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Abstract The main goal of this paper is to generalize the characterization of Pareto optimal
allocations known for convex risk measures (see, among others, Jouini et al., in Math Financ
18(2):269–292, 2008 and Filipovic and Kupper, in Int J Theor Appl Financ, 11:325–343,
2008) to the wider class of quasiconvex risk measures. Following the approach of Jouini
et al., in Math Financ 18(2):269–292, 2008 for convex risk measures, in the quasiconvex
case we provide sufficient conditions for allocations to be (weakly) Pareto optimal in terms
of exactness of the so-called quasiconvex inf-convolution as well as an existence result for
weakly Pareto optimal allocations. Moreover, we give a necessary condition for weakly
optimal risk sharing that is also sufficient under cash-additivity of at least one between the
risk measures.
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1 Introduction

Pareto optimal allocations and optimal risk sharing have been firstly studied in the insurance
literature and dates back to Borch [4] (see also Bühlmann and Jewell [5] and Deprez and
Gerber [9]). Roughly speaking, the main idea of the problems above is to find the best way to
share the total risk (called aggregate risk) between two parties (for instance, between insurer
and reinsurer). In the recent literature, many papers are devoted to the problems of finding
Pareto optimal allocations and optimal risk sharing for coherent or convex risk measures.
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As we will see in a while, the main tool to solve these problems is inf-convolution. See,
among many others, Delbaen [8], Föllmer and Schied [13], Frittelli and Rosazza Gianin [15]
(for coherent and convex risk measures), and Acciaio [1], Barrieu and El Karoui [2], [3],
Chateauneuf et al. [7], Filipovic and Kupper [12], Jouini et al. [16], Klöppel and Schweizer
[17] and Ravanelli and Svindland [24] (for Pareto optimality and optimal risk sharing for
Choquet-expected-utility, coherent/convex risk measures and robust utilities).

Quite recently, an increasing interest has been devoted to quasiconvex risk measures, that is
risk measures where convexity is replaced by quasiconvexity and cash-additivity is dropped.
The main motivation to the introduction of such risk measures is that the right formulation of
diversification of risk is quasiconvexity (instead of convexity) even if, under cash-additivity
of the risk measures, the two axioms are equivalent. For a deep discussion on quasiconvex
risk measures we refer to Cerreia-Vioglio et al. [6], Drapeau and Kupper [10] and Frittelli
and Maggis [14].

In this paper, we focus on Pareto optimal allocations and optimal risk sharing for quasicon-
vex risk measures, in the perspective of generalizing the results established in the literature
for convex risk measures. The main difficulties can be summarized as follows. For quasicon-
vex risk measures, convexity is replaced by quasiconvexity and cash-invariance is dropped,
hence Fenchel-Moreau biconjugate Theorem cannot be applied. Moreover, inf-convolution
of quasiconvex functionals is not always quasiconvex. In the following, the notion of qua-
siconvex inf-convolution (or, shortly, qco-convolution) will be used instead of the classical
inf-convolution, since more appropriate in our setting because of its stability with respect to
convexity and quasiconvexity. See Rockafellar [25], Volle [27], Elqortobi [11] and Seeger
and Volle [26], among others, for more details on quasiconvex inf-convolution (also known
as level sum).

We provide some sufficient conditions for allocations to be (weakly) Pareto optimal for
quasiconvex risk measures, in terms of exactness of the quasiconvex inf-convolution. On the
one hand, our result can be seen as an extension to quasiconvex risk measures of Theorem
3.1 of Jouini et al. [16]; on the other hand, it is weaker than it since the equivalence between
exactness and (weakly) Pareto optimality does not hold any more. We prove indeed that, given
two quasiconvex risk functionals π1 and π2 satisfying some further assumptions, exactness of
the qco-convolution π1∇π2 at (ξ1, ξ2) implies that (ξ1, ξ2) is weakly Pareto. We provide also
some counterexamples showing that exactness of the qco-convolution does not guarantee that
any allocation attaining the infimum in the qco-convolution is Pareto optimal, but only weakly
Pareto optimal; and that weakly Pareto optimality does not imply exactness in general. The
existence of weakly Pareto optimal allocations can be also proved under suitable assumptions
and similarly to Jouini et al. [16].

Finally, we focus on optimal risk sharing in the quasiconvex setting. Inspired by the
characterization of Jouini et al. [16] and by the non-equivalence between Pareto optimality
and exactness of quasiconvex inf-convolution in the present setting, we define weakly optimal
risk sharing any admissible allocation satisfying individual rationality and at which the qco
inf-convolution is exact. We provide a necessary condition for weakly optimal risk sharing
that is also sufficient under cash-additivity of at least one between the risk measures. We
emphasize that, because of the lack of cash-additivity, in the quasiconvex setting one cannot
expect a good behavior and interpretation of optimal risk sharing in terms of prices as in the
convex case. As soon as cash-additivity of at least one risk measure is imposed, something
more can be obtained.

The results found in this paper let us draw the following conclusions: first, it seems to
be more appropriate to use quasiconvex inf-convolution than classical inf-convolution when
dealing with quasiconvex risk measures; second, quasiconvex inf-convolution allows us to
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provide necessary or sufficient conditions of weakly Pareto optimal allocations and weakly
optimal risk sharing for quasiconvex risk measures, but not a complete characterization of
them (except under stronger assumptions). The reason of this last point is due to the definition
of quasiconvex inf-convolution.

The paper is organized as follows. In Sect 2 we introduce the assumptions used in the
paper and recall the dual representation of quasiconvex risk measures as well as the notions
of (quasiconvex) inf-convolution. Some basic results on the properties of quasiconvex inf-
convolution are proved in Sect 3. The main results of the paper can be found in Sect 4,
where we provide necessary and sufficient conditions for exactness of the quasiconvex inf-
convolution and its relation with Pareto optimality for quasiconvex risk measures. Some
counterexamples about Pareto optimality are provided in Sect 4.1, while Sect 4.3 deals with
optimal risk sharing. Some well-known definitions and results about quasiconvex functionals
are summarized in the Appendix.

2 Preliminaries and assumptions

In the following, we will consider a probability space (�, F, P) and an ordered locally convex
topological vector space L = L (�, F, P) of random variables defined on (�, F, P). For
instance, the space L∞ = L∞ (�, F, P) will be often used in the following.

Let π : L → R̄ (where R̄ � R∪ {−∞}∪ {+∞}) represent an insurance premium or
correspond to a risk measure ρ (X) � π (−X). It is usually supposed to satisfy some among
the following axioms:

– quasiconvexity: π(αX + (1 − α)Y ) ≤ π(X) ∨ π(Y ) for any α ∈ [0, 1] and X, Y ∈ L ,
where a ∨ b � max{a; b}.

– convexity: π(αX + (1 − α)Y ) ≤ απ(X) + (1 − α)π(Y ) for any α ∈ [0, 1] and X, Y ∈ L
– monotonicity: if X, Y ∈ L and X ≤ Y , then π (X) ≤ π (Y )

– cash-subadditivity: π (X + c) ≤ π (X) + c for any X ∈ L and c ≥ 0
– cash-additivity: π (X + c) = π (X) + c for any X ∈ L and c ∈ R

– continuity from below (resp. from above): if (Xn)n≥0 ⊆ L , Xn ↗n X ∈ L (resp. Xn ↘n

X ∈ L), then limn π (Xn) = π (X)

By Penot and Volle [22], it is well known that a functional π is quasiconvex iff any level
set {X ∈ L : π (X) ≤ c} (with c ∈ R) is convex (or, equivalently, iff any strict level set
{X ∈ L : π (X) < c} (with c ∈ R) is convex). For simplicity of notation, the level sets above
will be sometimes denoted, respectively, by {π ≤ c} and {π < c}.

We refer to [6,8,10,13,15], among many others, for a detailed discussion on the axioms
above.

We remind that for convex risk functionals π (on L∞) satisfying monotonicity, cash-
additivity and π(0) = 0, continuity from above implies continuity from below (equivalent
to lower semi-continuity with respect to the weak topology σ(L∞, L1))—see, for instance,
Barrieu and El Karoui [3], Klöppel and Schweizer [17]. The same does not hold anymore
for quasiconvex and monotone risk measures.

