
366 WIRTSCHAFTSINFORMATIK 5 | 2008

WI – Schwerpunktaufsatz

ExPDT: A Policy-based Approach
for Automating Compliance
The majority of current approaches for achieving compliance rely on controlling access to
data and processes as well as documenting their actual use and execution. Automating
compliance often conflicts with business requirements since too rigid compliance
rules oppose the need for flexible adaptation of business processes to situational
context. As solution, the formal policy language ExPDT is presented allowing both. It is
discussed how ExPDT can be used to bridge non-technical compliance requirements
and technical IT systems by adequate expressiveness, calculability, and modularity, and
to maintain flexibility of business processes by enabling optional control decisions.

DOI 10.1007/s11576-008-0078-1

1 Automating compliance
of business processes

Compliance is about ensuring that busi-
ness processes are executed as expected
and that operations as well as practices are
in accordance with prescribed laws (e.g.,
Sarbanes Oxley Act SOX, HIPPA), regu-
lations (e.g., Basel II, Solvency II), agreed
on standards (e.g., ISO/IEC 27000-series),
commercial contracts (e.g., Service Level
Agreement, Non-disclosure Agreement),
or a company’s governance. Together, the
resulting compliance requirements consti-
tute a set of rules to which a company has to
validate its adherence for being compliant.

Current studies show that the frequency
of audits, monitoring, and reporting cor-
relate with the success of compliance

management (Liebenau and Kärrberg
2006). As compliance validation is still
mainly a manual task (Bace and Rozwell
2006; Agrawal et al. 2006), automation
offers a significant economic opportu-
nity. Most current tools start at making
controls more efficient, e.g. by integrating
hard-coded checks into standard software
for validating a compliant segregation of
duty as prescribed by SOX or by deploy-
ing compliance repositories as in the GRC
Repository of SAP (Sadiq et al. 2007) or
workflow repositories described in (Agra-
wal et al. 2006). Due to the inflexibility of
the tools used, there is a risk of becoming
trapped in routine tasks and reducing the
ability to adapt business processes f le-
xibly to market needs and context-specific
requirements. At worst, the use of IT for
automating compliance without a general
approach may even be harmful (Cannon
and Byers 2006).

Automating the validation of compli-
ance requires a method-based approach
integrating compliance management,
risk management, and business process
management as depicted in Fig. 1. The
result of compliance and risk management
defines the relevant compliance require-
ments that have to be translated into con-
trol objectives. The control objectives that
are to be achieved automatically have to
be mapped to a compliance policy. Then,
these compliance policies serve as input
for control processes forming the basis
for monitoring and enforcing given rules
within the business processes. The link
between business processes and control

processes can be realized, e.g., by annota-
tions (Muehlen and Rosemann 2005) or by
superordinated and independent model
ing (Sadiq et al. 2007; Karagiannis 2008;
Namiri and Stojanovic 2008). This paper
focuses on a language to formulate com-
pliance policies called ExPDT (Extended
Privacy Definition Tool) which is based
upon the work of Raub and Steinwandt
(2006). ExPDT was originally defined for
enforcing privacy (Kähmer and Gilliot
2008) and will be extended in this paper
to show its usability for validating compli-
ance adherence of business processes.

2 A framework for
automating compliance

Since adherence to law cannot be directly
encoded in machine-readable code, a
framework outlined in Fig. 2 is proposed.
In a first step, laws and regulations that
are described in a textual form have to
be interpreted for a business domain and
transformed into compliance require-
ments. This transformation is the focus
of, e.g., best practice frameworks for IT
governance COBIT (ITGI 2007) or ITIL
(OCG 2007) as well as methodologies pre-
sented in Klempt et al. (2007) or Raghu-
pathi (2007) and is hard to automate.
Breaux et al. (2005) developed a method
for getting a set of requirements from
legal texts by using predicates to identify
and classify language patterns. In the best
event, the compliance requirements at this
level match the legal requirements of the

The Authors

Dr. Stefan Sackmann
Dipl.-Inf. Martin Kähmer

Albert-Ludwig University of Freiburg
Department of Telematics, Institute of
Computer Science and Social Studies
Friedrichstraße 50
79098 Freiburg
Deutschland
{sackmann | kaehmer}@iig.uni-frei-
burg.de

Submitted 2007-12-01, after two
revisions accepted 2008-06-27 by the
editors of the special focus.

