (3.1)
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the notation “tr+” indicating that some truncation of the negative part has been performed.
The value function of problem (2.9) may then be rewritten as

v(t, x, y, d) = inf
q∈At

E

[∫ T

t
qs

(
Y t,y

s + γ qs

)
ds + C+ (

Dt,d
T − Xt,x

T

)]
, (3.2)

where

C+(d) := C(d, ξ̂ tr+(d))

= 1

2

ηβ

η + β
d21d≥0 + η

2
d21d<0. (3.3)

and the optimal trading rate q∗ is derived by solving (3.2).
Due to the indicator function in C+, caused by the non negativity constraint on the pro-

duction quantity, there is no hope to get explicit solutions for the problem (3.2), i.e. solve
explicitly the associated dynamic programming Hamilton-Jacobi-Bellman (HJB) equation.
We shall then consider an auxiliary execution problem by relaxing the sign constraint on the
production quantity, for which we are able to provide explicit solution. Next, we shall see
how one can derive an approximate solution to the original problem in terms of this auxiliary
explicit solution, and we evaluate the error and illustrate the quality of this approximation by
numerical tests.

3.1 Auxiliary optimal execution problem

We consider the optimal execution problem with relaxation on the non negativity constraint
of the production leverage, and thus introduce the auxiliary value function

ṽ(t, x, y, d) := inf
q∈A,ξ∈L0(FT )

J (t, x, y, d; q, ξ),

for (t, x, y, d) ∈ [0, T ] × R × R × R. By same arguments as for the derivation of (3.2), we
have

ṽ(t, x, y, d) = inf
q∈AE

[ ∫ T

t
qs(Y

t,y
s + γ qs)ds + C̃

(
Dt,d

T − Xt,x
T

) ]
, (3.4)

where

ξ̂ (d) := argmin
ξ∈R

C(d, ξ) = η

η + β
d,

C̃(d) := C(d, ξ̂ (d)) = 1

2

ηβ

η + β
d2 =: 1

2
r(η, β)d2. (3.5)

The function in (3.5) canbe interpreted as a reduced cost function.Because the production cost
function and the penalization are both quadratic, they can be reduced to a single production
function where the imbalances are internalized by the producer.

The auxiliary problem (3.4)–(3.5) can be interpreted as a situation where it would be
necessary to increase the demand. Allowing for negative generation is equivalent to include
the possibility either to increase the demand through a price signal or to sell at a negative
price on the intraday market. Those two possibilities exist on electricity markets.

By exploiting the linear-quadratic structure of the stochastic control problem (3.4), we
can obtain explicit solutions for this auxiliary problem.
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Theorem 3.1 The value function to (3.4) is explicitly equal to:

ṽ(t, x, y, d) = r(η, β)
(

ν
2 (T − t) + γ

)
(r(η, β) + ν)(T − t) + 2γ

(
(d − x)2 + 2μ(T − t)(d − x)

)

+ T − t

(r(η, β) + ν)(T − t) + 2γ

(
− y2

2
+ r(η, β)μ(T − t)y

)

+ r(η, β)(T − t)

(r(η, β) + ν)(T − t) + 2γ
(d − x)y

+ γ
σ 2
0 + σ 2

d r2(η, β) − 2ρσ0σdr(η, β)(
r(η, β) + ν

)2 ln

(
1 + (r(η, β) + ν)(T − t)

2γ

)

+ σ 2
d r(η, β)ν + 2ρσ0σdr(η, β) − σ 2

0

2
(
r(η, β) + ν

) (T − t)

+ r(η, β)μ2(T − t)2
(

ν
2 (T − t) + γ

)
(r(η, β) + ν)(T − t) + 2γ

,

for (t, x, y, d) ∈ [0, T ] × R × R × R, with an optimal trading rate given in feedback form
by:

q̂s = q̂
(

T − s, Dt,d
s − X̂ t,x,y,d

s , Ŷ t,x,y,d
s

)
, t ≤ s ≤ T

q̂(t, d, y) := r(η, β)(μt + d) − y

(r(η, β) + ν)t + 2γ
. (3.6)

Here (X̂ t,x,y,d , Ŷ t,x,y,d , Dt,d) denotes the solution to (2.1)–(2.7)–(2.8) when using the feed-
back control q̂, and starting from (x, y, d) at time t. Finally, the optimal production leverage
is given by:

ξ̂T = ξ̂
(

Dt,d
T − X̂ t,x,y,d

T

)
= η

η + β

(
Dt,d

T − X̂ t,x,y,d
T

)
. (3.7)

Proof We look for a candidate solution to (3.4) in the quadratic form:

w̃(t, x, y, d) = A(T − t)(d − x)2 + B(T − t)y2 + F(T − t)(d − x)y

+ G(T − t)(d − x) + H(T − t)y + K (T − t),

for somedeterministic functions A, B, F ,G, H and K . Plugging this ansatz into theHamilton-
Jacobi-Bellman (HJB) equation associated to the stochastic control problem (3.4), we find
that these deterministic functions should satisfy a system of Riccati equations, which can
be explicitly solved. Then, by a classical verification argument, we check that this ansatz w̃

is indeed equal to ṽ, with an optimal feedback control derived from the argmax in the HJB
equation. The details of the proof are reported in Appendix. ��
Remark 3.1 (Pure trader) By sending β to infinity in the expression of the value function ṽ

and of the optimal feedback control q̂, and observing that r(η, β) goes to η, we obtain the
solution to the optimal execution problem (2.5) without leverage production:

vN P (t, x, y, d) := inf
q∈AE

[∫ T

t
qs

(
Y t,y

s + γ qs

)
ds + C

(
Dt,d

T − Xt,x
T , 0

)]

= η
(

ν
2 (T − t) + γ

)
(η + ν)(T − t) + 2γ

(
(d − x)2 + 2μ(T − t)(d − x)

)
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+ T − t

(η + ν)(T − t) + 2γ

(
− y2

2
+ ημ(T − t)y

)

+ η(T − t)

(η + ν)(T − t) + 2γ
(d − x)y

+ γ
σ 2
0 + σ 2

d η2 − 2ρσ0σdη(
η + ν

)2 ln

(
1 + (η + ν)(T − t)

2γ

)

+ σ 2
d ην + 2ρσ0σdη − σ 2

0

2
(
η + ν

) (T − t)

+ ημ2(T − t)2
(

ν
2 (T − t) + γ

)
(η + ν)(T − t) + 2γ

, (3.8)

for (t, x, y, d) ∈ [0, T ] × R × R × R, with an optimal trading rate given in feedback form
by:

q̂ N P
s = q̂ N P

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
, t ≤ s ≤ T

q̂ N P (t, d, y) := η(μt + d) − y

(η + ν)t + 2γ
.

��
Interpretation:

1. The optimal trading rate q̂s at time s ∈ [t, T ], given in feedback form by (3.6), is
decomposed in two terms: the first one

r(η, β)

(r(η, β) + ν)(T − t) + 2γ

(
μ(T − s) + Dt,d

s − X̂ t,x,y,d
s

)

is related to the trading rate in order to follow the trend of the demand, and to the incentive
to invest when the forecast of the residual demand is larger than the current inventory.
The second term

− 1

(r(η, β) + ν)(T − t) + 2γ
Ŷ t,x,y,d

s

represents the negative impact of the quoted price on the investment strategy: the higher
the price is, the more the agent decreases her trading rate until she reaches negative
value meaning a resale of electricity shares. These effects are weighted by the constant
denominator term depending on the penalty factor η, the marginal cost production factor
β, the temporary and permanent price impact parameters γ , ν, and the time to maturity
T − t .

2. By introducing the marginal cost function: c′(x) = βx , and the process

ξ̂s := η

η + β

(
Dt,d

s + μ(T − s) − X̂ t,x,y,d
s − q̂s(T − s)

)
, t ≤ s ≤ T,

which is interpreted as the forecast production for the final time T (recall expression
(3.7) of the final production), we notice from the expression of the optimal trading rate
that the following relation holds:

Ŷ t,x,y,d
s + νq̂s(T − s) + 2γ q̂s = c′ (ξ̂s

)
, t ≤ s ≤ T . (3.9)
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This relation means that at each time, the optimal trading rate is to make the forecast
intraday price plus marginal temporary impact (left hand side), which can be seen as
the marginal cost of electricity on the intraday market at time T , equal to the forecast
marginal cost of production. Here, the instantaneous impact γ appears as a marginal cost
of buying or selling, and the forecast at time s supposes that the optimal trading rate q̂s

is held constant between s and T . ��
We complete the description of the optimal trading rate by pointing out a remarkable

martingale property.

Proposition 3.1 The optimal trading rate process (q̂s)t≤s≤T in (3.6) is a martingale.

Proof By applying Itô’s formula to q̂s = q̂(T − s, Dt,d
s − X̂ t,x,y,d

s , Ŷ t,x,y,d
s ), t ≤ s ≤ T ,

and since q̂ is linear in d and y, we have:

dq̂s =
[
−∂ q̂

∂t
+ (

μ − q̂
) ∂ q̂

∂d
+ νq̂

∂ q̂

∂y

] (
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
ds

+ ∂ q̂

∂d

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
σdd Bs

+ ∂ q̂

∂y

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
σ0dWs,

from the dynamics (2.1), (2.8), and (2.7) of X̂ t,x,y,d , Dt,d and Ŷ t,x,y,d . Now, from the explicit
expression of the function q̂(t, y, d), we see that

−∂ q̂

∂t
+ (

μ − q̂
) ∂ q̂

∂d
+ νq̂

∂ q̂

∂y
= 0,

and so:

dq̂s = r(η, β)σd

(r(η, β) + ν)(T − s) + 2γ
d Bs − σ0

(r(η, β) + ν)(T − s) + 2γ
dWs, (3.10)

which shows the required martingale property. ��
Remark 3.2 Recall that in the classical optimal execution problem as studied in [2], the
optimal trading rate is constant. We retrieve this result in their framework which corresponds
to the case where σd = 0 (constant demand target), β = ∞ (there is no production), and
η = ∞ (constraint to lead XT to the fixed target), see Remark 2.1 4). Indeed, in these
limiting regimes, we see from (3.10) that dq̂s = 0, meaning that {q̂s, t ≤ s ≤ T } is constant.
In our framework, this is generalized to the martingale property of the optimal trading rate
process, which implies that the optimal inventory {X̂ t,x,y,d

s , t ≤ s ≤ T } has a constant growth
rate in mean, i.e. dE[X̂ t,x,y,d

s ]
ds is constant equal to the initial trading rate at time t given by

q̂(T − t, d − x, y).
As a consequence of this martingale property, if the producer already satisfies the relation

(3.9) in the day-ahead market, and if the initial intraday price is the day-ahead price, her
initial trading rate on the intraday market will be zero. And thus, on average, her trading rate
will be zero.

