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Abstract The rate of return of a zero-coupon bond with maturity T is determined by our
expectations about the mean (+), variance (-) and skewness (+) of the growth of aggregate
consumption between 0 and T . The shape of the yield curve is thus determined by how these
moments vary with T . We first examine growth processes in which a higher past economic
growth yields a first-degree dominant shift in the distribution of the future economic growth,
as assumed for example by Vasicek (J. Financ. Econ. 5, 177–188, 1977). We show that
when the growth process exhibits such a positive serial dependence, then the yield curve is
decreasing if the representative agent is prudent (u′′′ > 0), because of the increased risk that
it yields for the distant future. A similar definition is proposed for the concept of second-
degree stochastic dependence, as observed for example in the Cox–Ingersoll–Ross model,
with the opposite comparative static property holding under temperance (u′′′′ < 0), because
the change in downside risk (or skweness) that it generates. Finally, using these theoretical
results, we propose two arguments in favor of using a smaller rate to discount cash-flows with
very large maturities, as those associated to global warming or nuclear waste management.
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1 Introduction

How much effort are we ready to make today to improve the future? Households are faced
with this question when they plan their savings for retirement, whereas entrepreneurs have to
determine whether to undertake new investment projects. At the collective level, one needs
to determine, for example, whether to limit the national budget deficit, or whether to invest
in the education system. In a recent past, similar questions emerged, but with the striking
innovation of being related to the far-distant future. Exploring the universe, protecting the
biodiversity, limiting the extraction of exhaustible resources, dealing with nuclear wastes
and global warming are a few examples of policy questions that confront us to our attitude
towards improving the welfare of human beings that will live in hundreds or thousands years
in the future. These valuation questions are all solved by the selection of the discount rate.

As is well-known, the use of a single rate to discount sure cash-flows at all maturities
implies that costs and benefits occurring, say, in more than 100 years are typically irrelevant
for the decision, because of the exponential nature of discounting. This is why for example
the so-called “Copenhagen Consensus”1 ranked all projects linked to the prevention of global
warming at the lowest priority level based on standard cost-benefit analyses with a constant
discount rate. The problem is that there is a priori no scientific reason to believe that one
should discount all maturities at the same rate. The tradition of using a constant rate in
cost-benefit analysis should not be seen as a dogma, but rather as a useful practical simplifi-
cation. Various authors—among whom Weitzman [36–38] is the most vocal—claimed that
one should opt for discount rates that are decreasing with the maturity of the cash flows under
scrutiny. Weitzman [38] in particular develops an argument for selecting a zero discount rate
for maturities around 50 years, the discount rate becoming even negative for longer time
horizons. Of course, adopting such recommendations would massively reallocate our collec-
tive investments towards those benefiting to distant generations, potentially at the detriment
of actions with more immediate benefits such as fighting malaria and promoting education in
developing countries. It is therefore important to have a good understanding of the reasons
why we should adopt such decreasing discount rates.

Since the seminal contribution of Vasicek [35], economists have intensively explored how
efficient discount rates should vary with the maturity of the corresponding cash payment. The
immense literature on the term structure of interest rates has produced an important corpus of
knowledge about this question. It is quite unfortunate that researchers discussing this question
in the various forums of environmental economics do not take advantage of the existence of
this vast literature.2 There are several reasons for that. First, most papers on the yield curve
are aimed at explaining the observed shape of that curve, whereas environmental economists
have a much more normative approach. Notice however that the absence of frictions in the
standard models on the term structure implies that the equilibrium interest rates are also the
socially efficient discount rates to be used in cost-benefit analysis. Second, researchers in
finance are usually interested in pricing traded assets, which implies that their time-horizon is
limited by the largest maturity of existing liquid markets for risk-free assets, which does not
exceed 30 years. Last but not least, this literature is highly complex, and it does usually not
provide intuition to the underlying phenomena. This is well summarized by Piazzesi [30]:
“The quest for understanding what moves bond yields has produced an enormous literature

1 It is the outcome of a conference held in Copenhagen in May 2004 aimed at ranking a set of various col-
lective investment projects, including fighting AIDS and malaria in developing countries, water management,
biodiversity, education,....
2 See for example the collective book edited by Portney and Weyant [31] on discounting. See also Arrow
et al. [1], Weitzman [36,37], Newell and Pizer [29] and Groom et al. [18].
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with its own journals and graduate courses. Those who want to join the quest are faced with
considerable obstacles. The literature has evolved mostly in continuous time, where stochastic
calculus reigns and partial differential equations spit fire. The knights in this literature are
fighting for different goals, which makes it often difficult to comprehend why the quest is
moving in certain directions.” This quest leads to the (preliminary) conclusion that the shape
of the yield curve is governed by the dynamics of the short term interest rate (and maybe a
few other stochastic factors) that may entails mean reversion together with temporary and
permanent shocks. Because the term structure is obtained by arbitrage using an exogenously
given dynamic process for the price kernel, this reasoning is usually not based on individual
preferences. It is therefore not an easy starting block to explain to public decision-makers how
much effort our generation should undertake to improve the welfare of future generations.

The aim of this paper is twofold. First, we exhibit the fundamental determinants of the
shape of the yield curve based on the preferences of the representative agent and on the
stochastic process of aggregate consumption in the economy. Second, we examine realis-
tic dynamic growth processes that are relevant to determine the very long discount rates.
We consider the classical Lucas’s [25] tree economy with an exogenous growth process to
examine these questions.

The efficient interest rate associated to time horizon t is decreasing in our willingness to
save in order to finance consumption at that date, which itself depends upon our expectations
about the growth of our incomes over [0, t]. Therefore, the term structure of interest rates
provides a rich set of information about these expectations. For example, when consumers
expect an increase in their future incomes, they want to cash this benefit immediately by
reducing their saving. This raises the equilibrium interest rate. This wealth effect relies on
the standard assumption that consumers want to smooth their consumption over time. It
explains why the yield curve is upward sloping when the representative agent expects an
accelerating growth rate in the future [13].

Among the many difficulties to extract testable hypothesis about the relationship between
the term structure and expectations about the future economic activity, the most important
one is due to uncertainty. Since Leland [24], we know that uncertainty about future incomes
raises the prudent consumers’ willingness to save. This precautionary effect tends to reduce
the interest rate. This implies for example that the anticipation of a deterministic reduction
in the volatility of growth yields an increasing yield curve [3]. It is interesting to examine
how does the accumulation of risk for longer time horizons influence the determination of
the corresponding interest rate. Because longer horizons mean larger expected consumption,
people want to save less for these better times. On the contrary, longer horizons also mean
more risk, which implies that consumers want to save more for these more uncertain times.
Which of these wealth and precautionary effects will dominate the other? If the wealth effect
dominates the precautionary effect, then the yield curve must be increasing.