WIRTSCHAFTSINFORMATIK 5 | 2008 367

WI – Schwerpunktaufsatz

superordinated level correctly and com-
pletely so that their fulfillment is identical
with the fulfillment of the respective laws.
Incorrect or incomplete requirements at
this level always give cause for an ex post
control and non-automatable validation of
actual operations.

In a second step, the compliance require-
ments have to be transformed into a policy.
Policies are a substantial element of secu-
rity and privacy management since they
describe what is allowed or prohibited and
what is mandatory (Schneider et al. 2001).
Converting compliance requirements into
a set of machine-readable policy rules is
a challenging task (Sadiq et al. 2007) that
requires a domain ontology and, where
policies are derived from multiple regula-
tions, a solution to inconsistency between
them (Delbaere and Ferreira 2007). As
we consider the policy language as key to
automating compliance, the following sec-
tions focus on this level.

The adherence to such policies is ob-
served by monitors. They are usually based

on the principal of Schneider’s execution
monitor (Schneider 2006) that intercepts
all those commands at processor-level that
would violate a policy and inhibits their
occurrence by stopping the current exe-
cution. Approaches hosting this principle
on middleware are, for example, IBM
REALM that automatically refines regu-
latory policies to standardized low-level
process events allowing a monitor to con-
trol the flow of business processes (Giblin
et al. 2006), or the Hippocratic database
that enforces security and privacy policies
at data item-level (Johnson and Grandi-
son 2007). Where the IT system runs cor-
rectly and safely, enforceable rules cannot
be violated and an ex post validation thus
becomes pointless.

For non-enforceable rules, such as obli-
gations (Hilty et al. 2005), a violation
can only be detected after the fact by an
audit. For example, if an obligation such
as “delete stored data after two years” has
been fulfilled or not, can be validated at
the end of the period of time by analyzing

a corresponding log-file. For such valida-
tions, e.g., the Hippocratic database offers
an interface to its query logs, and Delbaere
and Ferreira (2007) developed an audit ser-
vice to collect and evaluate logs at an enter-
prise-level. However, to be used for com-
pliance validation, the required logs have
to be complete and correct (Sackmann et
al. 2006; Sadiq et al. 2007; Accorsi 2008).
If, however, the fulfillment of the obliga-
tion occurs outside a company’s own secu-
rity domain, e.g., in the case of outsourced
parts of the business process, an enforce-
ment of the obligation cannot be guaran-
teed. External auditing has to be done that
can only be automated by expanding the
security domain, e.g. by deploying trusted
computing (Iliev and Smith 2005). Auto-
mation of audits and compliance valida-
tion can then reduce the assessment time
and, correspondingly, the time of remedi-
ation or mitigation of control deficiencies
and thus reduce the economic risk of non-
compliance.

……
Best practice

Compliance validation

…
Compliance requirements 3

Compliance requirements 2

Compliance
requirements 1 Manually checked

control objectives

Automatable control
objectives

Compliance policy 3
Compliance policy 2

Compliance policy 1

…
…

Forensic

Audit

Control process

Business process management

Log-�le

Standards
Laws Contracts

Compliance and risk
management

Fig. 1  Process of compliance validation

368 WIRTSCHAFTSINFORMATIK 5 | 2008

WI – Schwerpunktaufsatz

3 Compliance policy languages

The key to automating compliance is the
policy language since it determines the
set of compliance requirements that can
be expressed in a formal way. For automa-
ting compliance, a policy language must
satisfy at least the following four criteria
(Sackmann et al. 2008):
1.	� Expressiveness: Current efforts to