The martingale property of the trading rate process is actually closely related to the mar-
tingale dynamics of the unaffected price P̂ in (2.6). As we shall see in Sect. 4 where we
consider jumps on price, making P̂ a sub or super martingale, the optimal trading rate will
inherit the converse sub or super martingale property. ��
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3.2 Approximate solution

We go back to the original execution problem with the non negativity constraint on the
production quantity. As pointed out above, there is no explicit solution in this case, due to
the form of the terminal cost function C+. The strategy is then to use the explicit control
consisting in the trading rate q̂ derived in (3.6), and of the truncated nonnegative production
quantity:

ξ̃∗
T := ξ̂T1

ξ̂T ≥0
= ξ̂ tr+(Dt,d

T − X̂ t,x,y,d
T ), (3.11)

with ξ̂T defined in (3.7) from the auxiliary problem. In other words, we follow the trading rate
strategy q̂ determined from the problem without constraint on the final production quantity,
and at the terminal date use the production leverage if the final inventory X̂ t,x,y,d

T is below

the terminal demand Dt,d
T , by choosing a quantity proportional to this spread Dt,d

T − X̂ t,x,y,d
T .

The aim of this section is to measure the relevance of this approximate strategy (q̂, ξ̃∗
T ) ∈

A× L0+(FT ) with respect to the optimal execution problem (2.9) by estimating the induced
error:

E1(t, x, y, d) := J
(

t, x, y, d; q̂, ξ̃∗
T

)
− v(t, x, y, d),

for (t, x, y, d) ∈ [0, T ] ×R×R×R. We also measure the approximation error on the value
functions:

E2(t, x, y, d) := v(t, x, y, d) − ṽ(t, x, y, d).

Notice that if ξ̂T ≥ 0 a.s., i.e. Dt,d
T ≥ X̂ t,x,y,d

T a.s. (which is not true), and so ξ̃∗
T = ξ̂T , then

clearly (q̂, ξ̂T ) would be the solution to (2.9), and so E1(t, x, y, d) = E2(t, x, y, d) = 0.
Actually, these errors depend on the probability of the event: {X̂ t,x,y,d

T > Dt,d
T }, and we have

the following estimate:

Proposition 3.2 For all (t, x, y, d) ∈ [0, T ] × R × R × R, we have

0 ≤ Ei (t, x, y, d) ≤ ηr(η, β)

2β
V (T − t)ψ

(
m(T − t, d − x, y)√

V (T − t)

)
, i = 1, 2, (3.12)

where

ψ(z) := (z2 + 1)�(−z) − zφ(z), z ∈ R,

with φ = �′ the density of the standard normal distribution, and

m(t, d, y) := (νt + 2γ )(μt + d) + yt

(r(η, β) + ν)t + 2γ
, (3.13)

V (t) :=
∫ t

0

σ 2
0 s2 + σ 2

d (νs + 2γ )2 + 2ρσ0σds(νs + 2γ )[
(r(η, β) + ν)s + 2γ

]2 ds ≥ 0. (3.14)

Proof By definition of the value functions v and ṽ, recalling that (q̂, ξ̂T ) is an optimal control
for ṽ, and since (q̂, ξ̃∗

T ) ∈ A × L0+(FT ), we have:

J (t, x, y, d; q̂, ξ̂T ) = ṽ(t, x, y, d) ≤ v(t, x, y, d) ≤ J (t, x, y, d; q̂, ξ̃∗
T ),
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for all (t, x, y, d) ∈ [0, T ] × R × R × R. This clearly implies that both errors E1 and E2 are
nonnegative, and

max(E1(t, x, y, d), E2(t, x, y, d))

≤ E(t, x, y, d) := J (t, x, y, d; q̂, ξ̃∗
T ) − J (t, x, y, d; q̂, ξ̂T ).

We now focus on the upper bound for E . By definition of J in (2.10), ξ̂T and ξ̃∗
T in (3.7) and

(3.11), we have

E(t, x, y, d) = E

[
C

(
Dt,d

T − X̂ t,x,y,d
T , ξ̃∗

T

)
− C

(
Dt,d

T − X̂ t,x,y,d
T , ξ̂T

) ]

= E

[
C

(
Dt,d

T − X̂ t,x,y,d
T , ξ̂+ (

Dt,d
T − X̂ t,x,y,d

T

))

− C
(

Dt,d
T − X̂ t,x,y,d

T , ξ̂
(

Dt,d
T − X̂ t,x,y,d

T

)) ]

= E

[
C+ (

Dt,d
T − X̂ t,x,y,d

T

)
− C̃

(
Dt,d

T − X̂ t,x,y,d
T

) ]

= ηr(η, β)

2β
E

[ (
Dt,d

T − X̂ t,x,y,d
T

)2
1

Dt,d
T −X̂ t,x,y,d

T <0

]
, (3.15)

from the definitions and expressions of C+ and C̃ in (2.3), (3.3) and (3.5). Now, from (3.10)
and by integration, we obtain the explicit (path-dependent) form of the optimal trading rate
control:

q̂s = q̂t +
∫ s

t

r(η, β)σd

(r(η, β) + ν)(T − u) + 2γ
d Bu

−
∫ s

t

σ0

(r(η, β) + ν)(T − u) + 2γ
dWu, t ≤ s ≤ T,

with q̂t = q̂(T − t, d − x, y). We then obtain the expression of the final spread between
demand and inventory:

Dt,d
T − X̂ t,x,y,d

T = d − x + μ(T − t) +
∫ T

t
σdd Bs −

∫ T

t
q̂sds

= m(T − t, d − x, y) +
∫ T

t

σd(ν(T − s) + 2γ )

(r(η, β) + ν)(T − s) + 2γ
d Bs

+
∫ T

t

σ0(T − s)

(r(η, β) + ν)(T − s) + 2γ
dWs,

by Fubini’s theorem, and with

m(t, d, y) := d + μt − t q̂(t, d, y),

which is explicitly written as in (3.13) from the expression (3.6) of q̂. Thus, Dt,d
T − X̂ t,x,y,d

T
follows a normal distribution law with mean m(T − t, d − x, y) and variance V (T − t) given
by (3.14), and from (3.15), we deduce that

E(t, x, y, d) = ηr(η, β)

2β
V (T − t)ψ

(m(T − t, d − x, y)√
V (T − t)

)
,

while the probability that the final inventory is larger than the terminal demand is:
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P
[
Dt,d

T − X̂ t,x,y,d
T < 0

] = �
(

− m(T − t, d − x, y)√
V (T − t)

)
. (3.16)

��
Error asymptotics. We now investigate the accuracy of the upper bound in (3.12)

Ē(T − t, d − x, y) := ηr(η, β)

2β
V (T − t)ψ

(m(T − t, d − x, y)√
V (T − t)

)
.

It is well-known (see e.g. Sect. 14.8 in [11]) that

z�(−z) ≤ φ(z), ∀z ∈ R, (3.17)

from which we easily see that ψ is non increasing, convex, and ψ(∞) = 0. Thus, Ē(T −
t, d − x, y) decreases to zero for large m(T − t, d − x; y) or small V (T − t). We shall study
its asymptotics in three limiting cases (i) the time to maturity T − t is small, (ii) the initial
demand spread d − x is large, (iii) the initial quoted price y is large. We prove that the error
bound Ē(T − t, d − x, y), and thus E1(t, x, y, d), E2(t, x, y, d), converge to zero at least
with an exponential rate of convergence in these limiting regimes:

Proposition 3.3 (i) For all (x, y, d) ∈ R × R × R with d > x, we have

lim sup
T −t↓0

(T − t) ln Ē(T − t, d − x, y) ≤ −1

2

(d − x

σd

)2
. (3.18)

(ii) For all (t, y) ∈ [0, T ) × R, we have

lim sup
d−x→∞

1

(d − x)2
ln Ē(T − t, d − x, y) ≤ −1

2

m2∞(T − t)

V (T − t)
, (3.19)

where

m∞(t) = νt + 2γ(
r(η, β) + ν

)
t + 2γ

(iii) For all (t, x, d) ∈ [0, T ) × R × R, we have

lim sup
y→∞

1

y2
ln Ē(T − t, d − x, y) ≤ −1

2

n2∞(T − t)

V (T − t)
, (3.20)

where

n∞(t) = t

(r(η, β) + ν)t + 2γ
.

Proof From (3.17), we have:

0 ≤ ψ(z) ≤ z−1φ(z), ∀z > 0.

Notice that in the three asymptotic regimes (i) (with d − x > 0), (ii), and (iii), the quantity
m(T − t, d − x, y) is positive, and we thus have:

Ē(T − t, d − x, y) ≤ ηr(η, β)

2β

V (T − t)
3
2

m(T − t, d − x, y)
φ
(m(T − t, d − x, y)√

V (T − t)

)
. (3.21)
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(i) For small time to maturity T − t , we see that m(T − t, d − x, y) converges to d − x > 0,
while V (T − t) ∼ σ 2

d (T − t), i.e. V (T − t)/σ 2
d (T − t) converges to 1. This shows from

(3.21) that, when T − t goes to zero, the error bound Ē(T − t, d − x, y), converges to
zero at least with an exponential rate of convergence, namely the one given by (3.18).

(ii) For large demand spread d − x , we see that m(T − t, d − x, y) ∼ m∞(T − t)(d − x),
i.e. the ratio m(T − t, d − x, y)/m∞(T − t)(d − x) converges to 1 when d − x goes
to infinity. This shows from (3.21) that, when d − x goes to infinity, the error bound
Ē(T − t, d − x, y), converges to zero at least with an exponential rate of convergence,
namely the one given by (3.19).