The simplest case is when the growth of the economy follows a stationary random pro-
cess. In this case, both the expected log consumption and its variance increases proportionally
with the time horizon. It implies that the wealth effect and the precautionary effect exactly
compensate each other when the representative agent has a constant relative risk aversion
(CRRA). As is well-known (see for example Mankiw [27]), CRRA combined with an i.i.d.
consumption growth process implies that the yield curve is completely flat. In sections 3 and
4 of this paper, we show how the existence of serial correlations in the growth rate of the
economy affects the shape of the yield curve. We define two types of serial correlations. Posi-
tive first-degree stochastic dependence (FSD) occurs when an increase in the first subperiod
growth rate induces a first-degree stochastic improvement in the conditional distribution of
the growth rate in the second subperiod. Such a positive serial dependence in the growth of
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the economy tends to magnify the long-term risk on consumption relative to the short-term
risk. It implies that the prudent representative agent will want to rebalance her efforts towards
the longer time horizons, thereby tending to reduce long interest rates. This is formally shown
in section 3 in a much simpler and more intuitive way than traditionally done in the existing
literature. It is also more general in the sense that our result only requires that the represen-
tative agent be prudent. FSD dependence is the main feature of the two classical models of
the term structure, namely Vasicek [35] and Cox et al. [8,9].

There is positive second-degree stochastic dependence (SSD) in growth rates if an in-
crease in the first subperiod rate yields an increase in risk in the conditional distribution of
growth in the second subperiod. This tends to raise the skewness of the distribution of future
consumption. Ex ante, it reduces the expected marginal utility of wealth at that maturity if
the fourth derivative of the utility function is negative, a condition that is satisfied for CRRA
preferences. This tends to reduce the willingness to purchase more zero-coupon bonds asso-
ciated to long maturities, thereby raising their rate of return. This is proved in Sect. 4. Notice
that the main feature of the Cox–Ingersoll–Ross model is to add some SSD dependence in the
Vasicek model. The link of our results to these two classical models are made more explicit
in Sect. 5.

In Sect. 6, we examine two specific stochastic processes with positive FSD dependence that
are realistic representations of the uncertainty faced by Humanity in the very long run. The
first stochastic process for aggregate consumption has a drift that can take two possible values.
A switch from one drift to the other can occur at each period with a very small probability. This
is aimed at modeling the kind of event that we experienced with the industrial revolution at
the end of the eighteenth century, where the drift changed quite abruptly from the secular 0%
per year to 2% per year since then. Our model formalizes the risk of a switch in the opposite
direction— “The Limit to Growth”—due for example to the scarcity of natural resources or
to the extinction of scientific progresses. We show that the positive FSD dependence that this
stochastic process yields a strong negative effect on the rate at which we should discount
far-distant cash-flows. In the second model of long-term uncertainty inspired from Weitzman
[38], we assume that the drift is unique but unknown. As time goes by, one will use Bayes
rule to update the beliefs about the true value of the drift. This stochastic process also yields
positive FSD dependence — and thus decreasing discount rates—for the simple reason that
a good news in the short term is a good news for the secular distribution of growth.

2 The term structure

The preferences of the representative agent in the economy are represented by her utility
function u and by her rate of pure preference for the present δ. The utility function u on
consumption is assumed to be three times differentiable, increasing and concave. Let c̃t

denote consumption at date t . The equilibrium per period rate of return at date 0 for a zero-
coupon bond maturing at date t is denoted rt . To be in equilibrium, investing marginally
in such an asset should leave the expected discounted utility of the representative agent
unchanged. This condition is written as

e−δt Eu′ (̃ct ) ert t = u′(c0), (1)

which is the standard Euler equation for the consumption-saving problem. On the right-hand
side of this equality, u′(c0) is the welfare cost of reducing consumption by one monetary
unit, which is invested in the zero-coupon bond. The left-hand side is the welfare benefit that
such investment yields. Consumption at date t is increased by ert t , which yields an increase

123



The consumption-based determinants of the term structure of discount rates 85

in expected utility by Eu′ (̃ct ) ert t , which must be discounted at rate δ to take account of the
delay. The classical consumption-based pricing formula is obtained by rewriting condition
(1) as

rt = δ − 1

t
ln

Eu′(̃ct )

u′(c0)
. (2)

Two factors determine by how much the risk-free rate exceeds the rate of pure preference
for the present δ. The first factor is a wealth effect. If we expect to consume more in the
future, i.e., if Ec̃t > c0, the marginal utility of one more euro in the future is smaller
than the marginal utility of one more euro immediately: u′(Ec̃t ) < u′(c0). It implies that
−t−1 ln(u′(Ec̃t )/u′(c0)) is positive. This positive wealth effect is increasing in the expected
growth rate of consumption over the entire period [0, t] and in the rate at which marginal
utility is decreasing with consumption, which is measured by the index of relative risk aver-
sion R(c) = −cu′′(c)/u′(c). The intuition is that higher expectations about future incomes
reduces the willingness to save, thereby raising the equilibrium interest rate.

But, except when marginal utility is linear, Eu′(̃ct ) is not equal to u′(Ec̃t ), which intro-
duces a second factor to the determination of interest rates. When the representative agent is
prudent, i.e., when marginal utility is convex, the uncertainty surrounding future consump-
tion raises the expected marginal utility: Eu′(̃ct ) > u′(Ec̃t ). This raises the willingness
to save, thereby yielding a reduction of the equilibrium interest rate. This precautionary
effect goes opposite to the wealth effect. It is increasing in the riskiness of future consump-
tion and in the index of convexity of marginal utility, which is defined as relative prudence
P(c) = −cu′′′(c)/u′′(c). We can make these different factors more explicit by using second-
order Taylor approximations of u′(zt ) in the above equality. This technique yields

rt � δ + R(c0)
Ec̃t − c0

tc0
− 1

2
R(c0)P(c0)

V ar (̃ct/c0)

t
, (3)

where the three terms in the right-hand side measure respectively the impatience effect, the
wealth effect and the precautionary effect. This approximation is exact for the instantaneous
rate r0.

The term structure of interest rate is determined by how these two conflicting factors are
compounded over time. A more distant future usually yields a larger expected consump-
tion and a larger uncertainty. The risk-averse and prudent representative agent’s willingness
to purchase zero-coupon bonds with that long maturity is reduced by the larger expected
consumption, and is increased by the larger uncertainty. Therefore, as suggested by approxi-
mation (3), an increasing (decreasing) yield curve is obtained if the wealth effect becomes
more (less) dominant compared to the precautionary effect when considering longer time
horizons.