secure a system concentrate on the spe-
cification of undesired system behavior
and preventing bad things from happe-
ning by controlling access to the sys-
tem objects. However, just preventing
undesired behavior is not sufficient for
compliance. To ensure that a system
reaches a desirable state, good things
need to happen as well. In a policy,
this can be achieved by controlling
the usage of data objects by additio-
nally imposing obligations on granted
access rights and ordering the execu-
tion of actions that conduce to the pro-
cess result (Breaux et al. 2005). Thus,
not only permissions and prohibitions
describing what may or may not hap-

pen within a system, but also obliga-
tions and orders triggering what must
happen need to be specifiable in a
policy (Müller et al. 2008).

2.	� Flexibility with sanctionability: A
policy language should be able to pro-
vide optional decisions. This is required
for economic reasons, since not all pos-
sible situations and especially their
impact on a particular business pro-
cess instance can be considered ex
ante. If the economic impact of inter-
rupting a process outweighs the risk
of non-compliance, the policy should
be able to allow the escalation within
a business process, e.g., the skipping of
a required control. For escalation not
becoming the default behavior, sanc-
tions have to be specifiable as well.

3.	� Calculability: Since compliance poli-
cies can be derived from different com-
pliance requirements, it is likely that
inconsistencies or even contradictions
of the requirements are to be taken
into consideration. Conflicting rules
avert an automated decision and thus
mean an operational risk. Therefore,

the calculability of the policies should
be feasible for detecting such conflicts
and resolving them as far as possible.

4.	� Modularity: It is necessary to allow
for modular specification of the policy
rules so that every single compliance
requirement can be addressed and
combined with valid policies for de-
ployment.

There are already quite a few policy langu-
ages. The World Wide Web Consortium
(W3C) developed the Platform for Privacy
Preferences (P3P) to express privacy poli-
cies in a machine-readable form and its
counterpart, the P3P exchange language
APPEL, to express customers’ preferences
(Cranor et al. 2005; Cranor et al. 2006).
Reduced in their capability to control
usage of data and execution of processes,
both lack conditions, obligations, and any
kind of enforceability. IBM’s Enterprise
Privacy Authorization Language (EPAL)
accounts for the further usage of accessed
data objects by supporting obligation
elements in its policy rules and exhibits
a more fine grained vocabulary as well as
monitor integration (Ashley et al. 2003).

Compliance requirements (frameworks, e.g. COBIT, ITIL, . . .)

Non-technical
levels

Monitor Technical
levels

Logging Enforcement

Automatable validationNon-automatable validation Automated validation

Compliance
status

Laws, regulations, standards, contracts, agreements …

Policy (formal set of rules)

Fig. 2  Framework for automating compliance

WIRTSCHAFTSINFORMATIK 5 | 2008 369

WI – Schwerpunktaufsatz

The Novel Algebraic Privacy Specification
(NAPS) framework enhances EPAL on a
logical level to an algebra additionally
allowing for modular specification of poli-
cies (Raub and Steinwandt 2006) and adds
a concept of sanctions to allow for flexible
rule adherence. The eXtensible Access
Control Markup Language XACML
(Moses 2005) was designed by the OASIS
consortium as open standard to specify
expressive policies covering both usage
control and commands. A data flow model
describes how XACML policies are to be
interpreted and enforced. In contrast to