(iii) For large y, we see that m(T − t, d − x, y) ∼ n∞(T − t)y, i.e. the ratio m(T − t, d −
x, y)/n∞(T − t)y converges to 1 when y goes to infinity. This shows from (3.21) that,
when d − x goes to infinity, the error bound Ē(T − t, d − x, y) converges to zero at
least with an exponential rate of convergence, namely the one given by (3.20). ��

Interpretation. Recall from (3.16) that

P

[
Dt,d

T < X̂ t,x,y,d
T

]
= �

(
− m(T − t, d − x, y)√

V (T − t)

)
,

and thus following the same arguments as in the above proof, we have:

(i)

lim sup
T −t↓0

(T − t) ln P
[

Dt,d
T < X̂ t,x,y,d

T

]
= −1

2

(
d − x

σd

)2

, (3.22)

for all (x, y, d) ∈ R × R × R with d > x . We observe that the rate in the rhs of (3.18)
or (3.22) depends only on the demand volatility σd and the initial demand spread d − x .
Moreover, it is all the larger, the smaller σd is, and the larger d − x is. This means
that the terminal demand will stay with very high probability above the final inventory
once we are near from the maturity with a low volatile demand, initially larger than the
inventory, in which case, the explicit strategy (q̂, ξ̃∗

T ) approximates very accurately the
optimal strategy (q∗, ξ∗

T ).
(ii)

lim sup
d−x→∞

1

(d − x)2
ln P

[
Dt,d

T < X̂ t,x,y,d
T

]
= −1

2

m2∞(T − t)

V (T − t)
, (3.23)

for all (t, y) ∈ [0, T ) × R, The rate in the rhs of (3.19) (or (3.23)) is all the larger,
the smaller the volatilities σ0 and σd of the electricity price and demand are. Again,
we have the same interpretation than in the asymptotic regime (i), and this means that
the explicit strategy (q̂, ξ̃∗

T ) approximates very accurately the optimal strategy (q∗, ξ∗
T )

in the limiting regime when the initial demand spread is large, and the volatilities are
small.

(iii)

lim sup
y→∞

1

y2
ln P

[
Dt,d

T < X̂ t,x,y,d
T

]
= −1

2

n2∞(T − t)

V (T − t)
, (3.24)

for all (t, x, d) ∈ [0, T ) × R × R. In the limiting regime where the initial quoted price
y is large, the agent has a strong incentive to sell energy on the intraday market, which
leads to a final inventory staying under the final demand with high probability, and
thus to a very accurate approximate strategy (q̂, ξ̃∗

T ). As in case (ii), this accuracy is
strengthened for small volatilities σ0 and σd of the electricity price and demand. ��
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Table 1 Y0 = 50 e ·(MW)−1 and D0 =50,000MW

T (h) P[X̂T > DT ] ṽ(0, X0, Y0, D0) (e) Ē(T, D0 − X0, Y0) (e)

1 <10−16 1.88 × 106 <10−16

8 <10−16 1.88 × 106 <10−16

24 <10−16 1.89 × 106 4.16 × 10−12

50 7.72 × 10−13 1.90 × 106 2.48 × 10−4

Table 2 T = 24 h and Y0 = 50 e ·(MW)−1

D0 (MW) P[X̂T > DT ] ṽ(0, X0, Y0, D0) (e) Ē(T, D0 − X0, Y0) (e)

500 <10−16 −5.86 × 105 4.16 × 10−12

5000 <10−16 −3.62 × 105 4.16 × 10−12

50,000 <10−16 1.89 × 106 4.16 × 10−12

500,000 <10−16 2.44 × 107 4.16 × 10−12

Table 3 T = 24 h and D0 = 50,000 MW

Y0 (e ·(MW)−1) P[X̂T > DT ] ṽ(0, X0, Y0, D0) (e) Ē(T, D0 − X0, Y0) (e)

500 <10−16 2.51 × 106 <10−16

50 <10−16 1.89 × 106 4.16 × 10−12

40 9.51 × 10−15 1.61 × 106 3.80 × 10−4

30 4.57 × 10−10 1.29 × 106 1.30 × 10−2

20 2.23 × 10−5 9.13 × 105 1.26 × 103

3.3 Numerical results

3.3.1 Numerical tests

Wemeasure quantitatively the accuracy of the error bound derived in the previous paragraph
with some numerical tests. Let us fix the following parameter values: σ0 = 1/60e ·(MW)−1 ·
s−1/2, σd = 1000/60 MW · s−1/2, β = 0.002 e ·(MW)−2, η = 200 e ·(MW)−2, μ =
0 MW · s−1, ν = 10−10 e ·(MW)−2, γ = 10−10 e ·s · (MW)−2 and ρ = 0.8.

We start from the initial time t = 0, with a zero inventory X0 = 0, and vary respectively
the maturity T , the initial demand D0 and the initial price Y0. We compute the probability for
the final inventory to exceed the final demand P[X̂T > DT ], the approximate value function
ṽ(0, X0, Y0, D0), and the error bound Ē(T, D0 − X0, Y0). The results are reported in Table
1 when varying T , in Table 2 when varying D0 and in Table 3 when varying Y0.

Table 1 shows that for time to maturity less than T = 24h, the probability for the final
inventory to exceed the final demand is very small, and consequently the error bound is rather
negligible. When the time horizon increases, the agent has the possibility to spread over time
her trading strategies for reducing the price impact, and purchase more energy, in which case
the probability for the final inventory to exceed the demand increases.
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Fig. 1 Evolution of the trading rate control q̂
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Fig. 2 Simulation of the quoted impacted price Ŷ and of the unaffected price P̂

Table 2 shows that the probability for the final inventory to exceed the final demand, and
the error bound are not much sensitive to the variations of the initial positive demand D0.
Actually, the main impact is caused by the initial stock price, as observed in Table 3.

For small initial electricity price Y0, the agent will buy more energy in the intraday market
and produce less. Therefore, the inventory will overtake with higher probability the demand,
in which case the approximate value function can be significantly different from the original
one, as observed from the error bound in Table 3 for Y0 = 20.

3.3.2 Simulations

We plot trajectories of some relevant quantities that we simulate with the following set
of parameters: σ0 = 1/60 e ·(MW)−1 · s−1/2, σd = 1000/60 MW·s−1/2, β = 0.002
e · (MW)−2, η = 100 e ·(MW)−2, μ = 0 MW·s−1, ρ = 0.8, ν = 4.00 × 10−5 e
·(MW)−2, γ = 2.22 e ·s · (MW)−2, T = 24h, X0 = 0, D0 = 50, 000 MW and Y0 = 50 e
·(MW)−1.

For such parameter values, the probability P[X̂T > DT ] is bounded above by 10−16, the
error Ē(0, D0 − X0, Y0) is bounded by 2.82 × 10−10 e, and

ṽ(0, X0, Y0, D0) = 1,916,700e.

The executed strategy (q̂, ξ̂∗
T ) can then be considered as very close to the optimal strategy.

Figure 1 represents the evolution of the trading rate control (q̂t )t∈[0,T ] derived in (3.6) for
a given trajectory of price and demand, and this is consistent with the martingale property as
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Fig. 3 Evolution of the inventory X̂ and of the forecast residual demand D

shown in Proposition 3.1. Figure 2 represents a simulation of the quoted price Ŷt with impact
and of the unaffected price P̂t . Due to the buying strategy, i.e. positive q̂, we observe that
the quoted price Ŷ is larger than P̂ . In Fig. 3, we plot the evolution of the optimal inventory
(X̂t )t∈[0,T ), and of the forecast residual demand (Dt )t∈[0,T ].We see that X̂t is increasing, with
a growth rate which looks constant as pointed out in Remark 3.2. At final time, if X̂T < DT

(which is the case in our simulation), the agent uses her production leverage ξ̂T , and achieves
a final inventory: X̂T + ξ̂T , which is represented by the peak at time T . From the expression
(3.7) of ξ̂T , the final imbalance cost is equal to

DT − X̂T − ξ̂T = β

η + β
(DT − X̂T ),

and is then positive, as shown in Fig. 3.

4 Jumps in the residual demand forecast

In this section, we incorporate the case where the residual demand forecast is subject to
sudden changes induced by prediction errors on renewable production, which may be quite
large. Our aim is to study the impact on the strategies obtained in the previous section, and
we shall also neglect the delay in thermal plants production.

The sudden changes in the demand forecast are modeled via a compound Poisson process
Nt = (N+

t , N−
t )t≥0 with intensity λ > 0, where N+

t is the counting process associated
to positive jumps of the demand forecast with size δ+ > 0, occurring with probability
p+ ∈ [0, 1], while N−

t is the counting process associated to negative jumps of the demand
forecast with size δ− < 0, occurring with probability p− = 1 − p+. We denote by δ :=
δ+ p++δ− p− themean of the jump size of the demand forecast. The dynamics of the residual
demand forecast D is then given by:

d Dt = μdt + σdd Bt + δ+d N+
t + δ−d N−

t , (4.1)

where we add a jump component with respect to the model in (2.8). Moreover, as soon as
a jump in the residual demand forecast occurs, this is impacted into the intraday electricity
price since the main producers are assumed to have access to the whole updated forecast. We
thus model the unaffected electricity price by:

P̂t = P̂0 + σ0Wt + π+N+
t + π−N−

t , (4.2)
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where we add with respect to the Bachelier model in (2.6) a jump component of size π+ > 0
(resp. π− < 0) when the jump on residual demand is positive (resp. negative), which means
that a higher (resp. lower) demand induces an increase (resp. drop) of price. We denote by
π := π+ p+ + π− p− the mean of the jump size of the intraday price. Given a trading rate
q ∈ A, the dynamics of the quoted price Y is then governed by

dYt = νqt dt + σ0dWt + π+d N+
t + π−d N−

t . (4.3)

By considering this simplified modeling of demand forecast subject to sudden shift in
terms of a Poisson process, we do not have additional state variables with respect to the no
jump case of the previous section. Let us then denote by v = v(λ)(t, x, y, d) the value function
to the optimal execution problem (2.4) with cost functional J = J (λ)(t, x, y, d, q, ξ), where
we stress the dependence in λ for taking into account jumps in demand forecast. The value
function in the no jump case derived in the previous section is denoted by v = v(0).

As in the case with no jumps, there is no explicit solution to v(λ) due to the non nega-
tivity constraint on the final production: we shall first study the auxiliary execution problem
without sign constraint on the final production, then provide an approximate solution to the
original one with an estimation of the induced error approximation, and with some numerical
illustrations. We compare the results with the no jump case by focusing on the impact of the
jump components.

4.1 Auxiliary optimal execution problem

Similarly as in Subsect. 3.1, we consider the optimal execution problem without non nega-
tivity constraint on the final production, denoted by ṽ = ṽ(λ)(t, x, y, d).

As in Theorem 3.1 for the case of the value function ṽ(0) without jumps, we have an
explicit solution to this auxiliary problem.