To illustrate, let us consider a simple case. Suppose that u(c) = c1−γ /(1 − γ ), which
implies that R(c) = γ and P(c) = γ + 1 for all c. Suppose also that the logarithm of
consumption follows a stationary Brownian motion:3

d ln ct = µdt + σdzt , (4)

where µ and σ are two scalars measuring respectively the mean and standard deviation of
the change in log consumption.

3 Using Ito’s Lemma, this is equivalent to assume that dc/c = (µ + 0.5σ 2)dt + σdz.
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Proposition 1 Suppose that relative risk aversion is a constant γ and that the log of
consumption follows a stationary Brownian motion with trend µ and volatility σ. Then,
the yield curve is flat with rt = r0 = δ + γµ − 0.5γ 2σ 2 for all t .

Proof Because u′(c) = c−γ , we have that

Eu′(̃ct )

u′(c0)
= E exp

[−γ (ln c̃t − ln c0)
]

By assumption, ln c̃t − ln c0 is normally distributed with mean µt and variance σ 2t. We can
thus rewrite the above equation as

Eu′(̃ct )

u′(c0)
= 1

σ
√

2π t

∫

exp(−γ z) exp

(

− (z − µt)2

2σ 2t

)

dz.

This can be rewritten as

Eu′(̃ct )

u′(c0)
= exp

(

−γ

(

µt − γ σ 2t

2

)) [

1

σ
√

2π t

∫

exp

(

− (z − (µt − γ σ 2t))2

2σ 2t

)

dz

]

.

The bracketed term is the integral of the normal density function with mean µt − γ σ 2t and
variance σ 2t . This equals unity. Thus we obtain that

Eu′(̃ct )

u′(c0)
= exp

[−γ
(

µt − 0.5γ σ 2t
)]

.

Thus, using equation (2) yields4

rt = δ + γµ − 0.5γ 2σ 2. (5)

��
This so-called extended Ramsay rule is equivalent to those obtained by Mankiw [27],

Hansen and Singleton [19], Breeden [10] and Campbell [4]. It shows that when relative
risk aversion is constant (CRRA) and the growth rate of the economy follows a stationary
Brownian motion, a longer time horizon yields an increase in the wealth effect and an increase
in the precautionary effect that exactly compensate each other, yielding a flat yield curve.

Gollier [15,16] characterized the conditions on preferences that imply a monotone yield
curve under the assumption of a stationary Brownian motion. For example, he shows that
increasing relative risk aversion implies an increasing yield curve if the probability of
recession is small enough. In this paper, we follow a more standard strategy which consists
in relaxing the assumption of a stationary Brownian motion. This is relaxed by assuming that
the mean µ and/or the volatility σ of the consumption growth process are path-dependent,
i.e., that the growth at time t depends upon the growth in the periods preceding t. In a word,
we assume that future growth rates are predictable. The typical methodology in the literature
on the term structure of interest rates is to assume the following time series model:

d ln ct = µ(s)dt + σc(s)dzt ,

ds = g(s)dt + σs(s)dzt .

4 We can reconcile Eqs. (3) and (5) by observing that the growth rate of expected consumption equals
µ + 0.5σ 2. This implies that Eq. (5) can be rewritten as

rt = δ + R
d Ect

ct
− 0.5R Pσ 2.

This proves that approximation (3) is exact in this case.
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Both the mean and the volatility of the growth rate of the economy are affected by a state
variable (also called a “factor”) s that itself follows a potentially non-stationary Brownian
motion. The special case of a deterministic process for the state variable (σs = 0) is easy to
treat using the above integration method. For example, when σc(s) ≡ σ, we easily obtain in
the CRRA case that

rt = δ + γ m(t) − 0.5γ 2σ 2, (6)

where m(t) = t−1
∫ t

0 µ(s(τ ))dτ is the mean change in log consumption in period [0, t], and
s(τ ) is the solution of the differential equation s′ = g(s) with initial condition s(0) = s0.
Only the wealth effect is affected by the deterministic change in the expectation µ about
the growth rate of the economy. These changes in expectation explain why the yield curve
is usually not flat for short and medium time-horizons. For example, the expectation of an
accelerating growth implies an increasing yield curve. Observe from (6) that the unpredictable
shocks in changes in log consumption have no effect on the shape of the yield curve. It only
shifts it downwards.

The complexity of the theory on the yield curve comes from the stochastic component
of the motion of the state variable s (σs �= 0). In this paper, we isolate two effects of these
predictable changes in expectations. Suppose first that the volatility σc of the growth rate of
the economy is constant. When σc and σs have the same sign, and when µ is increasing in s,
the expected future growth rate of consumption is positively correlated with the short-term
growth rate. More precisely, an increase in the stochastic component dzt of the short-term
growth yields a first-degree stochastic dominant shift in the future growth rate. In section 3,
we examine the effect of this positive correlation on the shape of the yield curve. Alternatively,
suppose that the expected growth rate µ of the economy is state-independent, and that the
volatility of the growth rate is increasing in the state variable. Then, if σc and σs have the
same sign, the volatility of the future growth rate of the economy is positively correlated with
the short-term growth rate. More precisely, an increase in the growth rate dzt in the short
run yields a second-degree stochastic shift in the future growth rate. We examine the effect
of this type of statistical relations on the shape of the yield curve in Sect. 4.

3 First-degree stochastic dependence

In this section, we consider an arbitrary stochastic process for c̃t . We examine the effect
of positive serial dependence in changes in consumption on the interest rate associated to
maturity T . To do so, let us split period [0, T ] into two subperiods [0, t] and [t, T ]. Consider
a random vector (̃x1, x̃2) where x̃1 and x̃2 denote the change in consumption respectively
in period [0, t] and [t, T ]. It implies that consumption at date T equals c0 + x̃1 + x̃2. Let
F denote the distribution function of (̃x1, x̃2), and let F1 and F2 denote, respectively, the
marginal distributions of x̃1 and x̃2. Let also F2|1 be the conditional distribution of x̃2 :
F2|1(x1, x2) = Pr[̃x2 < x2 | x̃1 = x1]. We suppose that this distribution function exists.

Definition 1 Consider a pair of random variables (̃x1, x̃2). We say that there is positive FSD
dependence between x̃1 and x̃2 if F2|1 is nonincreasing in x1 for all x2.

In other words, an increase in x1 generates a first-order stochastic dominant shift in the
conditional distribution of x̃2. In the statistical literature, this notion is referred to as the
“stochastic increasing positive dependence”, because x̃2 is more likely to take on larger
value when x1 increases (see for example Joe [20]). Milgrom [28] uses this concept to define
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the notion of a good news. An example of stochastic process that satisfies the FSD property
is the AR(1) process x̃2 = φ x̃1 + ε̃ with a positive φ.