EPAL, XACML provides policy combina-
tion tools to support distributed policies,
although it is not suitable for comparing or
negotiating policies, because the intersec-
tion of two general policies is not defined.
The WS-Policy framework (Bajaj et al.
2006) for web services provides a general
purpose model and syntax to describe and
communicate policies of web services,
which consists of sets of different kinds
of assertions, e.g., for security, privacy or
reliability. Although allowing for optional
assertions, this flexibility cannot be gui-
ded by sanctions or penalties. Optimized

for queries on activity relations, XQuery
can be used to hard-code simple policy
rules and check them within continuous
XML streams, such as system logs (Botan
et al. 2007). Common to all of these policy
languages is the lack of adequate operators
for comparing and analyzing policies.
Focusing on this calculability, the Formal
Contract Logic FCL (Sadiq et al. 2007)
expresses semantics of only single con-
tracts in the former mentioned modalities
and allows for reasoning not only about
contract consistency but also about viola-
tions and possible sanctions. Exhibiting

Conjunction Composition Difference

Operation

Po
l1

Po
l 2

Policy PolicyDef

Guard

Guard

NotGuard

Query

User Data Purpose Action

elementaryObligation

Obligation

Negative
Default
Ruling

Positive
Default
Ruling

Negative
Ruling

Positive
Ruling

Subclass Of

Object Property

Variables

Values

Sorts

ConditionVoc

second
param

BooleanConstraint

first param

to
H

ie
ra

rc
hy

SimpleConstraint

typeOf

One Two

Not WeakNot And Or

Rule

Condition

Fig. 3  Class diagram of ExPDT language for complicance policies

370 WIRTSCHAFTSINFORMATIK 5 | 2008

WI – Schwerpunktaufsatz

similar calculability and expressiveness,
PENELOPE (Goedertier and Vanthienen
2006) deals with compliance requirements
from different sources but lacks flexibility
and sanctionability.

Some of the languages exhibit sufficient
expressiveness covering usage control and
orders, others bring along the concept of
sanctions. But none of them satisfy all four
criteria, usually missing calculability or
modularity.

4 ExPDT – A formal language
for compliance validation

The Extended Privacy Definition Tool
(ExPDT) language allows users to specify
declarative policies over specific domain
knowledge using OWL-DL (McGuinness
and van Harmelen 2004), a computational
complete and decidable subset of the Web
Ontology Language (OWL) correspon-
ding to Description Logic. Although
originally developed to formalize privacy
preferences, ExPDT can also be used for
compliance validation in processes. Its
expressiveness allows the describing of
permissions, prohibitions, and orders that
have to be adhered to in case of certain
contextual provisions or obligations.
Sanctions, whose use is discussed in
section 5 by means of a detailed example,
can be specified on rule level. Based on
the algebraic framework NAPS (Raub
and Steinwandt 2006), ExPDT inherits
semantics and provides difference as
well as combination operators, allowing
calculability as well as a modular specifi-
cation of policies (Kähmer 2008).

4.1 Syntax

The syntax of ExPDT language is presen-
ted on the basis of the simplified OWL-DL
class diagram with the inheritance and
selected properties of the OWL-DL classes
(see Fig. 3).

An ExPDT Policy is defined either by
a prioritized list of rules and a Default
Ruling in the case where no rule applies or
by a result of a policy Operation. A Rule is
comprised of one or more possibly nega-
ted guards constraining the scope of this
rule from users, actions, data and purpose,
a number of conditions and the ruling that
subsequently delivers the decision of this
rule. Hence, a generic rule has the fol-
lowing form:

([⌐](User, Action, Data, Purpose))+,
Conditions, (Ruling)

The element instances of a Guard are
partially ordered in hierarchical struc-
tures allowing for grouping of instances
and the formulation of policies rules
applying to entire sub-hierarchies, e.g., to
all users of a particular department or all
the data belonging to a particular purchase
order. Thereby, each of them has his own
structure: customers, employees and sys-
tem services are combined in the User
structure, system objects and data items
are described in Data, possible actions
on these are given in Action and the pos-
sible intentions of actions in question are
structured in Purpose. It is not required
that hierarchies have unique predeces-
sors as long as they form a directed acyc-
lic graph.