We recall (from Penot and Volle [22], Cerreia-Vioglio et al. [6] and Frittelli and Maggis
[14]) that any quasiconvex, monotone, continuous from below risk measure π : L∞ → R̄

can be represented as:

π (X) = sup
Q∈M1

R
(
EQ [X ] , Q

)
, ∀X ∈ L∞, (1)
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where
R (t, Q) = inf{π (Y )| EQ [Y ] = t}, ∀ (t, Q) ∈ R × M1, f , (2)

M1, f denotes the set formed by all finitely additive probability measures that are absolutely
continuous with respect to P , while M1 denotes the subset of M1, f consisting of all count-
ably additive elements. With an abuse of notation, M1 can be considered a subset of L1 by
identifying any Q ∈ M1 with its Radon-Nikodym density d Q

d P .
By [14], continuity from below of π is equivalent to σ

(
L∞, L1

)
-lower semi-continuity of

π . When continuity from below is replaced by continuity from above, the dual representation
of π remains as in (1) but the supremum is attained and the functional R belongs to the set R0

of functionals R : R × M1, f → [−∞,+∞] that are upper semi-continuous, quasiconcave
and increasing in t and satisfy inf t∈R R (t, Q) = inf t∈R R

(
t, Q′) for any Q, Q′ ∈ M1, f .

See Penot and Volle [22], Cerreia-Vioglio et al. [6] and Frittelli and Maggis [14] for further
details.

It is also worth to stress that any quasiconvex and monotone risk measure π satisfying cash-
additivity is necessarily convex and that the functional R associated to a convex, monotone,
cash-additive and continuous from above (or below) π is given by

R (t, Q) = t − F (Q) = t − π∗ (Q) , (3)

where π∗ stands, as usual, for the convex conjugate of π (see Cerreia-Vioglio et al. [6] and
Frittelli and Maggis [14] for the proof).

Our aim is to focus on Pareto optimal allocations and optimal risk sharing and, in particular,
to extend the results of Jouini et al. [16]—based on inf-convolution and on dual representations
of convex risk measures—to quasiconvex risk measures.

We recall (see, for instance, Moreau [19] and Barrieu and El Karoui [2]) that, given two
functionals π1, π2 : L → R̄, the inf-convolution of π1 and π2 is defined as

(π1�π2) (X) � inf
Y∈L

{π1 (X − Y ) + π2 (Y )} , ∀X ∈ L .

It is well known that inf-convolution is stable with respect to convexity, that is the inf-
convolution of two convex functions is also convex. Nevertheless, the same does not hold any
more for quasiconvexity (see Luc and Volle [18] for a counterexample on R

2). For this reason,
in the present paper we will use the notion of quasiconvex inf-convolution (see Rockafellar
[25] and Volle [27]). Given two extended real-valued functionals π1, π2 : L → R̄, the
quasiconvex inf-convolution (qco-convolution, for short) of π1 and π2 is defined as

(π1∇π2)(X) � inf
Y∈L

{π1(X − Y ) ∨ π2(Y )} = inf
Y∈L

{π1(Y ) ∨ π2(X − Y )} (4)

for any X ∈ L . It is well known (see, for instance, Rockafellar [25], Elqortobi [11] and Seeger
and Volle [26]) that quasiconvex inf-convolution is stable with respect to quasiconvexity
(and convexity), that is the quasiconvex inf-convolution of two quasiconvex (resp. convex)
functions is also quasiconvex (resp. convex).

Other notions on quasiconvex functionals and on subdifferentiability useful in the paper
can be found in the Appendix.

3 Properties of quasiconvex inf-convolution

Let L be an ordered locally convex topological vector space.
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Given two functionals π1, π2 : L → R̄, we focus now on the quasiconvex inf-convolution
of π1 and π2 defined as in (4) and on its properties. Some financial/economic motivations and
interpretations of the qco-convolution can be found in Seeger and Volle [26]. Focusing on
risk measures or, better, on insurance premiums, π1 (X − Y )∨π2 (Y ) represents the maximal
premium to be paid for insurance and reinsurance separately, when Y is the risk transferred
by the insurance to the reinsurance. Hence, the qco-convolution of the insurance premium π1

and the reinsurance premium π2 corresponds to the minimization of the maximal premium
to be paid for (each) insurance and reinsurance contract.

Proposition 1 Let π1, π2 : L → R̄ be quasiconvex and monotone.
Then π1∇π2 is quasiconvex and monotone. Moreover:

(i) if at least one between π1 and π2 is continuous from above (resp. cash-subadditive),
then also π1∇π2 is continuous from above (resp. cash-subadditive).

(ii) (π1∇π2) (X) ≤ min{π1 (0) ∨ π2 (X) ;π1 (X) ∨ π2 (0)} for any X ∈ L. In particular, if
π1 (0) = π2 (0) = 0, then (π1∇π2) (0) ≤ 0.

Proof Quasi-convexity of π1∇π2 is due to Rockafellar [25]. The proof of monotonicity is
trivial.
(i) Since (π1∇π2) (X) = infY∈L {π1 (X − Y ) ∨ π2 (Y )} = infY∈L {π1 (Y ) ∨ π2 (X − Y )},
we may assume without loss of generality that π1 is continuous from above. By monotonicity
of π1∇π2 and by continuity from above of π1, infn∈N (π1∇π2) (Xn) = (π1∇π2) (X) can be
verified easily for any sequence (Xn)n≥0 ⊆ L such that Xn ↘n X ∈ L .

Assume now without loss of generality that π1 is cash-subadditive. Then, for any X ∈ L
and c ≥ 0

(π1∇π2) (X + c) − c = inf
Y∈L

{[π1 (X + c − Y ) − c] ∨ [π2 (Y ) − c]}
≤ inf

Y∈L
{π1 (X − Y ) ∨ [π2 (Y ) − c]}

≤ (π1∇π2) (X) ,

hence cash-subadditivity of π1∇π2.
The proof of (ii) is straightforward. ��

The following result establishes how qco-convolution works at the level of the functional
R.

Theorem 2 Let π1, π2 : L∞ → R̄ be two quasiconvex, monotone risk measures. Suppose
that at least one of them is continuous from above and, eventually, the other one is continuous
from below, and let R1, R2 be their corresponding functionals.

Then π∇ = π1∇π2 is quasiconvex, monotone and continuous from above and its corre-
sponding functional R∇ ∈ R0 is given by

R∇ (t, Q) = (R1∇t R2) (t, Q) = inf
t1+t2=t

{R1 (t1, Q) ∨ R2 (t2, Q)} , (5)

where ∇t means that the qco-convolution is only in t .

Proof Quasi-convexity, monotonicity and continuity from above of π∇ are due to Proposi-
tion 1. Hence π∇ can be represented as in (1) (with supremum attained) by means of R∇ .
By definition of π∇ and in the same spirit of the proof of Proposition 2.3 of Seeger and
Volle [26],
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R∇ (t, Q) = inf
Y∈L∞:EQ [Y ]=t

inf
Z∈L∞ {π1 (Z) ∨ π2 (Y − Z)}

= inf
Z∈L∞ inf

Y :EQ [Y ]=t
{π1 (Z) ∨ π2 (Y − Z)}

= inf
Y1,Y2:EQ [Y1+Y2]=t

{π1 (Y1) ∨ π2 (Y2)}
= inf

t1,t2:
t1+t2=t

inf
Y1,Y2:

EQ [Yi ]=ti , for i=1,2

{π1 (Y1) ∨ π2 (Y2)}

= inf
t1,t2:t1+t2=t

{(
inf

Y1:EQ [Y1]=t1
π1 (Y1)

)
∨

(
inf

Y2:EQ [Y2]=t2
π2 (Y2)

)}

= inf
t1,t2:t1+t2=t

{R1 (t1, Q) ∨ R2 (t2, Q)} .

By the arguments above and by Cerreia-Vioglio et al. [6], R∇ ∈ R0. ��

We consider now the particular case of convex risk measures.