The long-term interest rate in such an economy equals

rT = δ − 1

T
ln

Eu′(c0 + x̃1 + x̃2)

u′(c0)
. (7)

We want to compare this rate to the one that would prevail in an economy with the same
marginal distributions for x̃1 and x̃2, but with no serial dependence between them. In the
economy without any serial dependence, the long-term interest rate would equal

r i
T = δ − 1

T
ln

Eu′(c0 + x̃1 + x̃ i
2)

u′(c0)
, (8)

where (̃x1, x̃ i
2) is a vector of independent random variables with distribution F1 and F2,

respectively. Interest rate r i
T would be what one would obtain from the calibrated model by

assuming independence and by using the observed variance of annual changes in consumption
as the estimation of V ar(�c). We want to determine the conditions under which rT is smaller
than r i

T , when x̃2 exhibits positive FSD dependence with respect to x̃1. There is a simple
intuition for why this should be the case. The existence of a positive dependence in the
changes in consumption tends to magnify the long-term risk compared to short-term risks.
This induces the prudent representative agent to purchase more zero-coupon bonds with a
long maturity, thereby reducing the equilibrium long-term rate. Comparing (7) and (8) implies
that rT is smaller than r i

T if

Eu′(c0 + x̃1 + x̃2) ≥ Eu′(c0 + x̃1 + x̃ i
2). (9)

The following lemma is useful to examine this problem.

Lemma 1 Consider a differentiable bivariate function h . The following two conditions are
equivalent:

1. For any pair of random variables (̃x1, x̃2) that satisfies positive first-order dependence,
we have that

Eh(̃x1, x̃2) ≥ Eh(̃x1, x̃ i
2) (10)

2. h is supermodular, i.e., ∂h/∂x2 is increasing in x1.

Proof See the Appendix.5

Tchen [34] showed a closely related result: If condition (10) is satisfied for all supermo-
dular functions, then F(x1, x2) ≤ F1(x1)F2(x2) for all (x1, x2), i.e., (̃x1, x̃2) are “positive
quadrant dependent”, a concept weaker than FSD dependence.6 Shaked and Shanthikumar
[33] generalize these properties of “supermodular orders” to more than two random variables.

Applying this lemma to condition (9) requires using function h(x1, x2) = u′(c0+x1+x2).
It is supermodular if the representative agent is prudent.

Proposition 2 The presence of any positive first-order stochastic dependence in changes in
consumption reduces the long-term risk-free rate if and only if the representative agent is
prudent.

5 We can also prove that if h is supermodular, then condition (10) is satisfied if and only if (̃x1, x̃2) exhibits
positive FSC.
6 See Joe [20], Theorem 2.3.
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This result confirms our intuition: positive FSD dependence in changes in consumption
raises the riskiness of consumption at date T, without changing its expected value.
Under prudence, this reduces the interest rate associated to maturity T . It tends to gene-
rate a downward-sloping yield curve.

It would have been more fashioned to define x̃1 and x̃2 as the (conditional) changes in
log consumption over respectively subperiods [0, t] and [t, T ]. This change the nature of the
comparative static exercise because the expectation of the log consumption is not the same as
the log of the expectation of consumption. Because c̃T = c0ex̃1+x̃2 when xi denotes the change
in log consumption, we can use Lemma 1 to obtain the following alternative result. Observe
that h(x1, x2) = u′(c0ex1+x2) is supermodular if relative prudence P(c) = −cu′′′(c)/u′′(c)
is larger than unity.

Proposition 3 The presence of any positive first-order stochastic dependence in changes in
log consumption reduces the long-term risk-free rate if and only if relative prudence is larger
than unity.

Similarly, the long-term risk-free rate is increased by any negative FSD dependence if
and only if relative prudence is larger than unity. Observe that when relative risk aversion is
constant (u(c) = c1−γ /(1 − γ )), relative prudence is also constant and is equal to relative
risk aversion plus one. Thus, CRRA implies that relative prudence is always larger than unity.
When relative risk aversion is constant, positive (negative) FSD dependence in changes in log
consumption always reduces (raises) the long-term risk-free rate relative to the benchmark
of independent growth rates.

Corollary 1 Suppose that u is a power function and that changes in log consumption (̃x1, x̃2)

have the same marginals and exhibit positive first-order stochastic dependence. It implies
that the yield curve is decreasing: rT ≤ rt .

Proof It is easy to check that the yield curve is flat (r i
t = r i

T ) in the economy with the
independent growth rate (̃x1, x̃ i

2). Because rt = r i
t and rT ≤ r i

T from Proposition 3, we
obtain that rT ≤ rt in the economy with the positively correlated growth rates (̃x1, x̃2). ��

Notice that positive FSD dependence alone is not sufficient to obtain a decreasing yield
curve. The above corollary relied on the additional assumption that relative risk aversion is
constant. More generally, going back to Proposition 3, relative prudence must be larger than
unity to obtain that positive FSD influences the long rate downwards. It is easy to exhibit
utility functions that are concave but whose relative prudence is not larger than unity. For
example, the simplest departure of CRRA with u(c) = (c + k)1−g/(1 − g), k > 0, implies
a relative prudence P(c) = (1 + g)c/(c + k). For such a concave utility function, relative
prudence tends to zero with c. At early stages of its development, this economy may have an
upward sloping yield curve even if growth rates are positively FSD dependent. This comes
from an implicit wealth increase. Observe that in spite of the fact that the dependence of
(̃x1, x̃2) does not affect the expected cumulative change in log consumption , the expected
cumulative change in the level of consumption is increased by the presence of positive FSD
dependence. This can be checked by using function h(x1, x2) = ex1+x2 in the Lemma.
This implicit increase in expected future incomes reduces the willingness to save for the
long term, and it requires an increase in the corresponding interest rate. Therefore, one
needs a sufficiently strong precautionary effect to dominate this opposite wealth effect. By
Proposition 3, it requires that relative prudence be larger than unity.
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4 Second-degree stochastic dependence

A natural extension of this work is to examine economies where the changes in consumption
x̃1 and x̃2 are statistically related according to the positive second-degree stochastic de-
pendence (SSD) property. This is the case when an increase in the first period change in
consumption raises the risk associated to the second period change in consumption in the
sense of Rothschild and Stiglitz [32]. In other words, the volatility of economic growth is
increased after a boom, and it is reduced after a downturn. An example of such heteroskedastic
process is x̃2 = µ + x̃1ε̃, with E ε̃ = 0 and ε̃ independent of x̃1.

Definition 2 Consider a pair of random variables (̃x1, x̃2). We say that there is a positive
SSD dependence between x̃1 and x̃2 if q(x2 | x1) = ∫ x2 F2|1(x1, y)dy is non-decreasing in
x1 for all x2, and if E [̃x2 | x1] is independent of x1.