Compliance requirements often depend
on context information, e.g. permitting a
purchase order only if its value is below
a certain limit or a supervisor has given
his consent. For the inclusion of such
constraints, a many-sorted, 3-valued
Łukasiewicz L3 logic (Gallier 1988) is
reverted to. A condition is a formula of
this logic defined over the condition voca-
bulary ConditionVoc and its interpreta-
tion functions. The condition vocabulary
consists of the final set of Sorts (i.e. vari-
able types) each with a final set of Vari-
ables. The set of non-logical symbols
of simple constraints SimpleConstraint
includes relations, the set of logical sym-
bols the operators And, Or, Not, WeakNot
and Values 0, 1 and u as undefined. The
undefined value u is advantageous to an
environment of dynamic character, such
as a company with continuously chan-
ging transaction partners and modified
or switched services. If the evaluation of
a condition does not return a clear deci-
sion 0 or 1 due to lack of available infor-
mation, e.g., whether a certain threshold
is exceeded or not, the evaluation of the
policy is continued and the decision con-
junctively joined with the final decision, as
will be shown later. Formulas and terms of
the condition logic are recursively defined
as usual as in the predicate logic free of
quantors.

A policy rule not only regulates the
actions on data items, but can impose
Obligations, such as “notify auditor” or
“complete confirmed double check within
one day”. In contrast to many other policy
languages ExPDT does not consider obli-
gations as pure black box instructions. It

has an underlying obligation model of a
half lattice above the power set of the ele-
mentary obligations Õ, subset as relation,
conjunction as aggregation, with maxi-
mum element top ⊤ as the empty obliga-
tion, and the minimal element bottom ⊥
as the impossible obligation. Imposing the
obligation ⊤ means that the action of the
guard can be carried out without further
undertaking, imposing ⊥ that an action
may not be carried out. Eliminations
of contradicting elementary obligation
combinations, such as “delete data within
a week” and “keep data for a year” at the
same time, can be achieved by excluding
from the lattice all those obligation sets
containing problematic obligations. The
ruling of an ExPDT rule and the default
ruling of the overall policy are specified
by a tuple of obligations (postiveObliga-
tion, negativeObligation), each an element
of the power set of Õ.

4.2 Semantics of a rule

The evaluation function of a query (also
a tuple of user, action, data, and purpose)
resulting in a ruling for a given policy defi-
nes the semantics of the policy language
ExPDT. The required authorization and
order rule modalities can be expressed.
Actions cannot only be permitted but
also forbidden or explicitly triggered.
In addition to provisions, obligations as
actions to be performed in future can also
be imposed on the user.

The ExPDT language also allows the
users the certain degree of freedom in
adherence to the rule actions. While this
always applies in case of a permit, users
can decide whether they adhere to a prohi-
bition or an order. If they do not, specified
sanctions in the form of so-called negative
obligations take effect. If these sanctions
correspond however to the impossible
obligation ⊤, adherence becomes neces-
sary for the users, a rule circumvention
impossible. The various rule modalities as
well as the obligations and sanctions are
mapped via the tuple of obligations of the
ruling as shown in Tab. 1 whereby the first
obligation specifies the future additional
actions and the second possible sanctions.
Here are some examples:
j�Permission: Employees are allowed to

open a purchase order. Ruling: (⊤, ⊤)
j�Permission with obligation: Employees

are allowed to open a purchase order
but a supervisor is notified. Ruling:
(notify, ⊤)

WIRTSCHAFTSINFORMATIK 5 | 2008 371

WI – Schwerpunktaufsatz

j�Prohibition with sanction: Employ-
ees are not allowed to open a purchase
order. If they disregard this prohibition
and, however, open a purchase order,
the supervisor will be notified. Ruling:
(⊥, notify)

j�Compulsory order: The administrator
has to make a weekly backup. The sanc-
tion according to the impossible obli-
gation makes adherence to this order
indispensable. Ruling: (⊤, ⊥)