Theorem 4.1 The value function to the auxiliary optimization problem is explicitly given
by:

ṽ(λ)(t, x, y, d)

= ṽ(0)(t, x, y, d)

+λ

2

r(η, β)(T − t)
(
π(T − t) + 2δ(ν(T − t) + 2γ )

)
(
r(η, β) + ν

)
(T − t) + 2γ

(d − x)

−λ

2

(T − t)2
(
π − 2r(η, β)δ

)
(
r(η, β) + ν

)
(T − t) + 2γ

y

+ λγ
p+(π+ − r(η, β)δ+)2 + p−(π− − r(η, β)δ−)2(

r(η, β) + ν
)2 ln

(
1 + (r(η, β) + ν)(T − t)

2γ

)

−λ

2

p+((π+)2−r(η, β)δ+(2π++νδ+))+ p−((π−)2−r(η, β)δ−(2π−+νδ−))

r(η, β)+ν
(T −t)

+λr(η, β)

2

2νμδ + λ((p+)2δ+(π+ + νδ+) + (p−)2δ−(π− + νδ−))

r(η, β) + ν
(T − t)2

+ λ2γ r(η, β)
r(η, β)δ2 + 2νp+ p−δ+δ− − ((p+)2δ+π+ + (p−)2δ−π−)

(r(η, β) + ν)
(
(r(η, β) + ν)(T − t) + 2γ

) (T − t)2

+ 2λγ r2(η, β)μδ

(r(η, β) + ν)
(
(r(η, β) + ν)(T − t) + 2γ

) (T − t)2 − λ2π2

48γ
(T − t)3
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+λ2 p+ p−r(η, β)

2

2νδ+δ− + δ−π+ + δ+π−

(r(η, β) + ν)(T − t) + 2γ
(T − t)3

+1

8

4r(η, β)μλπ − λ2π2

(r(η, β) + ν)(T − t) + 2γ
(T − t)3,

for (t, x, y, d) ∈ [0, T ] × R × R × R, with an optimal trading rate given in feedback form
by:

q̂(λ)
s = q̂(λ)

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
, t ≤ s ≤ T

q̂(λ)(t, d, y) := q̂(0)(t, d, y) + λ
r(η, β)δt + π

4γ (r(η, β) + ν)t2

(r(η, β) + ν)t + 2γ

= q̂(0)
(

t, d + λδt, y + λ

2
π t

)
+ λπ

4γ
t, (4.4)

where q̂(0) is the optimal trading rate given in (3.6) in the case with no jump in the demand
forecast. Here (X̂ t,x,y,d , Ŷ t,x,y,d , Dt,d) denotes the solution to (2.1)-(4.3)-(4.1) when using
the feedback control q̂(λ), and starting from (x, y, d) at time t. Finally, the optimal production
quantity is given by:

ξ̂
(λ)
T = η

η + β

(
Dt,d

T − X̂ t,x,y,d
T

)
. (4.5)

Proof See Appendix. ��
Interpretation. The expression of the optimal trading rate q̂(λ)

s , s ∈ [t, T ], as

q̂(λ)
s = q̂(0)

s + λ
r(η, β)δ(T − s) + π

4γ (r(η, β) + ν)(T − s)2

(r(η, β) + ν)(T − s) + 2γ
,

where q̂(0)
s = q̂(0)

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
represents the optimal trading rate that

the agent would use if she believes that the demand forecast will not jump, shows that under
the information knowledge about jumps, the agent will purchase more (resp. less) electricity
shares and this impact is all the larger, the larger the intensity λ of jumps, and the positive
(resp. negative) mean δ and π of jump size in demand forecast and price are. On the other
hand, the expression of q̂(λ)

s as the sum of two terms:

q̂(λ)
s = q̂(0)(T − s, Dt,d

s + λδ(T − s), Ŷ t,x,y,d
s + λ

2
π(T − s)

) + λπ

4γ
(T − s), (4.6)

can be interpreted as follows. The first term is analog to the optimal trading rate in the no jump
case, with an adjustment λδ(T − s) in the demand, which represents the expectation of the
demand jump size up to the final horizon, and an adjustment λ

2π(T − s) on the price, which
represents half of the expectation of the price jump size up to the final horizon. The second
term, λπ

4γ (T − s), is deterministic, and linear in time, and we shall see on the simulations
for some parameter values that it can be dominant with respect to the first stochastic term.
Moreover, as in (3.9), we can write an equilibrium relation which indicates that this control
aims at making the forecast intraday price and the forecast cost of production equal, in
particular at terminal date T :

Ŷ t,x,y,d
T + 2γ q̂(λ)

T = c′ (ξ̂
(λ)
T

)
. (4.7)
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The unaffected price P̂ in (4.2) is no more a martingale in presence of jumps, except
when π = 0. It is actually a supermartingale when π < 0 (predominant negative jumps),
and submartingale when π > 0 (predominant positive jumps). The next result shows that the
optimal trading rate inherits the converse submartingale or supermartingale property of the
price process.

Proposition 4.1 The optimal trading rate process (q̂(λ)
s )t≤s≤T in (4.4) is a supermartingale

if π > 0, and a submartingale if π < 0. More precisely, the process {q̂(λ)
s + λπ

2γ (s − t), t ≤
s ≤ T } is a martingale.

Proof Notice that N±
t is a Poisson process with intensity λp±, and let us introduce the

compensated martingale Poisson process Ñ±
t = Nt − λp±t . By applying Itô’s formula to

the trading rate process q̂(λ)
s = q̂(λ)(T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s ), t ≤ s ≤ T , and from
the dynamics (2.1), (4.1) and (4.3), we have:

dq̂(λ)
s =

[
−∂ q̂(λ)

∂t
+ (μ − q̂(λ))

∂ q̂(λ)

∂d
+ νq̂(λ) ∂ q̂(λ)

∂y
+ λp+(

q̂(λ)(., . + δ+, . + π+) − q̂(λ)
)

+ λp−(
q̂(λ)(., . + δ−, . + π−) − q̂(λ)

)]
(T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s )ds

+ ∂ q̂(λ)

∂d

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
σdd Bs

+ ∂ q̂(λ)

∂y

(
T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s

)
σ0dWs

+ [
q̂(λ)

(
T − s, Dt,d

s− + δ+ − X̂ t,x,y,d
s , Ŷ t,x,y,d

s− + π+)

− q̂(λ)
(

T − s, Dt,d
s− − X̂ t,x,y,d

s , Ŷ t,x,y,d
s−

) ]
d Ñ+

s

+
[
q̂(λ)

(
T − s, Dt,d

s− + δ− − X̂ t,x,y,d
s , Ŷ t,x,y,d

s− + π−)

− q̂(λ)
(

T − s, Dt,d
s− − X̂ t,x,y,d

s , Ŷ t,x,y,d
s−

)]
d Ñ−

s .

Now, from the expression (4.4) of q̂(λ)(t, d, y), we see that:

−∂ q̂(λ)

∂t
+

(
μ − q̂(λ)

)∂ q̂(λ)

∂d
+ νq̂(λ) ∂ q̂(λ)

∂y

+λ
(

p+q̂(λ)(., . + δ+, . + π+) + p−q̂(λ)(., . + δ−, . + π−) − q̂(λ)
) = −λπ

2γ
,

and then:

dq̂(λ)
s = −λπ

2γ
ds

+ r(η, β)σd

(r(η, β) + ν)(T − s) + 2γ
d Bs − σ0

(r(η, β) + ν)(T − s) + 2γ
dWs

+ r(η, β)δ+ − π+

(r(η, β) + ν)(T − s) + 2γ
d Ñ+

s + r(η, β)δ− − π−

(r(η, β) + ν)(T − s) + 2γ
d Ñ−

s . (4.8)

This proves the required assertions of the proposition. ��
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Remark 4.1 The above supermartingale (or submartingale) property implies in particular
that the mean of the optimal trading rate process (q̂(λ)

s )0≤s≤T is decreasing (or increasing)
in time, and so that the trajectory of the optimal inventory mean E[X̂0,x,y,d

s ], 0 ≤ s ≤ T , is
concave (or convex). Moreover, from the martingale property of q̂(λ)

s + λπ
2γ s, 0 ≤ s ≤ T , we

have: E[q̂(λ)
s ] = q̂(λ)(T, d − x, y) − λπ

2γ s for 0 ≤ s ≤ T . Fix d, x, y, and let us then denote

by s̄(λ) := 2γ
λπ

q̂(λ)(T, d − x, y), which is explicitly written as:

s̄(λ) = T

2
+ 1

λπ

(
r(η, β)μ + λ(r(η, β)δ − π

2 )
)
T + r(η, β)(d − x) − y

1 + (r(η,β)+ν)T
2γ

We have the following cases:

• s̄(λ) ≤ 0 and π > 0: this may arise for large y, or d << x , or r(η, β)δ << π/2. In this

extreme case, dE[X̂0,x,y,d
s ]
ds = E[q̂(λ)

s ] ≤ 0 for 0 ≤ s ≤ T , i.e. the trajectory of E[X̂0,x,y,d
s ],

0 ≤ s ≤ T , is decreasing, which means that the agent will “always” sell electricity
shares since she takes advantage of high price, in order to decrease her inventory for
approaching the demand, and because in average, the jump size of the demand is much
lower than the positive jump size of the price.

• s̄(λ) ≤ 0 and π < 0: this may arise for small y, or d >> x , or r(η, β)δ >> π/2. In this

extreme case, dE[X̂0,x,y,d
s ]
ds = E[q̂(λ)

s ] ≥ 0 for 0 ≤ s ≤ T , i.e. the trajectory of E[X̂0,x,y,d
s ],

0 ≤ s ≤ T , is increasing, which means that the agent will “always” buy electricity shares
since she takes advantage of low price, in order to increase her inventory for approaching
the demand, and because in average, the jump size of the price is much lower than the
jump size of the demand.

• s̄(λ) ≥ T and π > 0: this may arise for r(η, β)δ >> π/2, d >> x or small y. In this
other extreme case, the trajectory of E[X̂0,x,y,d

s ], 0 ≤ s ≤ T , is increasing, which means
that the agent will “always” buy electricity shares at low price in order to approach the
residual demand at final time.

• s̄(λ) ≥ T and π < 0: this may arise for r(η, β)δ << π/2, d << x or large y. The
trajectory of E[X̂0,x,y,d

s ], 0 ≤ s ≤ T , is decreasing, which means that the agent will
“always” sell electricity shares at high price in order to approach the residual demand at
final time.

• 0 < s̄(λ) < T : in this regular case, it is interesting to comment on the two subcases:

– if π > 0, the trajectory of s �→ E[X̂0,x,y,d
s ] is increasing for s ≤ s̄(λ) and then

decreasing for s̄(λ) < s ≤ T . Thismeans that the agent starts by purchasing electricity
shares for taking profit of the positive price jumps (which have more impact than the
negative price jumps as p+π+ + p−π− > 0), and then resells shares in order to
achieve the equilibrium relation (4.7).