We want to determine the effect of such statistical relationship in changes in consump-
tion over time on the long-term interest rate. As in the previous section, we compare an
economy (̃x1, x̃2) with positive SSD dependence with another one (̃x1, x̃ i

2) in which changes
in consumption are serially independent with the same marginals. The following Lemma is
helpful to solve this problem.

Lemma 2 Consider a twice differentiable bivariate function h . The following two conditions
are equivalent:

1. For any pair of random variables (̃x1, x̃2) that satisfies positive second-order dependence,
we have that

Eh(̃x1, x̃2) ≥ Eh(̃x1, x̃ i
2) (11)

2. −∂h/∂x2 is supermodular, i.e., if ∂2h/∂x2
2 is non-increasing in x1.

Proof See the Appendix.

Notice that if we apply this lemma to function h(x1, x2) = v(x1 + x2) for any function
v with a convex first derivative, we obtain the result that, under positive SSD, x̃1 + x̃2 is a
downside reduction in risk with respect to x̃1 + x̃ i

2, as defined by Geiss, Menezes and Tressler
[14]. It implies that these two sums have the same mean and the same variance, but the first
has a larger skewness than the second. This is not a surprise since a downside reduction in
risk is obtained by transferring zero-mean lotteries from low wealth states to larger wealth
levels, as explained by Eeckhoudt et al. [12].

Applying this to the term structures given by (7) and (8) with h(x1, x2) = u′(c0 +x1 +x2),

we obtain the following Proposition.

Proposition 4 The presence of any positive second-degree stochastic dependence in changes
in consumption raises the long-term risk-free rate if and only if the third derivative of the
utility function is non-increasing.

Observe that condition u′′′′ ≤ 0 – which is sometimes referred to as “temperance” – is quite
natural. It is necessary for the intuitive property that absolute prudence −u′′′/u′′ is decreasing
in wealth, as explained by Kimball [21]. Moreover, all CRRA functions satisfy this condition.
There is a simple intuition for why a positive SSD in�c should raise the equilibrium long-term
rate. Indeed, a positive SSD implies an increase in skewness of c̃T = c0 + x̃1 + x̃2. When
u′′′′ is negative, the increased skewness in c̃T reduces Eu′(̃cT ), which yields a reduction
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in the demand for the zero-coupon bond which matures at T . This raises its equilibrium
rate of return. The assumption that the fourth derivative of the utility function is negative is
compatible with decreasing prudence [21], and with risk vulnerability [17], two very intuitive
behavioral assumptions.

As in the previous section, we could have defined x̃1 and x̃2 as the changes in log consump-
tion. We should then use Lemma 2 with h(x1, x2) = u′(c0ex1+x2). This yields the following
result.

Proposition 5 Suppose that u is four times differentiable. The presence of any positive
second-order stochastic dependence in changes in log consumption raises the long-term
risk-free rate if and only if f (c) = u′′(c) + 3cu′′′(c) + c2u′′′′(c) is uniformly negative.

When relative risk aversion is constant, f (c) equals −γ 3c−γ−1 which is uniformly
negative. This implies that a positive SSD dependence in � ln c always raises the long-term
interest rate for that family of utility functions. This tends to generate an upward-sloping yield
curve. The proof of the following corollary parallels the one of Corollary 1 and is therefore
skipped.

Corollary 2 Suppose that u is a power function and that changes in log consumption (̃x1, x̃2)

have the same marginals and exhibit positive second-order stochastic dependence. It implies
that the yield curve is increasing: rT ≥ rt .

Notice that condition f ≥ 0 in Proposition 5 adds the two terms u′′ and 3cu′′′ to condition
u′′′′ < 0 in Proposition 4. The first additional term is due to the fact that making changes in
log consumption serially independent raises the expected consumption at T . This reinforces
the initial reason for a longer long-term rate. Also, it yields an increase in the second moment
of c̃T . Under prudence, this tends to reduce the long-term rate. This explains the opposite
term 3cu′′′ > 0 in the definition of function f . As said above, the two negative terms must
always dominate this positive term in the case of CRRA.

5 Relations with the existing literature on the term structure

Our aim in this section is not to provide a survey of the enormous existing literature on the
term structure of interest rates. Rather, we want here to illustrate our results by comparing
them to those of the two most famous time series models used in this literature: Vasicek
[35] and Cox et al. [8,9]. In most existing models of the term structure, the state variable is
the instantaneous interest rate r0. For example, in the model of Vasicek [35], the time series
model for the stochastic discount factor 
(t) = e−δt u′(ct )/u′(c0) takes the following form:

d




= −r0dt − σ
dz

dr0 = φ(r − r0)dt + σr dz.

The term structure is then obtained by rewriting the equilibrium condition (1) as rt =
−t−1 ln E
t . Parameter σr is the conditional volatility of the instantaneous interest rate.
Parameter φ controls mean reversion: if φ = 0, the instantaneous risk-free rate r0 exhibits
no tendency to return to any specific value. When φ > 0, the instantaneous rate r0 is expected
to return to its mean r at rate φ. With a typical value of φ = 0.3 year−1, 7 this yields a half-life

7 For example, Backus et al. [2] consider φ = 0.024 month−1.
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time of 2.3 years for a shock on the instantaneous interest rate. Assuming that u′(c) = c−γ ,
this model can be rewritten as8

d ln c = r0 − δ + 0.5σ 2



γ
dt + σ


γ
dz (12)

dr0 = φ(r − r0)dt + σr dz.

Campbell [4] examines a more general (discrete) version of this model in which the first
difference of the log endowment follows a univariate, stationary stochastic process with a
constant drift. We recognize in Eq. (12) various elements affecting the yield curve. First,
we observe that the conditional volatility of the growth rate of consumption is a constant
σ
/γ . This excludes the existence of SSD dependence. Second, when φ �= 0, there is a
deterministic component in the expectations about the future growth of the economy. When
the current level of r0 is below r , one anticipates an accelerating economic growth, which
makes the yield curve increasing for short and medium maturities. In fact, when there is no
serial dependence (σr = 0), using Eq. (6) yields

rt = r + (r0 − r)
1 − e−φt

φt
(13)

The mean yield curve, which is obtained by taking r0 = r , is completely flat in that case.
Thus, a non-zero slope to the mean yield curve can be obtained only by introducing some
permanency to shocks on ln c. Indeed, when σr �= 0 and has the same sign as σ
, there is
positive FSD dependence in the time series of � ln c. As claimed by Proposition 3, this tends
to reduce the long-term interest rates, thereby yielding a reduction in the slope of the yield
curve. This is confirmed by the analytical solution obtained by Vasicek [35] which adds a
third term υt in the right-hand side of (13), with υt being negative and decreasing in t when
σrσ
 is positive.9 In order to explain the upward-sloping mean yield curve, as documented
for example by Backus, Foresi and Telmer [2], one needs to have negative FSD dependences
in � ln c. Assuming without loss of generality that σr is positive, this requires that σ
/γ

be sufficiently negative. This sheds light on why “a little experimentation tells us that σ


governs the average slope of the yield curve, with negative values required to produce an
upward slope we observe in the data” (Backus et al. [2]).