4.3 Semantics of a policy

The semantics of the policy language
is determined through the evaluation
function evalα(P,q) for a query q regar-
ding a particular policy P and current
assignment α of the contextual condition
variables. Roughly, the function searches
through the list of policy rules until a rule
is matched by the query, i.e. all elements of
the rule guard are either equal to the user,
action, data, and purpose of the query or
stand higher up in their corresponding
hierarchy. Additionally, the condition of
the rule must not evaluate to false using
the current variable assignment. The
complete evaluation works as follows:
1.	� Initialize the result with (⊤, ⊤) and pre-

set evaluation status v to default.
2.	� Evaluate rules one by one according

to their priority. If the rule’s guard is
matched by the query and...

a)	� its condition evaluates to 1, return the
conjunction of the rule’s ruling and
hitherto accumulated result as policy
ruling and an evaluation status v of
final.

b)	� its condition evaluates to u, add rule’s
ruling to result, set the status v to
applicable and proceed with the next
rule.

3.	� If the status v is applicable, then return
result as ruling and status v.

4.	� If the status is still default, no rule has
matched and the default ruling is re-
turned together with the status v
default.

The case of incomplete context informa-
tion resulting in an undefined condition
value for a rule is taken into account by
accumulating the ruling of such a rule
with a possibly previous found ruling, i.e.,
conjunct both the positive obligations and
the negative obligations, and proceeding
with the evaluation. Hence, it is ensured
that the evaluated ruling is possibly too
restrictive due to the additional obliga-
tions, but never too weak.

4.4 Policy operators

The extensive dragging along of the evalu-
ation status v with its distinction of final,
applicable or default ruling allows not
only the handling of incomplete context
information but also the definition of
combination operators for modular speci-
fication and evaluation of policies despite
their stub-behavior. The stub-behavior
corresponds to the intention of the default
ruling, i.e., to ensure a safe ruling until
another rule matches. Therefore the refine-
ment of a default ruling with an applicable
or final one should be possible in the case
of a policy combination. In ExPDT, two
combination operators are defined: the
conjunction P1 ^ P2 thereby evaluates P1
and P2 with equal priority, while the com-
position P1 || P2 gives P1 higher priority for
the evaluation, therefore evaluates it first.
For more detailed combination tables of
rulings and generating algorithms, see
(Raub 2004).

The ability to compare policies is essen-
tial for calculability, e.g. if a policy P1 is to
be replaced by a different policy P2, when
compliance requirements change. The
starting point for a comparison of two
policies usually is equivalence, i.e., both
supply the same query results in any case,
and the refinement that indicates whether
one policy is more restrictive or specific
than another (see, e.g. Backes et al. 2004).
If this, however, is not the case, there is
no indication as to which rules require
further decisions. Therefore, in ExPDT the
difference operator is defined. Given two
policies P1 and P2 over compatible voca-
bulary, the difference P2–P1 is a mapping
from P × P to a list of rules R that covers
exactly those queries q and assignments α

of conditional variables that result in a less
restrictive ruling for P2, so (resulti, vi) = ev
alα(Pi,q) for i ∊ {1, 2} and ruling1 ⊈ ruling2.
For these, the difference rule list results in
the same decisions as P2. Thus, the dif-
ference operator reduces the regulation of
the policy to become effective to precisely
those rules describing all less restrictive
situations that are of particular interest.

The difference rule list is constructed by
the following plot: rules of both policies
are looped through according to their pri-
ority, so that each rule of P2 is compared
with all rules of P1. If such a comparison
detects only equal or more restrictive situ-
ations with bigger scope or weaker condi-
tions and obligations, the looping is con-
tinued with the remaining rules of P1. If
there are, however, such situations and if
they are not captured by a following P1-
rule with lower priority, they are formally
captured by a new rule that is appended to
the difference result. Then, the looping is
discontinued for the current P2 rule and
starts with the next rule anew. If all P2
rules are examined, the construction of
the difference terminates.