Proposition 3 (convex case) Let π1, π2 : L∞ → R be two convex, monotone and cash-
additive risk measures such that at least one of them is continuous from above and, eventually,
the other one is continuous from below, and let R1, R2 [or, equivalently, F1, F2 - see (3)] be
their corresponding functionals.

Then either π∇ = π1∇π2 is identically equal to −∞ on L∞ or π∇ : L∞ → R is convex,
monotone and continuous from above and its corresponding functional R∇ is given by

R∇ (t, Q) = 1

2
[t − F1 (Q) − F2 (Q)] . (6)

Moreover, when π∇ is real-valued it can be represented as

π∇ (X) = 1

2
max

Q∈M1

{
EQ [X ] − F� (Q)

}
, (7)

with F� (Q) = (π1�π2)
∗ (Q).

Proof By Rockafellar [25] and by Proposition 1 we know that π∇ : L∞ → R̄ is con-
vex, monotone and continuous from above. Since both π1 and π2 are real-valued, it holds
(π1∇π2) (X) ≤ π1 (X) ∨ π2 (0) < +∞ for any X ∈ L∞. Moreover, since π1 and π2

are cash-additive (hence cash-subadditive), also π1∇π2 is cash-subadditive [see Proposition
1(i)].

Suppose now that there exists X̄ ∈ L∞ such that (π1∇π2)
(
X̄

) = −∞. We are going
to show that (π1∇π2) (Y ) = −∞ for any Y ∈ L∞. Indeed, for any Y ∈ L∞ it holds that
s � ess. sup

(
Y − X̄

) ∈ R and Y ≤ X̄ + s. If s < 0, then Y ≤ X̄ and, by monotonicity,
(π1∇π2) (Y ) ≤ (π1∇π2)

(
X̄

) = −∞. If s ≥ 0, then by monotonicity and cash-subadditivity
it follows that

(π1∇π2) (Y ) ≤ (π1∇π2)
(
X̄ + s

) ≤ (π1∇π2)
(
X̄

) + s = −∞.

By the arguments above, either π∇ = π1∇π2 is identically equal to −∞ on L∞ or
π∇ : L∞ → R. In the second case, from (5) and (3) it follows that

R∇ (t, Q) = inf
t2∈R

{(t − t2 − F1 (Q)) ∨ (t2 − F2 (Q))} = 1

2
[t − F1 (Q) − F2 (Q)] .
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Hence, π∇ (X) = 1
2 maxQ∈M1

{
EQ [X ] − F� (Q)

}
, where F� (Q) � F1 (Q) + F2 (Q).

Since π1 and π2 are proper and convex, then F� (Q) = (π1�π2)
∗ (Q) (see Rockafellar

[25]). ��
The following example shows that the qco-convolution of a convex risk measure and a

quasiconvex risk measure may be not convex.

Example 4 Consider two risk measures π1 and π2 whose corresponding functionals are,
respectively,

R1 (t, Q) = t − F (Q) ; R2 (t, Q) =
{

t − F (Q) ; t ≤ 0
t2 − F (Q) ; t > 0

where F (Q) ∈ {0,+∞} with F = 0 on a weakly compact set.
It is easy to check that both R1 and R2 are increasing, continuous and quasiconcave in t

and inf t Ri (t, Q) = inf t Ri
(
t, Q′) = −∞ for any Q, Q′ and i = 1, 2, so R1, R2 ∈ R0.

Furthermore, both π1 and π2 are monotone, π1 is convex and cash-additive, while π2 is only
quasiconvex. Since R1 and R2 are continuous in t , π1 and π2 are continuous from below. By
the definition of R1 and F , it follows that π1 is also continuous from above and coherent.

By the arguments above, it follows that π∇ is monotone, quasiconvex and continuous
from above. By (5), its corresponding functional R∇ is

R∇ (t, Q) =
{

t/2 − F(Q); t ≤ 0

t + 1
2 −

√
1+4t
2 − F(Q); t > 0

It can be checked easily that π∇ is not convex
(
take e.g. α = 1

2 , X = − 1
2 and Y = 1

2

)
.

4 Pareto optimal allocations and optimal risk sharing for quasiconvex
risk measures

In this section, we focus on Pareto optimal allocations and on optimal risk sharing for qua-
siconvex risk measures. Our main goal is twofold: first, to translate the problem in the
quasiconvex case; second, to investigate if results similar to those true in the convex case still
hold for quasiconvex risk measures.

Let X1 be the initial risk for an insurer, let X2 be the initial risk for a reinsurer and let
X = X1 + X2 be the total risk (called aggregate risk). Let π1(Y ) be the premium to be paid
to the insurer because of the risk Y and π2(Y ) be the premium to be paid to the reinsurer
because of Y .

The basic idea of Pareto optimal allocations and optimal risk sharing is to find the best
way (in some sense to be precised) for two agents (say, insurer and reinsurer) to share the
aggregate risk.

Here below, we recall the following definitions, well known in the economical literature.
As previously, we consider π1, π2 : L∞ → R̄ and risky positions belonging to L = L∞.

Definition 5 The set A(X) � {(ξ1, ξ2) ∈ L∞ × L∞ : ξ1 +ξ2 = X} is called set of attainable
allocations.

An attainable allocation (ξ1, ξ2) is said to be:

(a) a Pareto optimal allocation if: whenever there exists (η1, η2) ∈ A(X) such that π1(η1) ≤
π1(ξ1) and π2(η2) ≤ π2(ξ2), then π1(η1) = π1(ξ1) and π2(η2) = π2(ξ2);
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(b) a weakly Pareto optimal allocation if there does not exist any (η1, η2) ∈ A(X) satisfying
π1(η1) < π1(ξ1) and π2(η2) < π2(ξ2);

(c) an optimal risk sharing if it is Pareto optimal and it satisfies the Individual Rationality
constraint (IR for short), that is π1(ξ1) ≤ π1(X1) and π2(ξ2) ≤ π2(X2).

We recall that any Pareto optimal allocation is also weakly Pareto optimal, while the
converse is not true.

It is already known that for convex risk functionals π1, π2 satisfying monotonicity, lower
semi-continuity, cash-additivity and π1(0) = π2(0) = 0, Pareto optimal allocations can be
characterized as below, by means of inf-convolution of π1 and π2.

Theorem 6 (see Jouini et al. [16]) Let π1, π2 : L∞ → R be two convex risk measures
satisfying monotonicity, σ(L∞, L1)-lsc, cash-additivity and π1(0) = π2(0) = 0 and let
F1, F2 be their convex conjugate.

Let X ∈ L∞ be a given aggregate risk.
The following conditions are equivalent:

(i) an attainable allocation (ξ1, ξ2) is Pareto optimal;
(ii) the inf-convolution (π1�π2)(X) is exact, with (π1�π2)(X) = π1(ξ1) + π2(ξ2);

(iii) πi (ξi ) = EQ̄[ξi ] − Fi (Q̄) for some Q̄ ∈ M1;
(iv) ∂π1(ξ1) ∩ ∂π2(ξ2) �= ∅, where ∂π stands for the Fenchel-Moreau subdifferential of π .

See also Filipovic and Kupper [12] in a more general framework.
In the following, we will investigate what happens for quasiconvex risk functionals and, in

particular, whether a characterization similar to the one above still holds (once inf-convolution
is replaced by qco-convolution and Fenchel-Moreau subdifferential by a suitable subdiffer-
ential). Some definitions and results on different notions of subdifferentials for quasiconvex
functions (as well as some basic references) can be found in the Appendix.

From now on, we consider two risk measures satisfying the following:

Assumption (Aπ): π1, π2 : L∞ → R̄ are quasiconvex risk functionals satisfying monotonic-
ity and continuity from above. Hence, π1 and π2 can be represented as in (1) where supremum
is attained.

We remind that the qco-convolution

(π1∇π2)(X) = inf
Y∈L∞{π1(Y ) ∨ π2(X − Y )} = inf

(ξ1,ξ2)∈A(X)
{π1(ξ1) ∨ π2(ξ2)} (8)

is said to be exact at (ξ∗
1 , ξ∗

2 ) ∈ A(X) if the infimum in (8) is realized for (ξ∗
1 , ξ∗

2 ), that is
(π1∇π2)(X) = π1(ξ

∗
1 ) ∨ π2(ξ

∗
2 ).