The Cox–Ingersol–Ross (CIR) model adds a square root terms in the volatility, which
makes it time-varying:

d ln c = r − δ + 0.5σ 2



γ
dt + σ


√
r

γ
dz (14)

dr = φ(r − r)dt + σr
√

rdz.

8 By Ito’s Lemma, the reader can check that

−δdt − γ d ln c = d ln 
 = d




− 0.5σ 2


dt.

9 Vasicek [35] obtained

υt =
[

σ 2
r

2φ2 + σr σ


φ

] [

1 − e−φt

φt
− 1

]

+ σ 2
r

4φ3

(

1 − e−φt
)2

t
.
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Fig. 1 The variance ratio for the log real per capita GNP, 1869–1986. (Source: Cochrane [5])

This implies that a positive shock on the state variable r increases both the short term expected
growth of the log consumption and its future volatility. This yields a positive SSD dependence
of � ln c. This captures the fact that higher interest rates seem to be more volatile. As claimed
in Proposition 5, this positive SSD in � ln c generates an unambiguous increase in the long-
term rate compared to what is obtained in Vasicek’s model. However, as explained for example
by Backus et al. [2], the sophistication introduced in the CIR model does not change the shape
of the yield curve markedly.

We hereafter focus on quantifying the effect of FSD dependences. What do we know about
the time series of changes in log consumption? Following Cochrane [5] and Cogley [7], let
us define the variance ratio as

V (t) = t−1V ar(ln c̃t − ln c0)

V ar(ln c̃1 − ln c0)
.

The variance ratio associated to time horizon t equals the variance of the change in log
consumption at horizon t divided by t times the variance of one year changes in log consump-
tion. V (t) provides a relative measure of the uncertainty associated to ln c̃t | c0. In the case
of serially independent � ln c, this variance ratio is uniformly equal to unity. V > 1 indicates
a positive FSD dependence in � ln c, whereas V < 1 indicates a negative FSD dependence.
Cochrane [5] estimated V (t) for t = 1, . . . , 30 by using data on the log real per capita GNP
in the United States, 1869–1986. Figure 1 summarizes his estimates. The per period risk
attached to time horizons less than 3 years is increasing. This comes from the positive serial
dependence of growth at high frequency. On the contrary, V is decreasing in t for time hori-
zons longer than 3 years. It tends to roughly one-third. Long horizons entail only one-third
per period risk than short horizons, when risk is measured by the variance of log consump-
tion. This means that shocks to U.S. GNP are mostly temporary. Thus, in the US context,
� ln c exhibits negative FSD dependences for long maturities. According to Proposition 3,
assuming CRRA, this should generate an upward-sloped unconditional yield curve.

Taking equation (5) as an approximation because c̃T | c0 is generally not lognormal, we
can use Cochrane’s V ratio to obtain the following formula for the yield curve:

rt = δ + γµ − 0.5γ 2σ 2V (t), (15)

where σ =
√

V ar ln c̃1 | c0 is estimated to be 6.1% per year by Cochrane. Let us fix the
expected growth rate of the economy to µ = 1.8% per year, which is the average growth
rate of real per capita consumption in the United States over the period 1889–1978 [22]. In
Fig. 2, we draw the yield curve rt − δ computed from Eq. (15) for four different degrees
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Fig. 2 The average yield curve using Cochrane’s ratio

of relative risk aversion: γ = 1, 2, 4 and 6. The upward-sloping shape of the average yield
curve is familiar. Using US monthly data from January 1952 to February 1991, Backus
et al. [2] estimated the mean 1-month yield to be 5.314%, going up to 6.693% for the yield
corresponding to a 10-year maturity.

Cogley [7] showed that the pattern of the variance ratio exhibits much differences across
countries. In fact, the evidence indicates that the relative stability of long-term growth is
unique to US. Using annual real per capita GDP, 1871–1985, he computed the variance ratio
V (20) for a 20 years horizon. He found 0.77 for Canada, which means that, as in the US but
at a smaller degree, this country should have a mean 20-year maturity yield that is larger than
the short-term yield. He also found 0.97 for Sweden, 1.03 for UK, and 1.09 for Denmark. The
yield curve should be almost flat in these countries. But he also obtained 1.4 for Australia,
1.84 for France and 2.02 for Italy. In these countries, the per-period growth risk is increasing
with time horizon. It implies that the long-term interest rate should be smaller than the short-
term one. For France, using Maddison [26], we estimated µ = 1.97% and σ = 8.05%. For
γ = 2, it makes a risk-free rate rt equaling δ + 2.66% for the short term, and δ + 1.58% for
the long run. For γ = 4, it generates δ + 2.76% and δ − 1.54% respectively for the short
term and for the long term.

6 What about far-distant maturities?

As explained in the introduction, our aim is to determine whether the discount rates that we
should use for very long maturities (in the hundreds and thousands years) are smaller than
the discount rates used for the more standard maturities considered in finance and that can
be observed on financial markets. Whereas most of the existing literature provides a positive
analysis of the term structure, our aim in this section is more normative. As explained earlier
in this paper, the evidence that there is some mean-reversion in consumption growth with a
half-life of 2.3 years is important to explain the shape of the yield curve observed on financial
markets. It is of course irrelevant to determine the rate that we should use to discount the
cash-flows associated with the consequences of, say, global warming or nuclear wastes in
200 years. In this section, we show how the results presented in Sects. 3 and 4 are useful to
make recommendations for such long time horizons.

We examine two possible dynamic processes governing the long-term growth of the eco-
nomy. The first one involves Poisson jumps, whereas the other one exhibits some parameter
uncertainty.
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6.1 Two-state jumps in the growth of consumption

We reproduced in Table 1 the estimation by DeLong [11] of the worldwide GDP per capita
over the last 7 millennia. A striking feature of the economic growth that we observed over
this essential period of homo sapiens is the jump in the average growth rate that has been
experienced at the end of the eighteenth century. The debate on what Society should do for
the future is much influenced by this fact, and by the idea that in the future, economic growth
could go back to its secular zero level. The arguments for and against the existence of such
risk are based on the way we interpret what happened at the end of the eighteenth century.
Models abound that rely on human capital, availability of natural resources, specialization of
tasks,.... We will not go into this controversy. As earlier in this paper, the economic growth
process will not be endogenized.