– if π < 0, i.e. the negative jumps have more impact than the positive ones: the agent
starts by selling electricity shares and then purchases shares. ��

4.2 Approximate solution

We turn back to the original optimal execution problem with the non negativity constraint
on the final production, and as in Sect. 3.2, we use the approximate strategy consisting in the
trading rate q̂(λ) derived in (4.4), and of the truncated nonnegative final production:

ξ̃
(λ),∗
T := ξ̂

(λ)
T 1

ξ̂
(λ)
T ≥0

= ξ̂ tr+(Dt,d
T − X̂ t,x,y,d

T ),
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with ξ̂
(λ)
T given in (4.5).Wemeasure the relevance of this strategy (q̂(λ), ξ̃

(λ),∗
T ) ∈ A×L0+(FT )

by estimating the induced error:

E(λ)
1 (t, x, y, d) := J (λ)(t, x, y, d; q̂(λ), ξ̃

(λ),∗
T ) − v(λ)(t, x, y, d),

for (t, x, y, d) ∈ [0, T ]×R×R×R, and also measure the approximation error on the value
functions:

E(λ)
2 (t, x, y, d) := v(λ)(t, x, y, d) − ṽ(λ)(t, x, y, d).

Proposition 4.2 For all (t, x, y, d) ∈ [0, T ] × R × R × R, we have

0 ≤ E(λ)
i (t, x, y, d) ≤ ηr(η, β)

2β
V (T − t)E

[
ψ

(m(λ)(T − t, d − x, y) + �
−,t
T√

V (T − t)

)]

(4.9)

for i = 1, 2, where ψ , m, V are defined in Proposition 3.2,

m(λ)(t, d, y) = m
(

t, d, y + λ
(π

2
− r(η, β)δ

)
t
)

+ λ
r(η, β)δ − π

r(η, β) + ν

[
t − 2γ

r(η, β) + ν
ln

(
1 + r(η, β) + ν

2γ
t
)]

, (4.10)

and

�
−,t
T =

∫ T

t

δ−(ν(T − s) + 2γ ) + π−(T − s)

(r(η, β) + ν)(T − s) + 2γ
d N−

s ≤ 0, a.s.

Proof By the same arguments as in Proposition 3.2, we have

0 ≤ E(λ)
i (t, x, y, d) ≤ E(λ)(t, x, y, d)

:= J (λ)(t, x, y, d; q̂(λ), ξ̃
(λ),∗
T ) − J (λ)(t, x, y, d; q̂(λ), ξ̂

(λ)
T ),

for i = 1, 2, and

E(λ)(t, x, y, d) = ηr(η, β)

2β
E

[(
Dt,d

T − X̂ t,x,y,d
T

)2
1

Dt,d
T −X̂ t,x,y,d

T <0

]
, (4.11)

for (t, x, y, d) ∈ [0, T ] × R × R × R. Now, recall from (4.8) that:

dq̂(λ)
s = −λ

[ π

2γ
+ r(η, β)δ − π

(r(η, β) + ν)(T − s) + 2γ

]
ds

+ r(η, β)σd

(r(η, β) + ν)(T − s) + 2γ
d Bs − σ0

(r(η, β) + ν)(T − s) + 2γ
dWs

+ r(η, β)δ+ − π+

(r(η, β) + ν)(T − s) + 2γ
d N+

s + r(η, β)δ− − π−

(r(η, β) + ν)(T − s) + 2γ
d N−

s ,

where we write the dynamics directly in terms of the Poisson processes N±. By integration,
we deduce the (path-dependent) expression of q̂(λ)

s , t ≤ s ≤ T :

q̂(λ)
s = q̂(λ)

t − λπ

2γ
(s − t) + λ

(
r(η, β)δ − π

)
r(η, β) + ν

ln
( (r(η, β) + ν)(T − s) + 2γ

(r(η, β) + ν)(T − t) + 2γ

)

+
∫ s

t

r(η, β)σd

(r(η, β) + ν)(T − u) + 2γ
d Bu −

∫ s

t

σ0

(r(η, β) + ν)(T − u) + 2γ
dWu

+
∫ s

t

r(η, β)δ+ − π+

(r(η, β) + ν)(T − u) + 2γ
d N+

u +
∫ s

t

r(η, β)δ− − π−

(r(η, β) + ν)(T − u) + 2γ
d N−

u ,
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with q̂(λ)
t = q̂(λ)(T − t, d − x, y). We thus obtain the expression of the final spread between

demand and inventory:

Dt,d
T − X̂ t,x,y,d

T = d−x+μ(T −t)+
∫ T

t
σdd Bs +

∫ T

t
δ+d N+

s +
∫ T

t
δ−d N−

s −
∫ T

t
q̂(λ)

s ds

= m(λ)(T − t, d − x, y)

+
∫ T

t

σd(ν(T − s) + 2γ )

(r(η, β) + ν)(T − s) + 2γ
d Bs

+
∫ T

t

σ0(T − s)

(r(η, β) + ν)(T − s) + 2γ
dWs

+
∫ T

t

δ+(ν(T − s) + 2γ ) + π+(T − s)

(r(η, β) + ν)(T − s) + 2γ
d N+

s

+
∫ T

t

δ−(ν(T − s) + 2γ ) + π−(T − s)

(r(η, β) + ν)(T − s) + 2γ
d N−

s , (4.12)

by Fubini’s theorem, and where

m(λ)(t, d, y) := d + μt − t q̂(λ)(t, d, y) + λπ

2γ

∫ t

0
sds

− λ
(
r(η, β)δ − π

)
r(η, β) + ν

∫ t

0
ln

( (r(η, β) + ν)s + 2γ

(r(η, β) + ν)t + 2γ

)
ds,

is explicitly written as in (4.10) after some straightforward calculation. Denoting by �
t,x,y,d
T

the continuous part of Dt,d
T − X̂ t,x,y,d

T consisting in the three first terms in the rhs of (4.12),
and by �

+,t
T , �−,t

T the jump parts consisting in the two last terms of (4.12), so that

Dt,d
T − X̂ t,x,y,d

T = �
t,x,y,d
T + �

+,t
T + �

−,t
T ,

we notice that �
t,x,y,d
T follows a normal distribution law with mean m(λ)(T − t, d − x, y)

and variance V (T − t), independent of �
±,t
T . Then, conditionally on �

±,t
T , Dt,d

T − X̂ t,x,y,d
T

follows a normal distribution law with mean m(λ)(T − t, d − x, y) + �
+,t
T + �

−,t
T , and

variance V (T − t), and this implies from (4.11) that:

E(λ)(t, x, y, d) = ηr(η, β)

2β
V (T − t)E

[
ψ

(m(λ)(T − t, d − x, y) + �
+,t
T + �

−,t
T√

V (T − t)

)]

≤ ηr(η, β)

2β
V (T − t)E

[
ψ

(m(λ)(T − t, d − x, y) + �
−,t
T√

V (T − t)

)]
,

since �
+,t
T ≥ 0 a.s. and ψ is non-increasing. ��

Comments on the approximation error. Let us discuss about the accuracy of the upper
bound in (4.9):

Ē(λ)(T − t, d − x, y) := ηr(η, β)

2β
V (T − t)E

[
ψ

(m(λ)(T − t, d − x, y) + �
−,t
T√

V (T − t)

)]
,

First, notice that m(λ)(T − t, d − x, y) + �
−,t
T ∼ m(T − t, d − x, y) a.s. in the limiting

regimes where T − t goes to zero, d − x or y goes to infinity. Therefore, by dominated
convergence theorem, Ē(λ)(T − t, d − x, y) converges to zero in these limiting regimes as
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Fig. 4 Evolution of the trading rate control q̂(λ)

in the no jump case. However, we are not able to derive an asymptotic limit as in the no
jump case of Proposition 3.3, except when �

−,t
T = 0, i.e. δ− = π− = 0, fo which we get

the same asymptotic limit. Actually, in the presence of negative jumps on the demand, it
is intuitively clear that our approximation should be less accurate than in the no jump case
since the probability for the residual demand to stay above the final inventory is decreasing.
Anyway, the explicit strategies (q̂(λ), ξ̃

(λ),∗
T ) still provide a very accurate approximation of

the optimal strategies at least in these limiting regimes, as illustrated in the next paragraph.

4.3 Numerical results

We plot trajectories of some relevant quantities that we simulate with the same set of para-
meters as in Paragraph 3.3.2: σ0 = 1/60 e ·(MW)−1 · s−1/2, σd = 1000/60 MW·s−1/2,
β = 0.002 e ·(MW)−2, η = 200 e ·(MW)−2, μ = 0 MW·s−1, ρ = 0.8, ν = 4.00 · 10−5 e
·(MW)−2, γ = 2.22 e ·s · (MW)−2, T = 24h, X0 = 0, D0 = 50000 MW and Y0 = 50 e
·(MW)−1.Moreover, we fix the probability of positive jumps, p+ = 1 (then all jumps are pos-
itive: p− = 0), and the following values for the jump components: λ = 1.5/(3600 · 24)s−1,
π+ = 10 e ·(MW)−1, δ+ = 1500 MW.

For such parameter values, we observe two occurrences of jumps on the trajectories of the
demand of price. Moreover, the probability P[X̂T > DT ] is bounded above by 2.92×10−16,
the error Ē(λ)(0, D0 − X0, Y0) is bounded by 2.66 × 10−5 e, and

ṽ(λ)(0, X0, Y0, D0) = 2,020,950e.

The executed strategy (q̂(λ), ξ̂
(λ),∗
T ) can then be considered as very close to the optimal

strategy. This has to be compared with the numerical result obtained in the previous section
in the no jump case where we obtained a lower expected total cost: ṽ(0, X0, Y0, D0) =
1,916,700e.

Figure 4 represents the evolution of the trading rate (q̂(λ)
t )t∈[0,T ], and we see that it is

decreasing consistently with the supermartingale property in Proposition 4.1. Actually, we
observe that the deterministic part in (4.6), which is linear in time, dominates the stochas-
tic part. The interpretation of the strategy is the following: since positive price jumps are
expected, the agent purchases a large number of shares in electricity with the hope to sell
it later at a higher price thanks to the possible occurrence of a positive jump. At the price
jump times, which can be visualized in Fig. 5, we notice that the control q̂(λ) reacts by a
decrease in the trading rate. The reaction to the second jump is more sensible than to the first
jump since it occurs a short time before the final horizon T , where the objective is also to
achieve the equilibrium relation (4.7) between price and marginal cost. Finally, we observe
clearly in Fig. 6 the concavity of the trajectory of the optimal inventory process (X̂t )t∈[0,T ),
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Fig. 6 Evolution of the inventory X̂ and of the forecast residual demand D
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Fig. 7 Evolution of the trading rate control q̂(λ)

as expected from Remark 4.1. This emphasizes the double objective of the agent: on one
hand, the purchase of electricity shares for taking profit of the positive price jumps, and on
the other hand the resale of electricity shares for attaining the equilibrium relation between
price and marginal cost at terminal date. We also plot the production ξ̂T at the final time T on
Fig. 6, and observe as in the no jump case that the imbalance cost DT − X̂T − ξ̂T is positive.