The following result emphasizes the link between weakly Pareto optimal allocations,
exactness of qco-convolutions and representations of quasiconvex risk measures. On the one
hand, it is weaker than Theorem 6. Indeed, we are not able to prove the equivalence between
exactness and Pareto optimality nor the representations similar to those given in Theorem
6(iii). Nevertheless, we prove that exactness at (ξ1, ξ2) implies that the allocation (ξ1, ξ2) is
weakly Pareto and we characterize R∇ (respectively, the Greenberg-Pierskalla subdifferential
∂G P (π1∇π2)(X)—see Definition 17) in terms of R1, R2 (respectively, of ∂G Pπi , i = 1, 2).
On the other hand, the next theorem can be seen as an extension of the result of Jouini et al.
[16] to quasiconvex risk measures.

Theorem 7 Let π1, π2 be two risk measures satisfying Assumption (Aπ) and let R1, R2 be
the corresponding functionals defined on R × M1, f . Let X ∈ L∞ be a given aggregate risk.
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(i) If (π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2) for some (ξ1, ξ2) ∈ A(X), then (ξ1, ξ2) is a weakly
Pareto optimal allocation.

(ii) (π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2) holds for (ξ1, ξ2) ∈ A(X) if and only if the following
conditions are both satisfied:

(ii-r) R∇(EQ̄(X), Q̄) = R1(EQ1(ξ1), Q1) ∨ R2(EQ2(ξ2), Q2);

(ii-p) πi (ξi ) = Ri (EQ̄(ξi ), Q̄) whenever: πi (ξi ) > π j (ξ j ), or πi (ξi ) = π j (ξ j ) and

Ri (EQ̄(ξi ), Q̄) > R j (EQ̄(ξ j ), Q̄) (for i, j = 1, 2),

where Q̄ ∈ M1 (respectively, Qi ∈ M1 for i = 1, 2) are such that (π1∇π2)(X) =
R∇(EQ̄(X), Q̄) (resp. πi (X) = Ri (EQi (X), Qi )).

(iii) Let π1 and π2 be σ(L∞, L1)-upper semi-continuous.

If π1∇π2(X) = π1(ξ1) ∨ π2(ξ2) for ξ1, ξ2 ∈ A(X) and ξ1, ξ2 are not local minimizers
of π1, π2, then ∂G Pπ1(ξ1) ∩ ∂G Pπ2(ξ2) = ∂G P (π1∇π2)(X).

Remark 8 (a) Item (i) of Theorem 7 would hold even without the hypothesis of continuity
from above of both π1 and π2. Notice also that the assumption of σ(L∞, L1)-upper semi-
continuity taken in item (iii) (together with monotonicity) is stronger than continuity from
above.

(b) By Proposition 3.23 of Penot and Zalinescu [23], in Theorem 7(iii) the assumption that
ξ1, ξ2 are not local minimizers of π1, π2 (together with (π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2)

and σ(L∞, L1)-usc of both π1 and π2) implies that π1(ξ1) = π2(ξ2).
(c) A discussion on conditions (ii-r) and (ii-p) is needed. First of all, Q̄ represents the

probability measure which maximizes the function R∇(E·[X ], ·), while Q1, Q2 realize
the maximum respectively for R1, R2. Condition (ii-r) requires then that the maximum
of R∇(E·[X ], ·), considered as a function of Q̄, coincides with the biggest between the
maximum of R1(E·[ξ1], ·) and R2(E·[ξ2], ·).

Condition (ii-p) says something more. Assume, without loss of generality, that R∇(EQ̄[X ],
Q̄) = R1(EQ1 [ξ1], Q1) (hence R1(EQ1 [ξ1], Q1) ≥ R2(EQ2 [ξ1], Q2)). Then (ii-p) guaran-
tees that R1(E·[ξ1], ·) realizes its maximum also in correspondence of Q̄. Hence both Q̄ and
Q1 belong to argmax R1(E·[ξ1], ·).
Proof of Theorem 7 (i) Suppose by contradiction that there exist X̃1, X̃2 ∈ L∞ such that

X̃1 + X̃2 = X and

π1(X̃1) < π1(ξ1) and π2(X̃2) < π2(ξ2). (9)

Hence

π1(ξ1) ∨ π2(ξ2) = (π1∇π2)(X) ≤ π1(X̃1) ∨ π2(X̃2) < π1(ξ1) ∨ π2(ξ2),

that is a contradiction. (ξ1, ξ2) is therefore a weakly Pareto optimal allocation.
(ii) By Proposition 1(i), continuity from above of π1 and π2 guarantees that also π1∇π2 is

continuous from above. Hence πi (ξi ) = Ri (EQi (ξi ), Qi ) for some Qi = Qi (ξi ) ∈ M1

(with i = 1, 2) and (π1∇π2)(X) = R∇(EQ̄(X), Q̄) for some Q̄ = Q̄(X) ∈ M1.

Only if part. Suppose that both (ii-r) and (ii-p) are satisfied for some (ξ1, ξ2) ∈ A(X).
Hence

π1(ξ1) ∨ π2(ξ2) = R1(EQ1(ξ1), Q1) ∨ R2(EQ2(ξ2), Q2)

= R∇(EQ̄(X), Q̄) (10)

= (π1∇π2)(X),
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where equality (10) is due to condition (ii-r).
If part. Suppose that π1∇π2(X) = π1(ξ1) ∨ π2(ξ2) holds for some (ξ1, ξ2) ∈ A(X). It

follows that

(π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2)

≥ R1(EQ̄(ξ1), Q̄) ∨ R2(EQ̄(ξ2), Q̄) (11)

≥ R∇(EQ̄(ξ1) + EQ̄(ξ2), Q̄) (12)

= R∇(EQ̄(X), Q̄) = (π1∇π2)(X),

where inequality (12) is due to (5). Hence the inequalities (11) and (12) are indeed equalities
and

R1(EQ1(ξ1), Q1) ∨ R2(EQ2(ξ2), Q2) = π1(ξ1) ∨ π2(ξ2)

= R1(EQ̄(ξ1), Q̄) ∨ R2(EQ̄(ξ2), Q̄) (13)

= R∇(EQ̄(X), Q̄) = (π1∇π2)(X), (14)

that implies condition (ii-r).
It remains to show that also condition (ii-p) follows by exactness. In order to verify this,

we will distinguish the following cases: (a) π1(ξ1) < π2(ξ2) [or π1(ξ1) > π2(ξ2)]; (b)
π1(ξ1) = π2(ξ2).

(a) Suppose that π1(ξ1) < π2(ξ2) (for π1(ξ1) > π2(ξ2) the proof can be driven similarly).
Since π1(ξ1) ∨ π2(ξ2) = π2(ξ2) and R1(EQ̄(ξ1), Q̄) ≤ π1(ξ1) < π2(ξ2), by (13) and

π2(ξ2) ≥ R2(EQ̄(ξ2), Q̄) we deduce that R1(EQ̄(ξ1), Q̄) < R2(EQ̄(ξ2), Q̄) = π2(ξ2).
Condition (ii-p) is therefore established whenever π1(ξ1) < π2(ξ2).

(b) Suppose now that π1(ξ1) = π2(ξ2) and, without loss of generality, that R2(EQ̄(ξ2), Q̄)

≥ R1(EQ̄(ξ1), Q̄). Since

π1(ξ1) ∨ π2(ξ2) ≥ R1(EQ̄(ξ1), Q̄) ∨ R2(EQ̄(ξ2), Q̄) = π1(ξ1) ∨ π2(ξ2),

it holds that

π2(ξ2) = π1(ξ1) ∨ π2(ξ2) = R1(EQ̄(ξ1), Q̄) ∨ R2(EQ̄(ξ2), Q̄) = R2(EQ̄(ξ2), Q̄),

corresponding to condition (ii-p) under the assumptions above.