This rule list describes the functional
difference of both policies, so that they
are compared independently of their pos-
sible evaluation status v; the stub-beha-
vior of the policies is not taken into consi-
deration. For more detailed specification
of this algorithm including the handling
of conditions refer to Kähmer and Gilliot
(2008). By means of the difference, the
equivalence and refinement of two poli-
cies can be computed: if P2–P1 results in an
empty list, P2 describes less restrictive situ-
ations and P2 is a functional refinement of
P1. If the difference of switched policies

Tab. 1  ExPDT codes the modalities into the ruling

Modality Obligations Sanctions Ruling

Permission     (⊤, ⊤)

O+   (O+, ⊤)

Prohibition     (⊥, ⊤)

  O- (⊥, O-)

Order     (⊤, ⊥)

O+   (O+, ⊥)

  O- (⊤, O-)

O+ O- (O+, O-)

Error     (⊥, ⊥)

372 WIRTSCHAFTSINFORMATIK 5 | 2008

WI – Schwerpunktaufsatz

results in an empty rule list as well, P1 and
P2 are functional equivalent.

5 ExPDT for escalation within
business processes

The crucial characteristic of a policy
language for compliance is the support
of f lexibility with sanctionability. In
section 4.2 the corresponding formalism
of ExPDT for optional decisions and sanc-
tions has been presented. In the following,
the practical use is discussed along with
a simplified escalation scenario: for com-
pliance reasons the exemplified workflow
intends a double check authorization for
every purchase order before it is passed
on to a supplier (see Fig. 4). Rectangles
represent single actions, a rhombus a
decision, and the rectangle with the
dashed line a control process. Currently,
the double check control requires that
two different officers check the purchase
order; otherwise, the purchase in process
cannot be completed. Transferring this

example to ExPDT results in the following
compliance rule:

(E1, PassOn, Order, forPurchase),
not(checkedBy(E1,E2) ∧ (E1≠E2)), (⊥,⊤)

This rule prohibits an employee E1
from passing on a purchase order if it
was not checked by a second employee E2
who is different from E1 and is visualized
in Figure 4 in the upper control process
without escalation. Formulized in actual
but lengthier ExPDT OWL-DL syntax,
a full example can be found in Kähmer
(2007).

However, there might be exceptional
situations that require fast adaptation,
e.g., an opportunity to get discount for fast
ordering or the time-critical replacement
of expected shipping lost by accident to
maintain the production process. If there
is no second employee available for con-
firming the order, the termination of the
order process according to the compliance
policy might bring enormous loss. To con-
sider such opportunities already within
the control process, ExPDT offers the abi-
lity to integrate exceptions:

(E1, PassOn, Order, forPurchase),
not(checkedBy(E1,E2) ∧ (E1≠E2)), (⊥,
notify)

This rule is visualized in the control
process with escalation and differs from
the former one by allowing employee E1
to disobey the double check and to pass
on the order. In this case, the underlying
monitor has to ensure that the sanction is
enforced and a supervisor is notified. Of
course, “notifying” is only a first step to
integrating consequences to actions into
a compliance policy since the actual sanc-
tion is outsourced to the supervisor oppo-
sing automation of compliance. Sanctions
such as ignoring the violation, halting the
business process, or rolling back activities
could also be integrated. The next out-
standing step is the improvement of deci-
sion support for the employee by inte-
grating information about the economic
impact of interrupting a process and the
risk of non-compliance into the control
process. This requires the combination
of risk management and compliance poli-
cies as well as their integration into busi-

Business process „Purchase Order“

no

Cancel
purchase order

Begin Purchase
order Approval? Pass on

purchase order End
yes

ExPDT without
escalation

yes

no

Double check
complete?

yes

ExPDT with escalation

Control process
(e.g. double check)

Expound
sanctions

Ignore incomplete
double check?

no

Enforce
sanctionno

Double check
complete? yes yes

Fig. 4  Exemplified workflow with two alternative control processes

WIRTSCHAFTSINFORMATIK 5 | 2008 373

WI – Schwerpunktaufsatz

ness process models, e.g., by annotations
that are expanded with risk types (Mueh-
len and Rosemann 2005).