Next, we plot trajectories with the same set of parameters, but with p+ = 0.3 (i.e.
p− = 0.7), π− = −10e ·(MW)−1, δ− = −1500MW. There are, in average, more negative
than positive jumps. Now

ṽ(λ)(0, X0, Y0, D0) = 1,756,330e.

Figure 7 shows that the trading rate (q̂(λ)
t )t∈[0,T ] is increasing, which is consistent with

the submartingale property in Proposition 4.1: the deterministic part in (4.6) dominates the
stochastic part. Since negative jumps are more expected than negative jumps are, the agent
first sells a large number of shares in electricity with the hope to buy it later at a lower
price thanks to the possible occurrence of jumps, that should be mainly negative. Here, the
control reacts to the negative price jumps by an increase in the trading rate. Finally, in Fig. 9
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Fig. 9 Evolution of the inventory X̂ and of the forecast residual demand D

we observe the convexity of the trajectory of the optimal inventory (X̂t )t∈[0,T ) process, as
expected from Remark 4.1. We also plot the production ξ̂T at the final time T on that figure
(Figs. 8, 9).

5 Delay in production

In this section, we consider the more realistic situation when there is delay in the production,
assumed to be fixed equal to h ∈ [0, T ], and we denote by v = vh the value function to the
associated optimal execution problem, as defined in (2.9), where we stress the dependence
in the delay h. Our aim is to show how one can reduce the problem with delay to a suitable
problem without delay, and then solve it explicitly. We shall consider the problem without
jumps on demand forecast and price, but the same argument also works for the case with
jumps.

5.1 Explicit solution with delay

For simplicity of presentation, and without loss of generality, we shall focus on the derivation
of the value function vh(t, x, y, d) for an initial time t = 0, and fixed (x, y, d) ∈ R×R×R.
Given a control trading rate q ∈ A, and from pathwise uniqueness for the solution to the
dynamics (2.1), (2.7), (2.8), we observe that for any ξ ∈ L0(FT −h):

⎧⎪⎨
⎪⎩

X0,x
T + ξ = X

T −h,X0,x
T −h+ξ

T a.s.

Y 0,y
T = Y

T −h,Y 0,y
T −h

T , D0,d
T = D

T −h,D0,d
T −h

T a.s.

(5.1)
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To alleviate notations, we shall omit the dependence in the fixed initial conditions (x, y, d),
and simply write Xs = X0,x

s , Ys = Y 0,y
s , Ds = D0,d

s , for s ≥ 0, vh = vh(0, x, y, d), and
J (0; q, ξ) = J (0, x, y, d; q, ξ) for the the cost functional in (2.10). By the tower property
of conditional expectations and from (5.1), the cost functional can be written, for all q ∈ A,
ξ ∈ L0(FT −h), as:

J (0; q, ξ)

= E

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + c(ξ) + J (T − h, XT −h + ξ, YT −h, DT −h; q, 0)

]

≥ E

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + c(ξ) + vN P (T − h, XT −h + ξ, YT −h, DT −h)

]
, (5.2)

by definition (3.8) of the value function vN P for the optimal execution problem without
production, i.e. the pure retailer problem. Since q is arbitrary in A, this shows that:

inf
q∈A J (0; q, ξ)

≥ inf
q∈AE

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + c(ξ) + vN P (T − h, XT −h + ξ, YT −h, DT −h)

]
,

(5.3)

for all ξ ∈ L0(FT −h). Now, given q ∈ A, and ξ ∈ L0(FT −h), let us consider the trading rate
q̂ N P,ξ in AT −h solution to the pure retailer problem: vN P (T − h, XT −h + ξ, YT −h, DT −h),
hence starting at time T − h from an inventory XT −h + ξ . By considering the process q̃ ∈ A
defined by: q̃s = qs for 0 ≤ s < T − h, and q̃s = q̂ N P,ξ

s , for T − h ≤ s ≤ T , we then obtain
from (5.2):

J (0; q̃, ξ)

= E

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + c(ξ) + vN P (T − h, XT −h + ξ, YT −h, DT −h)

]
, (5.4)

which proves together with (5.3) the equality:

inf
q∈A J (0; q, ξ)

= inf
q∈AE

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + c(ξ) + vN P (T − h, XT −h + ξ, YT −h, DT −h)

]
,

(5.5)

for all ξ ∈ L0(FT −h). Therefore, vh = infq∈A,ξ∈L0+(FT −h) J (0; q, ξ) can be written as:

vh = inf
q∈A,ξ∈L0+(FT −h)

E

[ ∫ T −h

0
qs

(
Ys + γ qs)ds

+ c(ξ) + vN P (T − h, XT −h + ξ, YT −h, DT −h)
]
. (5.6)

In other words, the original problem with delay in production is formulated as an optimal
execution problemwithout delay, namelywith final horizon T −h, and terminal cost function:

Ch(x, y, d, ξ) := c(ξ) + vN P (T − h, x + ξ, y, d).
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Notice from the explicit expression of vN P in Remark 3.1 that this cost function Ch does not
depend on T , and is in the form:

Ch(x, y, d, ξ) = Ch(0, y, d − x − ξ, 0) = c(ξ) + vN P (T − h, 0, y, d − x − ξ).

The optimization over q and ξ in (5.6) is done separately: the production ξ ∈ L0+(FT −h) is
decided at time T − h, after the choice of the trading rate (qs) for 0 ≤ s ≤ T − h (leading
to an inventory XT −h), and is determined optimally from the optimization a.s. at T − h of
the terminal cost Ch(XT −h, YT −h, DT −h, ξ). It is then given in feedback form by ξ∗

T −h =
ξ̂ h,tr+(DT −h − XT −h, YT −h) where

ξ̂ h,tr+(d, y) := argmin
ξ≥0

Ch(0, y, d − ξ, 0) = argmin
ξ≥0

[
c(ξ) + vN P (T − h, 0, y, d − ξ)

]
,

hence explicitly given from the expression of vN P in Remark 3.1 by:

ξ̂ h,tr+(d, y) = ξ̂ h(d, y)1
ξ̂h(d,y)≥0,

ξ̂ h(d, y) := η

η + β

[ (νh + 2γ )(μh + d) + hy

(r(η, β) + ν)h + 2γ

]
. (5.7)

The problem (5.6) is then rewritten as

vh = inf
q∈AE

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + C+

h (DT −h − XT −h, YT −h)
]
, (5.8)

where

C+
h (d, y) := Ch(0, y, d − ξ̂ h,tr+(d), 0).

Notice that when h = 0, we retrieve the expressions in the no delay case: ξ̂0,tr+ = ξ̂ tr+ in
(3.1), C+

0 = C+ in (3.3) and v0 = v in (3.2). As in the no delay case, there is no explicit
solution to the HJB equation associated to the stochastic control problem (5.8). We then
consider the approximate control problem where we relax the non negativity constraint on
the production, i.e. ṽh = infq∈A,ξ∈L0(FT −h) J (0; q, ξ). Therefore by following the same
arguments as above, the corresponding value function is written as:

ṽh = inf
q∈AE

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + C̃h(DT −h − XT −h, YT −h)

]
, (5.9)

where

C̃h(d, y) := Ch(0, y, d − ξ̂ h(d), 0).

From the explicit expressions of ξ̂h in (5.7) and vN P in Remark 3.1, it appears after some
tedious but straightforward calculations that the auxiliary terminal cost function C̃h simplifies
remarkably into:

C̃h(d, y) = ṽ0(T − h, 0, y, d) + Kh,

where ṽ0 is the auxiliary value function without delay explicitly obtained in Theorem 3.1,
and Kh is a constant depending only on the delay h and the parameters of the model, given
explicitly by
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Kh = η2

2

σ 2
0 + σ 2

d ν2 + 2ρσ0σdν

(η + β)(η + ν)(r(η, β) + ν)
h

+ γ
σ 2
0 + σ 2

d η2 − 2ρσ0σdη

(η + ν)2
ln

(
1 + (η + ν)h

2γ

)

− γ
σ 2
0 + σ 2

d r2(η, β) − 2ρσ0σdr(η, β)

(r(η, β) + ν)2
ln

(
1 + (r(η, β) + ν)h

2γ

)
.

One easily checks that Kh = 0 for h = 0, and Kh is increasing with h (actually the derivative
of Kh w.r.t. h is positive), hence in particular Kh is nonnegative. Plugging into (5.9), we then
get

ṽh = inf
q∈AE

[ ∫ T −h

0
qs

(
Ys + γ qs)ds + ṽ0(T − h, XT −h, YT −h, DT −h)

]
+ Kh . (5.10)

Therefore, by using the dynamic programming principle for the control problem ṽ0 =
ṽ0(0, x, y, d) in (3.4), we obtain this remarkable relation

ṽh = ṽ0 + Kh, (5.11)

which explicitly relates the (approximate) value functionwith andwithout delay. As expected
from the very definition of ṽh , this relation implies that ṽh − ṽ0 is nonnegative, and is
increasing in h. This is consistent with the intuition that when making the production choice
in advance, we do not take into account the future movements of the price and of the residual
demand, which should therefore lead to an average positive correction of the cost. More
precisely, the relation (5.11) gives an explicit quantification of the delay impact via the term
Kh (which does not depend on the state variables x, y, d) in function of the various model
parameters. Moreover, the optimal control of the stochastic control problem (5.10) over
[0, T − h) is explicitly given by the optimal control (q̂s)0≤s≤T −h of problem ṽ0 without
delay in Theorem 3.1.

Let us now consider the following strategy (q̂h,+, ξ̃
h,∗
T −h) ∈ A×L0+(FT −h) for the original

problem vh with delay:

• Before T − h, follow the trading strategy q̂h,+
s = q̂s , s < T − h, corresponding to the

solution of the auxiliary problem without delay as if production choice is made at time
T , and leading to an inventory X̂T −h , and an impacted price ŶT −h .

• At time T − h, choose the production quantity:

ξ̃
h,∗
T −h := ξ̂ h,tr+(DT −h − X̂T −h, ŶT −h).

• Between time T −h and T , follow the trading strategy q̂h,+
s = q̂

N P,ξ̃
h,∗
T −h

s , T −h ≤ s ≤ T ,
corresponding to the solution of the problem without production, and starting at T − h
from an inventory X̂T −h + ξ̃

h,∗
T −h .