(iii) is a direct consequence of Proposition 18. Indeed, we recall (see [20], page 628)
that if π1, π2 are σ(L∞, L1)-upper semi-continuous, then it holds that ∂(∗)πi (ξi ) =
∂G Pπi (ξi )∪{0}, where ∂(∗) stands for the star-subdifferential (see Definition 17). Fur-
thermore, if ξ1, ξ2 are not local minimizers of π1, π2 respectively, then (by Proposition
18) equality (33) becomes ∂G Pπ1(ξ1) ∩ ∂G Pπ2(ξ2) = ∂G P (π1∇π2) (X). ��

As we will show in Example 10, an allocation attaining the qco-convolution is not neces-
sarily Pareto optimal but only weakly Pareto optimal. Nevertheless, in the following result
we prove that when both π1 and π2 are supposed to satisfy the additional assumption of cash-
additivity, then in Theorem 7(i) exactness of qco-convolution implies that (ξ1, ξ2) ∈ A(X) is
also Pareto optimal. Notice that Assumption (Aπ ) and cash-additivity of π1 and π2 together
imply convexity of π1 and π2 (see Prop. 2.1 of Cerreia-Vioglio et al. [6]).

Proposition 9 (Convex case) Let π1 and π2 satisfy Assumption (Aπ) and cash-additivity,
and let X ∈ L∞ be a given aggregate risk.
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If (π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2) for some (ξ1, ξ2) ∈ A(X), then (ξ1, ξ2) is a Pareto
optimal allocation.

Proof The proof uses extensively and is based on Remark 3.1 of Jouini et al. [16].
We may suppose without loss of generality that π1(ξ1) ≤ π2(ξ2). We will consider

separately the following cases: (a) π1(ξ1) < π2(ξ2); (b) π1(ξ1) = π2(ξ2).

(a) Assume that π1(ξ1) < π2(ξ2). Suppose by contradiction that (ξ1, ξ2) is not a Pareto
optimal allocation, i.e. that there exists (ξ̃1, ξ̃2) ∈ A(X) such that

π1(ξ̃1) ≤ π1(ξ1) and π2(ξ̃2) ≤ π2(ξ2) (15)

where at least one of the inequalities is strict.
(a1) Whenever π1(ξ̃1) = π1(ξ1) and π1(ξ1) ≤ π2(ξ̃2) < π2(ξ2),

π1(ξ̃1) ∨ π2(ξ̃2) = π1(ξ1) ∨ π2(ξ̃2) < π1(ξ1) ∨ π2(ξ2) = (π1∇π2)(X)

that is a contradiction.
(a2) When π1(ξ̃1) = π1(ξ1) and π2(ξ̃2) < π1(ξ1) ≤ π2(ξ2), we immediately get a contra-

diction since π1(ξ̃1) ∨ π2(ξ̃2) = π1(ξ1) ∨ π2(ξ̃2) < π1(ξ1) ∨ π2(ξ2).
(a3) Whenever π1(ξ̃1) < π1(ξ1) and π2(ξ̃2) = π2(ξ2),

π1(ξ̃1) ∨ π2(ξ̃2) = π2(ξ̃2) = π2(ξ2) = π1(ξ1) ∨ π2(ξ2) = (π1∇π2)(X).

Take now η1 = ξ̃1 + c and η2 = ξ̃2 − c for c = min{π1(ξ1)−π1(ξ̃1)
2 ; π2(ξ2)−π1(ξ1)

2 } > 0.
By cash-additivity of π1 and π2 and by definition of c, it is immediate to check that
(η1, η2) ∈ A(X) satisfies

π1(η1) = π1(ξ̃1 + c) = π1(ξ̃1) + c < π1(ξ1)

π2(η2) = π2(ξ̃2 − c) = π2(ξ̃2) − c < π2(ξ2).

It follows that π1(η1) ∨ π2(η2) < π1(ξ1) ∨ π2(ξ2) = (π1∇π2)(X), hence a contradic-
tion.

(a4) Whenever π1(ξ̃1) < π1(ξ1) and π2(ξ̃2) < π2(ξ2), a contradiction can be found imme-
diately by proceeding as above.

(b) Assume now that π1(ξ1) = π2(ξ2) = p.
(b1) Whenever π1(ξ̃1) = π1(ξ1) = p and π2(ξ̃2) < π2(ξ2) = p, consider η1 = ξ̃1 − c and

η2 = ξ̃2 + c for c = π2(ξ2)−π2(ξ̃2)
2 > 0. Proceeding as in case (a3), it can be checked

that

π1(η1) = π1(ξ̃1 − c) = π1(ξ̃1) − c < π1(ξ1) = p

π2(η2) = π2(ξ̃2 + c) = π2(ξ̃2) + c < π2(ξ2) = p.

As seen above, a contradiction follows immediately by π1(η1) ∨ π2(η2) < p = π1(ξ1) ∨
π2(ξ2) = (π1∇π2)(X).

Cases (b2) (π1(ξ̃1) < π1(ξ1) = p and π2(ξ̃2) = π2(ξ2) = p) and (b3) (π1(ξ̃1) <

π1(ξ1) = p and π2(ξ̃2) < π2(ξ2) = p) can be driven similarly.
Pareto optimality of (ξ1, ξ2) follows then by the arguments above. ��

4.1 Counterexamples

In this section, we provide some examples that emphasize the following facts: exactness of
the qco-convolution does not guarantee that any allocation attaining the infimum in the qco-
convolution is Pareto optimal, but only weakly Pareto optimal (Example 10); in Theorem 7(i)
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the converse implication does not hold in general (Example 11); and, differently from the
classical case, exactness of qco-convolution at (ξ1, ξ2) does not guarantee that ∂G Pπ1(ξ1) ∩
∂G Pπ2(ξ2) �= ∅ (Example 12).

Example 10 Consider the following functionals π1, π2 : R → R:

π1(x) = x and π2(x) = k(x) �

⎧
⎨

⎩

−1, x ≤ −1
x, x ∈ (−1, 1)

1, x ≥ 1
(16)

Clearly, π1 is increasing and linear (hence, quasiconvex), while π2 is non-decreasing and
quasiconvex.

Consider now x ∈ [−2, 2]. It is easy to check that

π1(y) ∨ π2(x − y) =
⎧
⎨

⎩

1; y ≤ x − 1
x − y; x − 1 < y ≤ x

2
y; y ≥ x

2

(17)

Hence for any x ∈ [−2, 2] the qco-convolution (π1∇π2)(x) is exact, with (π1∇π2)(x) =
x
2 = π1

( x
2

) ∨ π2
(
x − x

2

)
. It can be deduced by Theorem 7 (or it can be checked easily) that

(ξ, x − ξ) = ( x
2 , x

2 ) is weakly Pareto optimal for any x ∈ [−2, 2].
Take now x = 2. By the arguments above, (ξ, x − ξ) = (1, 1) is a weakly Pareto optimal

allocation. Nevertheless, we will show that it is not Pareto optimal. Consider, indeed, any
admissible allocation (η, x − η) with η < 1. It holds that π1(η) < π1(ξ) = π1(1) = 1
and π2(x − η) = π2(x − ξ) = π2(1) = 1. It follows that (ξ, x − ξ) = (1, 1) is not a
Pareto optimal allocation since there exist some pairs (η, x − η) (e.g. with η < 1) satisfying
π1(η) < π1(1) and π2(x − η) ≤ π2(1).

The following example underlines that in Theorem 7(i) the converse implication does not
hold, i.e.

(ξ1, ξ2) ∈ A(X) weakly Pareto � (π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2).

Example 11 Take π1 and π2 as in (16) and x ∈ [−2, 2].
For any x ∈ [−2, 2] it holds that (π1∇π2)(x) = x

2 (see Example 10). Furthermore, it can
be checked easily that any pair (ξ1, ξ2) ∈ A(x) with ξ1 ∈ (−∞, x − 1) ∪ (x + 1,+∞) is a
weakly Pareto optimal allocation. Nevertheless, for ξ1 > x + 1 we get

π1(ξ1) ∨ π2(ξ2) = π1(ξ1) ∨ π2(x − ξ1) = ξ1 ∨ (−1) = ξ1 > x + 1 ≥ x

2
= (π1∇π2)(x),

where the third equality is due to ξ1 > x + 1 ≥ −1, while the last inequality holds because
of x ∈ [−2, 2].