We assume that the economy can be in one of two observable states. In the low-growth
state, the drift of log consumption is µ1 and its volatility is σ. In the high-growth state, the
drift of log consumption is µ2 > µ1, but the volatility remains the same. The economy
switches from one state to the other each time a Poisson event occurs. In discrete time, the
model is written as

ln c̃t+1 = ln ct + µt + σ ε̃t

µt+1 = (µt , 1 − π;µ
′
t , π),

where µ′
t is µ2 if µt = µ1, otherwise µ′

t = µ1. We assume that ε̃t is standard normal with
no serial dependency. When the drift is µ1 (resp. µ2) in period t, there is a probability π

that it will switch to drift µ2 (resp. µ1) in the next period. We suppose that the probability of
switching is very small, which implies that there is a lot of persistence in shocks. Of course,
this yields FSD dependence in growth rates. There is positive FSD dependence as soon as
π is less than 0.5. Thus, applying Proposition 3 implies that the far-distant discount rate is
smaller than in the equivalent economy with a serially independent growth process. In Fig. 3,
we describe the yield curve in the following economy: In the high-growth state, the drift
of log consumption is µ2 = 2% per year, whereas it is µ1 = 0% in the low-growth state.
The critical parameter is the switching probability π per year. We assume that the switching
probability π per year is 1%. Relative risk aversion is assumed to be constant and equal to
γ = 2. We consider a rate δ of pure preference for the present and a conditional volatility σ

Table 1 Worldwide GDP per
capita (in year-2000 international
dollars) and annualized growth
rate (in %). Source: DeLong [11]

Year GDP per capita Annualized growth rate (%)

−5000 130

−1000 160 0.005

1 135 −0.017

1000 165 0.020

1500 175 0.012

1800 250 0.119

1900 850 1.224

1950 2030 1.741

1975 4640 3.307

2000 8175 2.265
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Fig. 3 The yield curve with a two-state Poisson switch process for the growth of log consumption, in the
high-growth state

of log consumption such that δ−0.5γ 2σ 2 = 0.10 We assume that the economy is currently in
the high-growth state. Figure 3 also describes the yield curve in the equivalent economy with
a serially independent growth process. The details of the computational method generating
these two yield curves are given in the Appendix. Whereas the discount rate is 4% in the
“short” term, it goes down to 1.03% for cash-flows with a 500-year maturity.

6.2 A model with parameter uncertainty

As invoked in the so-called Peso-problem, the absence of sufficiently large data to estimate
the long-term growth process of the economy implies that the parameters controlling the
growth process are uncertain and subject to learning in the future. Weitzman [38] shows
that, under CRRA and geometric Brownian motion, the uncertainty surrounding the true
drift of log consumption justifies selecting a smaller rate to discount distant cash-flows. In
this section, we explain this phenomenon and we provide a more general model than in
Weitzman [38]. The intuition for why the uncertainty surrounding the drift of the growth
process justifies selecting a smaller long discount rate is immediate from Proposition 2.
Indeed, the observation of a high growth in the short run induces the representative agent to
revise her expectations about the distribution of growth upwards. Thus, Bayesian learning
generates positive FSD dependence in the perceived growth process. This magnifies the
long-term risk, thereby inducing the prudent representative agent to make more effort for
the distant future. As shown by Proposition 2, this result requires no other restriction on
preferences than prudence.

We suppose that the growth process is stationary. Let x̃(θ) denote the per-period change in
log consumption, conditional to parameter θ . The current prior beliefs of the representative
agent are described by the distribution of random variable ˜θ . Under CRRA preferences, the
current yield curve takes the following form:11

rt = δ − 1

t
ln Eα(˜θ)t , (16)

10 As usual, considering other values for δ and σ would just shift the yield curve vertically.
11 In the economy with serial independence, we just have r̂t = δ − ln Eα(˜θ).
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where function α is defined as

α(θ) = Ee−γ x̃(θ). (17)

Using Jensen’s inequality, we directly get the following result, which is related to
Proposition 3.

Proposition 6 Suppose that the representative agent has CRRA preferences, and that the
process of log consumption is stationary with an unknown parameter θ . Under such circum-
stances, the socially efficient discount rate rt is non-increasing with time horizon t. It tends
to the smallest possible rate minθ [δ − ln α(θ)] when t tends to infinity.

Proof Observe first that function g(x) = x ln x is convex. Then, using Jensen’s inequality,
we have that

t2 E
[

α(˜θ)t ] ∂rt

∂t
= [

Eα(˜θ)t ] [

ln Eα(˜θ)t ] − E
[

α(˜θ)t ln α(˜θ)t ]

is nonpositive. Thus, rt is non-increasing in t. Moreover, as is well-known, when t tends to
infinity,

[

Eα(˜θ)t
]1/t

tends to maxθ α(θ), which implies that rt tends to δ − ln maxθ α(θ).

��
Notice that rt is strictly decreasing in t as soon as there exists two values of the parameter,

θ and θ ′ such that α(θ) �= α(θ ′). This result and its proof is reminiscent—but is conceptually
different—of a recommendation in Weitzman [38] for why “the far-distant future should be
discounted at its lowest possible rate”. Notice also that the above result does not require any
condition on the distribution of changes in log consumption x̃(θ), or on the prior distribution
of parameter ˜θ . Weitzman [38] assumes that x̃(θ) is normal with a known volatility σ, which
implies that α(θ) = exp(−γµ(θ) + 0.5γ 2σ 2). It implies in turn that the discount rate tends
to δ− 0.5γ 2σ 2 + γ minθ µ(θ). Because he also assumes that µ(˜θ) is normally distributed,
the discount rate goes to minus infinity for large maturities under this specification!12

More realistic specifications of the per-period growth process and/or of the prior beliefs
are thus welcomed. Equations (16) and (17) provide this simple and flexible framework.
Consider for example the following numerical illustration. The relative risk aversion of the
representative agent equals γ = 2. The change in log consumption is normal with conditional
standard deviation σ(θ) = 6.1%, whereas we assume that δ − 0.5γ 2σ 2 = 0. The drift µ

is unknown, but it is either 3% or 0%. The prior belief is that there is a 2/3 probability that
the true drift is 3%, yielding an expected drift of 2%. If it would be 3% for sure, the yield
curve would be flat at 6%, whereas it would be equal to 0% in the low-growth scenario. In
Fig. 4, we draw the yield curve given the current parameter uncertainty. The learning process
induces Society to use today a 0.22% rate per year to discount cash-flows realized in 500
years, whereas a discount rate of 4.0% per year is used for immediate benefits and costs.