In order to estimate the quality of this approximate strategywith respect to the optimal trading
problem vh , measured by

Eh
1 := J (0; q̂h,+, ξ̃

h,∗
T −h) − vh,

we shall compare it with the following strategy (q̂h, ξ̂ h
T −h) ∈ A × L0(FT −h):

• Before T − h, follow the trading strategy q̂h
s = q̂s , s < T − h, corresponding to the

solution of the auxiliary problem without delay as if production choice is made at time
T , and leading to an inventory X̂T −h , and an impacted price ŶT −h .
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• At time T − h, choose the “production” quantity (which can be negative):

ξ̂ h
T −h = ξ̂ h(DT −h − X̂T −h, ŶT −h).

• Between time T − h and T , follow the trading strategy q̂h
s = q̂

N P,ξ̂h
T −h

s , T − h ≤ s ≤ T ,
corresponding to the solution of the problem without production, and starting at T − h
from an inventory X̂T −h + ξ̂ h

T −h .

Then, by construction and following the arguments (see in particular (5.4), (5.9), (5.10))
leading to the expression (5.11) of ṽh , we see that (q̂h, ξ̂ h

T −h) is the optimal solution for ṽh ,

i.e. ṽh = J (0; q̂h, ξ̂ h
T −h). On the other hand, since ṽh ≤ vh ≤ J (0; q̂h,+, ξ̃

h,∗
T −h), we deduce

that

max(vh − ṽh, Eh
1 ) ≤ Ēh := J (0; q̂h,+, ξ̃

h,∗
T −h) − J (0; q̂h, ξ̂ h

T −h).

Now, from the expression (5.4) of J , and by same arguments as in the proof of Proposition 3.2
(see the derivation of relation (3.15)), we have

Ēh = E

[
C+

h (DT −h − X̂T −h, ŶT −h) − C̃h(DT −h − X̂T −h, ŶT −h)
]

= E

[
vN P (T − h, 0, ŶT −h, DT −h − X̂T −h − ξ̃

h,∗
T −h) + c(ξ̃h,∗

T −h)

− vN P (T − h, 0, ŶT −h, DT −h − X̂T −h − ξ̂ h
T −h) − c(ξ̂ h

T −h)
]

= ηr(η, β)

2β

(r(η, β) + ν)h + 2γ

(η + ν)h + 2γ
Vh(T )ψ

(m(T, d − x, y)√
Vh(T )

)

where m and ψ are defined as in (3.12), and

Vh(T ) =
∫ T

h

σ 2
0 s2 + σ 2

d (νs + 2γ )2 + 2ρσ0σds(νs + 2γ )[
(r(η, β) + ν)s + 2γ

]2 ds.

We recover when h = 0 the expression in Proposition 3.2 of the error in the no delay case, and
notice that Ēh decreases when the delay increases: indeed, the error comes from the trading
procedure before deciding how much to produce, which is dictated by the auxiliary problem,
in which the final “production” can be negative. After T −h, the followed control is optimal,
as there remains no production decision at some further date. The shorter the period before
making the production decision is, the weaker the error is.

Let us finally discuss some properties of the (approximate) optimal trading strategy q̂h,+.
Recalling from Proposition 3.1 that the optimal trading rate is a martingale in the no delay
case, we see by construction of (q̂h,+

s )0≤s≤T that it is a martingale on [0, T − h) and a
martingale on [T − h, T ]. Moreover, for any s ∈ [T − h, T ], and t ∈ [0, T − h), we have

E
[
q̂h,+

s |Ft
] = E

[
E
[
q̂

N P,ξ̃
h,∗
T −h

s |FT −h
]|Ft

] = E
[
q̂

N P,ξ̃
h,∗
T −h

T −h |Ft
]

= E

[η(μh + DT −h − X̂T −h − ξ̃
h,∗
T −h) − ŶT −h

(η + ν)h + 2γ

∣∣Ft

]

= E

[η(μh + DT −h − X̂T −h − ξ̂ h
T −h) − ŶT −h

(η + ν)h + 2γ

∣∣Ft

]

+ η

(η + ν)h + 2γ
E

[
ξ̂ h

T −h − ξ̃
h,∗
T −h

∣∣Ft

]
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= E

[r(η, β)(μh + DT −h − X̂T −h) − ŶT −h

(r(η, β) + ν)h + 2γ

∣∣Ft

]

+ η

(η + ν)h + 2γ
E

[
ξ̂ h

T −h − ξ̃
h,∗
T −h

∣∣Ft

]

= E
[
q̂T −h |Ft

] + η

(η + ν)h + 2γ
E

[
ξ̂ h

T −h − ξ̃
h,∗
T −h

∣∣Ft

]

= q̂t + η

(η + ν)h + 2γ
E

[
ξ̂ h

T −h1ξ̂h
T −h<0

∣∣Ft

]
≤ q̂t = q̂h,+

t . (5.12)

where we used the tower rule for conditional expectations, the martingale property and the

explicit expression of q N P,ξ̃
h,∗
T −h in Remark 3.1, the definition of ξ̂ h

T −h , themartingale property

and explicit expression of q̂ in Theorem 3.1, and finally the fact that ξ̃h,∗
T −h = ξ̂ h

T −h1ξ̂h
T −h≥0.

This shows in particular the supermartingale property of q̂h,+ over the whole period [0, T ].
Notice that the same arguments as for the derivation of (5.12) shows the martingale property
over the whole period [0, T ] of the optimal trading strategy q̂h associated to the auxiliary
problem ṽh . Moreover, by the martingale property of q̂h,+ on [0, T − h), and relation (5.12),
we see that the (approximate) optimal inventory process X̂ h,+ with trading rate q̂h,+ has on

average, a growth rate dE[X̂h,+
s ]

ds , which is piecewise constant, equal to:

E[q̂h,+
s ] =

{
q̂0, for 0 ≤ s < T − h

q̂(h)
0 := q̂0 + η

(η+ν)h+2γ E
[
ξ̂ h

T −h1ξ̂h
T −h<0

]
< q̂0, for T − h ≤ s ≤ T,

with q̂0 = r(η,β))(μT +d−x)−y
(r(η,β)+ν)T +2γ , and

q̂(h)
0 = q̂0 − ηr(η, β)

β((η + ν)h + 2γ )

√
Vh(T )ψ̃

(m(T, d − x, y)√
Vh(T )

)
,

where

ψ̃(z) := φ(z) − z�(−z), z ∈ R

is a nonnegative function, as pointed out in (3.17).

5.2 Numerical results

We plot figures showing relevant trajectories with the same parameters as in Sect. 3.3.2. We
add a delay h = 4 h: the production choice has to be made 4 h before the end of the trading
period. We have

ṽh(0, X0, Y0, D0) = 1,925,460e,

which is slightly higher than the value ṽ0(0, X0, Y0, D0) = 1,916,700e without delay.
On Fig. 10, we see that at time T −h, the positive production choice ξ̃

h,∗
T −h ismade, and then

we go on buying shares on the intraday market in order to go nearer to the demand forecast,
with a smaller slope of trading rate. On Fig. 11, which represents the control process without
the last hour of trading (because oscillations then become overwhelming), we see that after
date T − h, as we do not plan to use final production leverage any more, the approximate
optimal control process q̂h,+ oscillates a lot as we are approaching the end of trading time.
We can compare with Fig. 1 to assert that qualitatively, the control in the problem with no
production oscillates more than the one in the problem with final production, as in the former
problem, the intraday market is the only way to seek to reach the equilibrium.
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Fig. 10 Evolution of the inventory X̂ (with production choice at time T − h) and of the forecast residual
demand D
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Fig. 11 Evolution of the trading rate control q̂h,+ without the last hour
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Appendix

Proof of Theorem 3.1

The Hamilton-Jacobi-Bellman (HJB) equation arising from the dynamic programming asso-
ciated to the stochastic control problem (3.4) is:
⎧⎪⎨
⎪⎩

∂ṽ

∂t
+ inf

q∈R

[
q

∂ṽ

∂x
+νq

∂ṽ

∂y
+μ

∂ṽ

∂d
+ 1

2
σ 2
0

∂2ṽ

∂y2
+ 1

2
σ 2

d
∂2ṽ

∂d2 +ρσ0σd
∂2ṽ

∂y∂d
+q(y+γ q)

]
=0,

ṽ(T, x, y, d) = C̃(d − x) = 1
2r(η, β)(d − x)2.

The argmin in HJB is attained for

q̃(t, x, y, d) = − 1

2γ

[
∂ṽ

∂x
+ ν

∂ṽ

∂y
+ y

]
,
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and the HJB equation is rewritten as:
⎧⎪⎨
⎪⎩

∂ṽ

∂t
+ μ

∂ṽ

∂d
+ 1

2
σ 2
0

∂2ṽ

∂y2
+ 1

2
σ 2

d
∂2ṽ

∂d2 + ρσ0σd
∂2ṽ

∂y∂d
− 1

4γ

[
∂ṽ

∂x
+ ν

∂ṽ

∂y
+ y

]2
= 0,

ṽ(T, x, y, d) = 1
2r(η, β)(d − x)2.