Even if any pair (ξ1, ξ2) ∈ A(x) with ξ1 ∈ (x + 1,+∞) is a weakly Pareto optimal
allocation (as well as (π1∇π2)(x) is exact at (ξ1, ξ2) ∈ A(x)), it follows that

(π1∇π2)(x) �= π1(ξ1) ∨ π2(ξ2).

As recalled in Theorem 6, Jouini et al. [16] proved that, for convex risk measures, the exact-
ness of inf-convolution at (ξ1, ξ2) is equivalent to the nonemptyness of ∂π1(ξ1)∩∂π2(ξ2). In
the following example, we show that a similar result does not hold in general for quasiconvex
risk measures. Namely,

(π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2) � ∂G Pπ1(ξ1) ∩ ∂G Pπ2(ξ2) �= ∅.

As we will see in the next section, the converse is true under suitable assumptions.
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Example 12 Consider the functions π1, π2 : R
2 → R defined as π1(u) = e1 ·u and π2(u) =

k(e2 · u), where k : R → R is defined as in (16) and e1, e2 is the canonical basis in R
2, i.e.

e1 = (1, 0), e2 = (0, 1). It is easy to check that π1 and π2 are quasiconvex (better, π1 is also
convex), monotone and continuous from above.

Let x = (x1, x2) ∈ R
2 be fixed arbitrarily. To prove exactness of (π1∇π2)(x), we need to

find a pair (ξ̄ , ζ̄ ) ∈ A(x) ⊆ R
2 × R

2 such that (π1∇π2)(x) = π1(ξ̄ ) ∨ π2(ζ̄ ). For any pair
(ξ, ζ ) ∈ A(x) it is easy to check that

π1(ξ) ∨ π2(ζ ) = π1(x − ζ ) ∨ π2(ζ )

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−1, if e2 · ζ < −1 and e1 · (x − ζ ) ≤ −1
e2 · ζ, if e2 · ζ ∈ [−1, 1] and e1 · (x − ζ ) ≤ e2 · ζ

1, if e2 · ζ > 1 and e1 · (x − ζ ) ≤ 1
e1 · (x − ζ ), if e2 · ζ < −1 and e1 · (x − ζ ) ≥ −1
e1 · (x − ζ ), if e2 · ζ ∈ [−1, 1] and e1 · (x − ζ ) ≥ e2 · ζ

e1 · (x − ζ ), if e2 · ζ > 1 and e1 · (x − ζ ) ≥ 1

Hence infζ∈R2{π1(x − ζ ) ∨ π2(ζ )} = −1, where the infimum is attained at any ζ ∈ R
2

satisfying e2 · ζ ≤ −1 and e1 · (x − ζ ) ≤ −1. This means that (π1∇π2)(x) is exact for
any x ∈ R

2, with (π1∇π2)(x) = π1(x − ζ ) ∨ π2(ζ ) for ζ ∈ R
2 as above (in particular, for

ζ = (ζ1,−1) and x1 − ζ1 ≤ −1).
About the Greenberg-Pierskalla subdifferentials of π1, π2, it can be checked easily that

∂G Pπ1(u) = (R+ \ {0})e1 for any u ∈ R
2, while ∂G Pπ2(u) = (R+ \ {0})e2 for any u with

e2 · u ∈ [−1, 1].
By the arguments above, it follows that (π1∇π2)(x) is exact for any x ∈ R

2, with
(π1∇π2)(x) = π1(x − ζ ) ∨ π2(ζ ) e.g. for ζ = (ζ1,−1) and x1 − ζ1 ≤ −1. Neverthe-
less, for ζ as above it holds that ∂G Pπ1(x − ζ ) ∩ ∂G Pπ2(ζ ) = ∅.

4.2 Exactness and existence of weak Pareto optimal allocations

Example 12 shows that, for quasiconvex functions, exactness of (π1∇π2)(X) at (ξ1, ξ2) does
not imply that ∂G Pπ1(ξ1)∩ ∂G Pπ2(ξ2) �= ∅. Nevertheless, the converse is true under further
assumptions on π1 and π2.

Theorem 13 Let π1, π2 be two quasiconvex risk measures satisfying assumption (Aπ) (with
associated functionals R1, R2). Assume also that π1 and π2 are radially continuous on L∞,
i.e. for any X ∈ L∞ it holds that: fi (t) = πi (X + tY ) is continuous at 0 for any Y ∈ L∞
(for i = 1, 2).

Let X ∈ L∞ be an aggregate risk and ξ1, ξ2 ∈ A(X) be such that π1, π2 are finite at
ξ1, ξ2 and Lipschitz1 on {π1 < π1(ξ1)} and {π2 < π2(ξ2)}, respectively.

If ∂G Pπ1(ξ1) ∩ ∂G Pπ2(ξ2) �= ∅ and π1(ξ1) = π2(ξ2), then (π1∇π2)(X) is exact and
(π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2).

Proof Notice that, under the assumptions above, ∂G Pπ1(ξ1) ∩ ∂G Pπ2(ξ2) �= ∅ implies that
∂<πi (ξi ) �= ∅, for i = 1, 2, where ∂< denotes the Plastria subdifferential (see Definition
17). By Proposition 21 of Penot [21], indeed, under our assumptions it holds that

∂G Pπi (ξi ) = ∂(∗)πi (ξi ) = (0, 1]∂<πi (ξi ), i = 1, 2. (18)

1 π is said to be Lipschitz on the strict lower level set {π < π(ξ)} if there exists c > 0 such that |π(X) −
π(Y )| ≤ c‖X − Y‖∞ for any X, Y ∈ L∞ such that π(X), π(Y ) < π(ξ). Roughly speaking, this means that
π is ‖ · ‖∞-continuous on the strict lower level set.
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Now we want to show that the nonemptyness of both ∂<πi (ξi ) implies that ∂<π1(ξ1)∇
∂<π2(ξ2) (defined in (34)) is nonempty too. By (34) and by the arguments above, it is
sufficient to verify that

(∂G Pπ1(ξ1) ∩ ∂<π2(ξ2)) ∪ (∂<π1(ξ1) ∩ ∂G Pπ2(ξ2)) �= ∅. (19)

Let ξ̄ be an element of ∂G Pπ1(ξ1) ∩ ∂G Pπ2(ξ2). Then, by (18), there exist λi ∈ (0, 1] and
ξ̄i ∈ ∂<πi (ξi ) (i = 1, 2) such that ξ̄ = λ1ξ̄1 and ξ̄ = λ2ξ̄2.

Suppose now that λ1 ≤ λ2. We then have ξ̄2 = λ1,2ξ̄1, with λ1,2 � λ1
λ2

≤ 1. We can

conclude that ξ̄2 ∈ (0, 1]∂<π1(ξ1), hence ξ̄2 ∈ ∂G Pπ1(ξ1) ∩ ∂<π2(ξ2). Consequently,

∂G Pπ1(ξ1) ∩ ∂<π2(ξ2) �= ∅. (20)

If λ1 ≥ λ2, we can proceed similarly so to obtain that

∂<π1(ξ1) ∩ ∂G Pπ2(ξ2) �= ∅. (21)

The arguments above imply that at least one between (20) and (21) is true. Hence (19) is
verified and, because of (34), ∂<π1(ξ1)∇ ∂<π2(ξ2) is nonempty. Applying Proposition 19,
we conclude that (π1∇π2)(X) is exact with (π1∇π2)(X) = π1(ξ1) ∨ π2(ξ2). ��

Under suitable assumptions, an existence result similar to the one established in Jouini
et al. [16] for Pareto optimal allocations with convex risk measures can be proved even in
the quasiconvex case for weakly Pareto optimal allocations.

Theorem 14 (Existence) Let π1, π2 be two law invariant risk measures satisfying Assump-
tion (Aπ), ‖ · ‖∞-continuous and consistent with respect to the Second Order Stochastic
Dominance. Let X ∈ L∞ be a given aggregate risk.

Then there exists a weakly Pareto optimal allocation.