7 Conclusion

A correct assessment of how much Society should invest for its own future is central to
economic analysis. Many of us are now cooperating with various organizations to analyze
environmental projects whose costs and benefits are spread over hundreds of years, in par-
ticular those linked to global warming and nuclear waste disposals. We know that the most

12 If µ(˜θ) is normally distributed with mean µ and variance σ 2
0 , we obtain that rt = δ+γµ−0.5γ 2(σ 2+tσ 2

0 )

which decreases linearly with the time horizon.
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Fig. 4 The yield curve with
parameter uncertainty
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important parameter when using cost-benefit analysis for such long-lasting projects is by
far the discount rate. We as a profession have not been very good in proposing an agreed-
upon discount rate for the long term. Weitzman [38] asked to more than 2000 professional
Ph.D.-level economists about their own recommendation for the discount rate to be used
for far distant real cash-flows. He reported a large disagreement on this matter. Moreover,
he obtained a sample mean at around 4% per year, which is quite larger than the secular
post-industrial-revolution real short-term interest rate of 1% Kocherlakota [22]. Economists
seem to favor an upward-sloping discount yield curve.

The main message of the paper is that the shape of the term structure of discount rates
depends essentially on our view about how the uncertainty on future aggregate consumption
evolves with the time horizon. If this uncertainty increases at a rate larger than what would
be obtained by a pure random walk for the per-period growth rate, the notion of prudence
justifies using a downward-sloping term structure. This is the case when per-period growth
rates exhibit positive first-degree stochastic dependence, as is the case with persistent shocks
to growth rates, or when the drift of aggregate consumption is unknown. Our calibrations
induce us to recommend using an average yearly discount rate of 4% for short-term cash-
flows, and a yearly discount rate between 1 and 2% for time horizons exceeding 400 years.

Appendix

Proof of Proof of Lemma 1 Define function K as: K (x1, x2) = F2|1(x1, x2)−F2(x2), where
F2|1 is the conditional distribution of x̃2 and F2 is its marginal distribution. For 2 
⇒ 1, we
need to prove that

X = Eh(̃x1, x̃2) − Eh(̃x1, x̃ i
2) =

∫∫

h(x1, x2)d [F(x1, x2) − F1(x1)F2(x2)]

is positive. For any given x1, integration by parts yields
∫

h(x1, x2)d [F(x1, x2) − F1(x1)F2(x2)] = −
∫

∂h(x1, x2)

∂x2
K (x1, x2)dx2d F1(x1). (18)

It implies that

X =
∫ [∫

−∂h(x1, x2)

∂x2
K (x1, x2)d F1(x1)

]

dx2,
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or equivalently,

X =
∫

E

[

−∂h(̃x1, x2)

∂x2
K (̃x1, x2)

]

dx2. (19)

Observe now that for any x2, −∂h/∂x2 is decreasing in x1 because h is supermodular.
Moreover, K is decreasing in x1 for all x2 by definition of positive FSD. Therefore for any
x2, the covariance rule13 implies that

E

[

−∂h(̃x1, x2)

∂x2
K (̃x1, x2)

]

≥ E

[

−∂h(̃x1, x2)

∂x2

]

E [K (̃x1, x2)] = 0.

Since the integrand in (19) is positive for all x2, so is the integral X . This proves that 2 ⇒ 1.
For 1 
⇒ 2, suppose by contradiction that −∂h/∂x2 be increasing in x1 in a neighborhood

A of some (x1, x2). Using a pair of random variables satisfying positive FSD whose support
is in A would generate X ≤ 0, a contradiction. ��
Proof of Lemma 2 We limit the proof to sufficiency. Let k(x1, x2) denote

∫ x2 K (x1, y)dy.
Integrating by parts the integral in the right-hand side of Eq. (18) yields

∫

h(x1, x2)d K (x1, x2) = −∂h(x1, x2)

∂x2
lim

y→∞ k(x1, y) +
∫

∂2h(x1, x2)

∂x2
2

k(x1, x2)dx2

(20)

for all x1. By construction, we have that

lim
y→∞ k(x1, y) =

∫

(

F2|1(x1, y) − F2(y)
)

dy = E [̃x2 | x1] − E [̃x2] = 0

since the expectation of x̃2 is assumed to be independent of x1. Thus we can use (20) to write

X = Eh(̃x1, x̃2) − Eh(̃x1, x̃ i
2) =

∫

E

[

∂2h(̃x1, x2)

∂x2
2

k (̃x1, x2)

]

dx2.

Positive SSD means that k is increasing in x1 for all x2. Because ∂2h/∂x2
2 is decreasing in

x1 by assumption, the covariance rule applied for each possible x2 implies that

X ≤
∫

E

[

∂2h(̃x1, x2)

∂x2
2

]

E [k (̃x1, x2)] dx2.

Because Ek (̃x1, x2) is zero for all x2 by construction, we obtain that X is nonpositive. ��

Computational method used to draw Fig. 3

We use the iterative method presented for example by Backus et al. [2] to compute the term
structure in the two-state economy with Poisson switches. Let bt

τ denote the price at date τ

of a zero-coupon bond with maturity t . The CRRA representative agent should be indifferent
to increase her demand for such bond, yielding the following equilibrium condition:

bt+1
τ = Ee−δ

(

c̃τ+1

cτ

)−γ

bt
τ+1. (21)

13 E f (̃x)g(̃x) ≥ E f (̃x)Eg(̃x) for all x̃ if f ′(x)g′(x) is nonnegative for all x . See for example Gollier (2001,
Sect. 6.4) for a formal proof.
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Applying this condition for t = 1 and observing that b0
t+1 = 1 yields

r1 = − ln b1 = δ − 1

2
γ 2σ 2 + γµ,

with bt
τ = bt (µτ ). Iterating (21) forward generates the following formula:

f 1(µ) = 0

f t+1(µ) = − 1

γ
ln

[

(1 − π)e−γ (µ+ f t (µ)) + πe−γ (µ′+ f t (µ′))
]

ln bt = −t (δ − 0.5γ 2σ 2) − γ (µ + f t (µ))

and, finally,

rn = −1

t
ln bt = δ − 1

2
γ 2σ 2 + γ

µ + f t (µ)

t
.

The analysis of the economy with no serial dependency is organized as follows. Let ỹt be
distributed as the change in log consumption in period t conditional to a high-growth state
at date 0. Thus, conditional to µ(t = 0) = µ2, (̃y1, ỹ2, ...) is an independent process. It
happens that ỹt is distributed as (µ2, 1 − πt ;µ1, πt ) + σ ε̃ where πt is the probability of a
odd number of Poisson events between 0 and t . The pricing formula in the high-growth state
is then

rt = δ − 1

t
ln E

t
∏

i=1

ỹ−γ

i = δ − 1

2
γ 2σ 2 − 1

t

t
∑

i=1

ln
[

(1 − πi )e
−γµ2 + πi e

−γµ1
]

.

An equivalent pricing formula is easily obtained for the low-growth state.
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