(6.1)

We look for a candidate solution to HJB in the form

w̃(t, x, y, d) = A(T − t)(d − x)2 + B(T − t)y2 + F(T − t)(d − x)y

+ G(T − t)(d − x) + H(T − t)y + K (T − t), (6.2)

for some deterministic functions A, B, F , G, H and K . Plugging the candidate function w̃

into equation (6.1), we see that w̃ is solution to the HJB equation iff the following system of
ordinary differential equations (ODEs) is satisfied by A, B, F , G, H and K :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′ + 1
4γ (−2A + νF)2 = 0

B ′ + 1
4γ (2νB − F + 1)2 = 0

F ′ + 1
2γ (−2A + νF)(2νB − F + 1) = 0

G ′ − 2μA + 1
2γ (−2A + νF)(−G + νH) = 0

H ′ − μF + 1
2γ (2νB − F + 1)(−G + νH) = 0

K ′ − μG − (σ 2
0 B + σ 2

d A + ρσ0σd F) + 1
4γ (−G + νH)2 = 0

with the initial conditions A(0) = 1
2r(η, β), B(0) = 0, F(0) = 0, G(0) = 0, H(0) = 0,

K (0) = 0. We first solve the Riccati system relative to the triple (A, B, F), and obtain:⎧⎨
⎩

A(t) = r(η,β)( ν
2 t+γ )

(r(η,β)+ν)t+2γ ,

B(t) = − 1
2

t
(r(η,β)+ν)t+2γ , F(t) = r(η,β)t

(r(η,β)+ν)t+2γ .
(6.3)

Then we solve the first-order linear system of ODE relative to the pair (G, H), which leads
to the explicit solution:

G(t) = 2μt A(t), and H(t) = −2r(η, β)μt B(t). (6.4)

Finally, we explicitly obtain K from the last equation:

K (t) = γ
σ 2
0 + σ 2

d r2(η, β) − 2ρσ0σdr(η, β)(
r(η, β) + ν

)2 ln
(
1 + (r(η, β) + ν)t

2γ

)

+ σ 2
d r(η, β)ν + 2ρσ0σdr(η, β) − σ 2

0

2
(
r(η, β) + ν

) t + r(η, β)μ2t2( ν
2 t + γ )

(r(η, β) + ν)t + 2γ
. (6.5)

By construction, w̃ in (6.2) with A, B, F , G, H and K explicitly given by (6.3)–(6.4)–(6.5),
is a smooth solution with quadratic growth condition to the HJB equation (6.1). Moreover,
the argmin in HJB equation for w̃ is attained for

q̃(t, x, y, d) = − 1

2γ

[
∂w̃

∂x
+ ν

∂w̃

∂y
+ y

]

= r(η, β)(μ(T − t) + d − x) − y

(r(η, β) + ν)(T − t) + 2γ
=: q̂(T − t, d − x, y).
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Notice that q̂ is linear, and Lipschitz in x, y, d , uniformly in time t , and so given an ini-
tial state (x, y, d) at time t , there exists a unique solution (X̂ t,x,y,d , Ŷ t,x,y,d , Dt,d)t≤s≤T to
(2.1)–(2.7)–(2.8) with the feedback control q̂s = q̂(T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s ), which
satisfies: E[supt≤s≤T |X̂ t,x,y,d

s |2 +|Ŷ t,x,y,d
s |2 +|Dt,d

s |2] < ∞. This implies in particular that

E[∫ T
t |q̂s |2ds] < ∞, hence q̂ ∈ At . We now call on a classical verification theorem (see e.g.

Theorem 3.5.2 in [9]), which shows that w̃ is indeed equal to the value function ṽ, and q̂ is an
optimal control. Finally, once the optimal trading rate q̂ is determined, the optimal produc-
tion is obtained from the optimization over ξ ∈ R of the terminal cost C(Dt,d

T − X̂ t,x,y,d
T , ξ),

hence given by: ξ̂T = η
η+β

(Dt,d
T − X̂ t,x,y,d

T ). ��
Proof of Theorem 4.1

The Hamilton-Jacobi-Bellman (HJB) integro-differential equation arising from the dynamic
programming associated to the stochastic control problem ṽ = ṽ(λ) with jumps in the dynam-
ics of Y and D is:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ṽ(λ)

∂t
+ inf

q∈R

[
q

∂ṽ(λ)

∂x
+ νq

∂ṽ(λ)

∂y
+ μ

∂ṽ(λ)

∂d
+ 1

2
σ 2
0

∂2ṽ(λ)

∂y2

+ 1
2σ

2
d

∂2ṽ(λ)

∂d2 + ρσ0σd
∂2ṽ(λ)

∂y∂d
+ q(y + γ q)

]

+λ
[

p+ṽ(λ)(t, x, y+π+, d+δ+)+ p−ṽ(λ)(t, x, y+π−, d+δ−)−ṽ(λ)(t, x, y, d)
] = 0

ṽ(λ)(T, x, y, d) = C̃(d − x) = 1
2r(η, β)(d − x)2.

Notice that with respect to the no jump case, there is in addition a linear integro-differential
term in the HJB equation (which does not depend on the control), and the argmin is attained
as in the no jump case for

q̃(λ)(t, x, y, d) = − 1

2γ

[
∂ṽ(λ)

∂x
+ ν

∂ṽ(λ)

∂y
+ y

]
.

The HJB equation is then rewritten as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ṽ(λ)

∂t
+μ

∂ṽ(λ)

∂d
+ 1

2
σ 2
0

∂2ṽ(λ)

∂y2
+ 1

2
σ 2

d
∂2ṽ(λ)

∂d2 +ρσ0σd
∂2ṽ(λ)

∂y∂d
− 1

4γ

[
∂ṽ(λ)

∂x
+ν

∂ṽ(λ)

∂y
+y

]2

+λ
[

p+ṽ(λ)(t, x, y+π+, d+δ+)+ p−ṽ(λ)(t, x, y+π−, d+δ−)−ṽ(λ)(t, x, y, d)
] = 0

ṽ(λ)(T, x, y, d) = 1
2r(η, β)(d − x)2.

(6.6)

We look again for a candidate solution to (6.6) in the form

w̃(λ)(t, x, y, d) = Aλ(T − t)(d − x)2 + Bλ(T − t)y2 + Fλ(T − t)(d − x)y

+ Gλ(T − t)(d − x) + Hλ(T − t)y + Kλ(T − t), (6.7)

for some deterministic functions Aλ, Bλ, Fλ, Gλ, Hλ and Kλ. Plugging the candidate function
w̃(λ) into equation (6.6), we see that w̃(λ) is solution to the HJB equation iff the following
system of ordinary differential equations (ODEs) is satisfied by Aλ, Bλ, Fλ, Gλ, Hλ and Kλ:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′
λ + 1

4γ (−2Aλ + νFλ)
2 = 0

B ′
λ + 1

4γ (2νBλ − Fλ + 1)2 = 0

F ′
λ + 1

2γ (−2Aλ + νFλ)(2νBλ − Fλ + 1) = 0

G ′
λ − 2μAλ + 1

2γ (−2Aλ + νFλ)(−Gλ + νHλ) − λ(2δAλ + π Fλ) = 0

H ′
λ − μFλ + 1

2γ (2νBλ − Fλ + 1)(−Gλ + νHλ) − λ(2π Bλ + δFλ) = 0

K ′
λ − μGλ − (σ 2

0 Bλ + σ 2
d Aλ + ρσ0σd Fλ) + 1

4γ (−Gλ + νHλ)
2

−λ[(p+(δ+)2 + p−(δ−)2)Aλ + (p+(π+)2 + p−(π−)2)Bλ

+(p+δ+π+ + p−δ−π−)Fλ + δGλ + π Hλ] = 0

with the initial conditions Aλ(0) = 1
2r(η, β), Bλ(0) = 0, Fλ(0) = 0,Gλ(0) = 0, Hλ(0) = 0,

Kλ(0) = 0. We first solve the Riccati system relative to the triple (Aλ, Bλ, Fλ), which is
the same as in the no jump case, and therefore obtain: Aλ = A, Bλ = B, Fλ = F as in
(6.3). Then we solve the first-order linear system of ODE relative to the pair (Gλ, Hλ), which
involves the jump parameters λ, π and δ, and get:

Gλ(t) = G(t) + λ

2

r(η, β)t (π t + 2δ(νt + 2γ ))

(r(η, β) + ν)t + 2γ
,

Hλ(t) = H(t) − λ

2

(π − 2r(η, β)δ)t2

(r(η, β) + ν)t + 2γ
,

where G and H are given from the no jump case (6.4). Finally, after some tedious but
straightforward calculations, we explicitly obtain Kλ from the last equation:

Kλ(t) = K (t)+λγ
p+(π+−r(η, β)δ+)2+ p−(π−−r(η, β)δ−)2(

r(η, β)+ν
)2 ln

(
1+ (r(η, β)+ν)t

2γ

)

− λ

2

p+((π+)2−r(η, β)δ+(2π++νδ+))+ p−((π−)2−r(η, β)δ−(2π−+νδ−))

r(η, β)+ν
t

+ λr(η, β)

2

2νμδ + λ((p+)2δ+(π+ + νδ+) + (p−)2δ−(π− + νδ−))

r(η, β) + ν
t2

+ λ2γ r(η, β)
r(η, β)δ2 + 2νp+ p−δ+δ− − ((p+)2δ+π+ + (p−)2δ−π−)

(r(η, β) + ν)
(
(r(η, β) + ν)t + 2γ

) t2

+ 2λγ r(η, β)2μδ

(r(η, β) + ν)
(
(r(η, β) + ν)t + 2γ

) t2 − λ2π2

48γ
t3

+ λ2 p+ p−r(η, β)

2

2νδ+δ− + δ−π+ + δ+π−

(r(η, β) + ν)t + 2γ
t3

+ 1

8

4r(η, β)μλπ − λ2π2

(r(η, β) + ν)t + 2γ
t3,

with K in (6.5). The function w̃(λ) in (6.7) may thus be rewritten as the sum of w̃ in (6.2) and
another function of t , d − x and y, and is by construction a smooth solution with quadratic
growth condition to the HJB equation (6.6). Moreover, the argmin in HJB equation for w̃(λ)

is attained for
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q̃(λ)(t, x, y, d) = − 1

2γ

[
∂w̃(λ)

∂x
+ ν

∂w̃(λ)

∂y
+ y

]

= r(η, β)(μ(T − t) + d − x) − y

(r(η, β) + ν)(T − t) + 2γ

+ λ
r(η, β)δ(T − t) + π

4γ (r(η, β) + ν)(T − t)2

(r(η, β) + ν)(T − t) + 2γ

=: q̂(λ)(T − t, d − x, y).

Again, notice that q̂(λ) is linear, and Lipschitz in x, y, d , uniformly in time t , and so given an
initial state (x, y, d) at time t , there exists a unique solution (X̂ t,x,y,d , Ŷ t,x,y,d , Dt,d)t≤s≤T

to (2.1)–(4.3)–(4.1) with the feedback control q̂(λ)
s = q̂(λ)(T − s, Dt,d

s − X̂ t,x,y,d
s , Ŷ t,x,y,d

s ),
which satisfies: E[supt≤s≤T |X̂ t,x,y,d

s |2 + |Ŷ t,x,y,d
s |2 + |Dt,d

s |2] < ∞, see e.g. Theorem 1.19

in [8]. This implies that E[∫ T
t |q̂(λ)

s |2ds] < ∞, hence q̂(λ) ∈ At . We now call on a classical
verification theorem for stochastic control of jump-diffusion processes (see e.g. Theorem 3.1
in [8]), which shows that w̃(λ) is indeed equal to the value function ṽ(λ), and q̂(λ) is an optimal
control. Finally, once the optimal trading rate q̂(λ) is determined, the optimal production is
obtained from the optimization over ξ ∈ R of the terminal cost C(Dt,d

T − X̂ t,x,y,d
T , ξ), hence

given by: ξ̂ (λ)
T = η

η+β
(Dt,d

T − X̂ t,x,y,d
T ). ��
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