Proof The proof can be driven as in Lemma 6.1 and Theorem 3.2 of Jouini et al. [16] (up to
small changes) and by applying Theorem 7(i). ��

Similarly to the convex case, the assumption of consistency with respect to the Second
Order Stochastic Dominance may be dropped when the probability space is, for instance,
non atomic (see Theorem 5.1 of Cerreia-Vioglio et al. [6]).

4.3 Optimal risk sharing

In this section, we will focus on (weakly) optimal risk sharing for quasiconvex risk measures.
Note that, by Theorem 3.1 of Jouini et al. [16] (see also Theorem 6), the classical definition
of an optimal risk sharing (ξ∗

1 , ξ∗
2 ) is equivalent to requiring that (π1�π2)(X1 + X2) is exact

at (ξ∗
1 , ξ∗

2 ) ∈ A(X) and that individual rationality (i.e. πi (ξ
∗
i ) ≤ πi (Xi ) for i = 1, 2) is

verified. Supported by this fact, in the present setting we will focus on weakly optimal risk
sharing, where with weakly optimal risk sharing we mean any allocation (ξ∗

1 , ξ∗
2 ) ∈ A(X)

at which (π1∇π2)(X) is exact and satisfying individual rationality.
For convex risk measures, Jouini et al. [16] proved that an optimal risk sharing may be

obtained starting from a Pareto optimal allocation and taking into account a “suitable” price.
We wonder whether a similar result holds true also for quasiconvex risk measures.

In order to characterize weakly optimal risk sharing for quasiconvex functions and fol-
lowing the approach of Jouini et al. [16], we define

p1(η) � π1(X1) − π1(X1 − η); p2(η) � π2(X2 + η) − π2(X2), (22)
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for any η ∈ L∞. As already pointed out, η can be seen as the risk transferred from insurer
to reinsurer (say, from agent 1 to agent 2). In the framework of convex risk measures (where
cash-additivity holds), p1(η) can be understood as the maximal price that agent 1 would
pay because of the “risk exchange”, while p2(η) represents the reinsurance premium or the
minimal price that agent 2 would like to receive because of the additional risk η. Always in
the convex setting, Jouini et al. [16] proved that, given a Pareto optimal allocation (X1 −
ξ∗, X2 + ξ∗), the allocation (X1 − ξ∗ + p, X2 + ξ∗ − p) (with p ∈ R) is an optimal risk
sharing if and only if p ∈ [p1(ξ

∗), p2(ξ
∗)] (see Theorem 3.3 of Jouini et al. [16]), that is iff

p is a price at which both agents would agree to exchange the risk ξ∗.
In the quasiconvex case, the situation is a little bit different and difficult because of the lack

of cash-additivity. In the next theorem we give a necessary condition for a weakly optimal
risk sharing; further, a sufficient condition can be given by imposing on π2 the additional
assumption of cash-additivity.

Theorem 15 Let π1, π2 : L∞ → R be two risk functionals (or insurance premiums) sat-
isfying assumption (Aπ ) and cash-subadditivity, and let X1, X2 ∈ L∞ with aggregate risk
X = X1 + X2.

Assume that π1(X1) ≥ π2(X2) and that (π1∇π2)(X) is exact at a pair (X1−ξ∗, X2+ξ∗).

(i) If π1(X1) = π2(X2), then (X1 − ξ∗, X2 + ξ∗) is a weakly optimal risk sharing.
(ii) If π1(X1) > π2(X2), then either (X1 − ξ∗, X2 + ξ∗) is a weakly optimal risk sharing

or the following holds:
if (X1 − ξ∗ + p, X2 + ξ∗ − p) is a weakly optimal risk sharing for some p > 0, then p
satisfies:

π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) (23)

and
p ≥ max

{
π2(X2 + ξ∗) − π2(X2);π2(X2 + ξ∗) − π1(X1 − ξ∗)

}
. (24)

If, in addition, π2 is cash-additive, then also the converse holds true. More precisely, if
p > 0 satisfies

π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) (25)

and
p ≥ max

{
π2(X2 + ξ∗) − π2(X2);π2(X2 + ξ∗) − π1(X1 − ξ∗)

}
, (26)

then (X1 − ξ∗ + p, X2 + ξ∗ − p) is a weakly optimal risk sharing allocation.

When π1(X1) ≤ π2(X2), the result above can be reformulated similarly.
Notice that inequality (24) can be rewritten as

p ≥ max{p2(ξ
∗); p2(ξ

∗) + p1(ξ
∗) + π2(X2) − π1(X1)}.

Differently from Jouini et al. [16], in the quasiconvex case the constraint on p depends not
only on p1(ξ

∗) and p2(ξ
∗), but also on the difference between π1(X1) and π2(X2).

Proof of Theorem 15 (i) Suppose thatπ1(X1) = π2(X2). Since, by assumption, (π1∇π2)(X)

is exact at (X1 − ξ∗, X2 + ξ∗), we have

π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) ≤ π1(X1) ∨ π2(X2) = π1(X1) = π2(X2).

Hence
π1(X1 − ξ∗) ≤ π1(X1) ∨ π2(X2) = π1(X1)
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and
π2(X2 + ξ∗) ≤ π1(X1) ∨ π2(X2) = π2(X2).

We can conclude that (X1 − ξ∗, X2 + ξ∗) is a weakly optimal risk sharing rule.
(ii) Suppose now that π1(X1) > π2(X2). Since, by assumption, (π1∇π2)(X) is exact at
(X1 − ξ∗, X2 + ξ∗), we have necessarily that π1(X1 − ξ∗), π2(X2 + ξ∗) ≤ π1(X1). One of
the following cases can then occur:

1. π1(X1 − ξ∗) ≤ π1(X1) and π2(X2 + ξ∗) ≤ π2(X2)

2. π1(X1 − ξ∗) ≤ π2(X2) ≤ π2(X2 + ξ∗) ≤ π1(X1)

3. π2(X2) ≤ π1(X1 − ξ∗) ≤ π2(X2 + ξ∗) ≤ π1(X1)

4. π2(X2) ≤ π2(X2 + ξ∗) ≤ π1(X1 − ξ∗) ≤ π1(X1)

Let us consider separately the four cases above. In the first one, we see immediately that
(X1 − ξ∗, X2 + ξ∗) is a weakly optimal risk sharing allocation. Notice that the same is no
more true in the remaining cases.

Concerning the second and the third case, let us assume that (X1 − ξ∗ + p, X2 + ξ∗ − p),
for p > 0, is a weakly optimal risk sharing allocation. This implies that

π2(X2 + ξ∗ − p) ≤ π2(X2) ≤ π2(X2 + ξ∗)

and
π1(X1 − ξ∗ + p) = π2(X2 + ξ∗) ≤ π1(X1), (27)

where the equality in (27) follows from exactness of (π1∇π2)(X) at both (X1 −ξ∗ + p, X2 +
ξ∗ − p) and (X1 − ξ∗, X2 + ξ∗), hence

π1(X1 − ξ∗ + p) ∨ π2(X2 + ξ∗ − p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) = π2(X2 + ξ∗).

Notice that condition (23) follows immediately from (27) and π1(X1 − ξ∗) ≤ π2(X2 + ξ∗)
(true in the present cases).

Moreover, by cash-subadditivity of π1 and π2 we get

π2(X2 + ξ∗ − p) ≥ π2(X2 + ξ∗) − p (28)

π1(X1 − ξ∗ + p) ≤ π1(X1 − ξ∗) + p (29)

for any p ≥ 0. Notice that (28) can be rewritten as

p ≥ π2(X2 + ξ∗) − π2(X2 + ξ∗ − p) ≥ π2(X2 + ξ∗) − π2(X2) (30)

because of monotonicity of π2, while, combining (27) with (29), we get

p ≥ π2(X2 + ξ∗) − π1(X1 − ξ∗).

Condition (24) follows therefore by the last two inequalities.
Now, let us consider the fourth case. Let us assume that (X1 − ξ∗ + p, X2 + ξ∗ − p) is a

weakly optimal risk sharing allocation for some p > 0. Since π2(X2 + ξ∗ − p) ≤ π2(X2) ≤
π2(X2 + ξ∗) ≤ π1(X1 − ξ∗), it follows that

π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) ≤ π1(X1),

where the first equality is due to exactness of (π1∇π2)(X) at (X1 − ξ∗ + p, X2 + ξ∗ − p).
Equality (23) has been therefore established. Moreover, by proceeding as above we deduce
again (30). This implies immediately condition (24) since, in the present case, π2(X2 +ξ∗)−
π1(X1 − ξ∗) ≤ 0, while π2(X2 + ξ∗) − π2(X2) ≥ 0.
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Finally, let us assume that π2 is cash-additive and that π1(X1 − ξ∗ + p) = π2(X2 + ξ∗)∨
π1(X1 − ξ∗).

If both π1(X1 − ξ∗) and π2(X2 + ξ∗) are smaller than (or equal to) π2(X2), then exact-
ness and individual rationality of (X1 − ξ∗ + p, X2 + ξ∗ − p) are trivial. By exactness
of (π1∇π2)(X) at (X1 − ξ∗, X2 + ξ∗), it can never happen that π2(X2) < π1(X1) <

π1(X1 − ξ∗) ∨ π2(X2 + ξ∗). If π2(X2) ≤ π2(X2 + ξ∗) ∨ π1(X1 − ξ∗) ≤ π1(X1), then we
can consider the following cases:

1. π2(X2 + ξ∗) ≤ π2(X2) ≤ π1(X1 − ξ∗) ≤ π1(X1)

2. π1(X1 − ξ∗) ≤ π2(X2) ≤ π2(X2 + ξ∗) ≤ π1(X1)

3. π2(X2) ≤ π2(X2 + ξ∗) ≤ π1(X1 − ξ∗) ≤ π1(X1)

4. π2(X2) ≤ π1(X1 − ξ∗) ≤ π2(X2 + ξ∗) ≤ π1(X1)

It is easy to check that in all the four cases above, condition (25) implies exactness at
(X1 − ξ∗ + p, X2 + ξ∗ − p). Moreover, condition (26) and cash-additivity of π2 imply that
π2(X2 + ξ∗ − p) = π2(X2 + ξ∗)− p ≤ π2(X2). The condition π1(X1 − ξ∗ + p) ≤ π1(X1)

follows immediately from the arguments above. We can conclude that, for p > 0 satisfying
(25) and (26), (X1 − ξ∗ + p, X2 + ξ∗ − p) is a weakly optimal risk sharing allocation. ��

Differently from Jouini et al. [16], the existence of a weakly optimal risk sharing is not
guaranteed a priori. This fact is related to the lack of cash-additivity of at least one between
the risk measures taken into account.

In order to illustrate the meaning of Theorem 15 we provide the following example.

Example 16 Consider the risk measures π1 and π2 defined as

π1(X) = g(E[X ]) = E[X ] ∧ 0; π2(X) = E[X ].
We notice that π1 is cash-subadditive while π2 is cash-additive. Moreover, it is easy to check
that both π1 and π2 are increasing, continuous and quasiconvex. By the arguments given in
Section 3, it follows that π∇ is monotone, continuous from above and quasiconvex.

Let now X, X1, X2 ∈ L∞ such that E[X1] = 2, E[X2] = −1 and X = X1 + X2. Then
π1(X1) = 0 while π2(X2) = −1. Moreover,

(π1∇π2)(X) = infξ∈L∞ {(E[X1 − ξ ] ∧ 0) ∨ E[X2 + ξ ]}
= infξ∈L∞ {((2 − E[ξ ]) ∧ 0) ∨ (E[ξ ] − 1)} = 0.

The minimum in the expression above is realized for any ξ∗ ∈ L∞ such that x∗ = E[ξ∗]
≤ 1. Hence any pair of the form (X1 − ξ∗, X2 + ξ∗) such that x∗ = E[ξ∗] ≤ 1 is exact;
nevertheless, for any ξ∗ ∈ L∞ such that x∗ > 0 this pair is not an optimal risk sharing. In fact,
π1(X1 − ξ∗) = (2 − x∗) ∧ 0 = 0 = π1(X1) while π2(X2 + ξ∗) = x∗ − 1 > −1 = π2(X2).

In the spirit of Theorem 15, we construct a weakly optimal risk sharing (X1−ξ∗+ p; X2+
ξ∗ − p) taking into account a suitable “price” p > 0. More precisely, we look for p > 0
satisfying

π1(X1 − ξ∗ + p) = π1(X1 − ξ∗) ∨ π2(X2 + ξ∗) (31)

and

p ≥ max
{
π2(X2 + ξ∗) − π2(X2), π2(X2 + ξ∗) − π1(X1 − ξ∗)

}
. (32)

Equality (31) requires that (2 − x∗ + p) ∧ 0 = 0, that is p ≥ x∗ − 2, while inequality (32)
implies that p ≥ x∗. Hence any p ≥ x∗ = E[ξ∗] is the suitable price we were looking for.
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5 Appendix

In the following, we recall some basic definitions and results on different notions of subdif-
ferentiability for quasiconvex functions. We refer to Penot [21] and to Penot and Zalinescu
[23] for a deep and wide treatment.

Definition 17 (see Penot [21], Penot and Zalinescu [23]) Let X be a locally convex topo-
logical vector space and X ∗ be its topological dual space. Let f : X → R be a quasiconvex
function and let x0 ∈ X be such that f (x0) is finite.

The Greenberg-Pierskalla subdifferential ∂G P f (x0), the star subdifferential ∂(∗) f (x0)

and the lower subdifferential of Plastria ∂< f (x0) of f at x0 ∈ X are defined, respectively,
as

∂G P f (x0) �
{

x∗ ∈ X ∗ : 〈x∗, x − x0〉 < 0 for any x ∈ { f < f (x0)}
}

∂(∗) f (x0) �
{

x∗ ∈ X ∗ : 〈x∗, x − x0〉 ≤ 0 for any x ∈ { f < f (x0)}
}

∂< f (x0) � {x∗ ∈ X ∗ : 〈x∗, x − x0〉 ≤ f (x) − f (x0) for any x ∈ { f < f (x0)}}.
Notice that the last definition is similar but weaker than the one of Fenchel-Moreau

subdifferential. Other relations among the different notions above can be found in Penot [21]
and Penot and Zalinescu [23], among others.

Proposition 18 (see Prop. 2.8 of Penot and Zalinescu [23]) Let f : X → R and g : X → R

be two given functions and let z0 ∈ X . If the qco-convolution ( f ∇g)(z0) is exact with
( f ∇g)(z0) = f (x0)∨ g(y0) for x0, y0 ∈ X such that x0 + y0 = z0 and f (x0) = g(y0), then

(∂(∗) f (x0) ∩ ∂G P g(y0)) ∪ (∂G P f (x0) ∩ ∂(∗)g(y0)) ⊆ ∂G P ( f ∇g) (z0), (33)

where equality holds if x0, y0 are not local minimizers of f, g, respectively.

Given two functionals f, g : X → R̄, given x0, y0 ∈ X and the subdifferentials ∂< f (x0)

and ∂<g(y0), the set (∂< f (x0))∇(∂<g(y0)) is defined as

(∂< f (x0))∇ (∂<g(y0)) �

⎛

⎝
⋃

λ∈(0,1)

[λ∂< f (x0) ∩ (1 − λ)∂<g(y0)]
⎞

⎠

∪ (∂(∗) f (x0) ∩ ∂<g(y0)) ∪ (∂< f (x0) ∩ ∂(∗)g(y0)). (34)

See Penot and Zalinescu [23] for a general definition and for further explanations.

Proposition 19 (see Prop. 3.23 of Penot and Zalinescu [23]) Let f, g : X → R̄ be two
quasiconvex functions, x0 ∈ dom f and y0 ∈ domg.

If (∂< f (x0))∇ (∂<g(y0)) is nonempty and f (x0) = g(y0), then ( f ∇g)(x0 + y0) is exact
with ( f ∇g)(x0 + y0) = f (x0)∨ g(y0), and (∂< f (x0))∇ (∂<g(y0)) ⊆ ∂<( f ∇g)(x0 + y0).
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