6 Conclusion and outlook

Policies are the key to automating compli-
ance: they bridge the gap between the com-
pliance requirements and their realization
within the IT systems. Policies determine
to which degree these requirements can be
formalized and automated. The ExPDT
policy language presented, originally
developed for specifying privacy policies,
can also be used for compliance policies.
In contrast to current policy languages,
it is the first language exhibiting suitable
expressiveness, flexibility with sanctiona-
bility, calculability, and modularity.

The integration of decision options with
sanctions into policy rules, e.g. for esca-
lating unexpected events in business pro-
cesses, is technically no real challenge.
However, this feature is seen as vital since
it is the starting point for both preserving
the situation specific adaptation of busi-
ness processes and at the same time achiev
ing automation of compliance. By enabling
a “compliance by detection” approach the
enormous effort of a pure “compliance by
design” approach can be avoided since not
all compliant situations have to be defined
in advance. Beginning with the enforce-
ment of the most important rules a step-
wise enlargement of automated validation
becomes possible.

A prototype of ExPDT has been imple-
mented as proof of concept; however, an
evaluation is the next outstanding step.
Moreover, two main issues remain: firstly,
obedience to the policy has to be realized
on the monitor and IT system levels. This
is a prerequisite for enlarging the part
automatable and automated validation of
compliance. Secondly, to take full advan-
tage of the flexibility, sanctions have to be
specified according to the context of the
actual business process. For this, compo-
nents for an accurate assessment of com-
pliance risk in real-time have to be provi-
ded. Both issues, enforcement and assess-
ment, are still open research fields.

References

Accorsi, R. (2008): Automated Privacy Audits to
Complement the Notion of Control for Identity
Management. In: Proceedings of the IFIP Con-

Zusammenfassung / Abstract

Stefan Sackmann, Martin Kähmer

ExPDT: Ein Policy-basierter Ansatz zur Automatisierung von
Compliance

Unternehmen sehen sich steigenden Anforderungen aus neuen Gesetzen, regulato-
rischen Vorschriften, Standards, Governance und auch Verträgen gegenüber. Durch den
Einsatz von Informationstechnologie kann die Validierung der Einhaltung solcher Regeln
(Compliance) automatisiert und effizienter erreicht werden. Aktuelle Ansätze basieren
im Wesentlichen auf Zugangskontrolle und der Dokumentation der tatsächlichen
Nutzung von Daten sowie Durchführung von Prozessen. Damit können zwar einzelne
Compliance-Anforderungen adressiert werden, ein effizienter IT-Einsatz erfordert jedoch
einen allgemeinen Ansatz. Hierfür wird ein Rahmenwerk zur Automatisierung von
Compliance vorgestellt. „Policies“, wie sie aus der IT-Sicherheit bekannt sind, werden als
Schlüssel zur Automatisierung von Compliance identifiziert, da sie eine Brücke zwischen
nicht-technischen Compliance-Anforderungen und deren Umsetzung in IT-Systemen
bieten. Es wird die Policy-Sprache ExPDT präsentiert und gezeigt, inwieweit diese zur
automatisierten Einhaltung von Compliance-Anforderungen eingesetzt werden kann,
ohne die situationsspezifisch erforderliche Adaptivität von Geschäftsprozessen zu
gefährden.
Stichworte:  Automatisierung von Compliance, Policy-Sprache, Risikomanagement,
flexibles Geschäftsprozessmanagement

ExPDT: A Policy-based Approach for Automating Compliance

Remaining in compliance with growing requirements from new laws, regulations,
standards, or contracts demands increasing IT support beyond simple reporting tools
or archiving solutions. However, an efficient IT support of compliance management
requires a more general approach. In this contribution, a framework for automating
compliance is introduced. Policies are seen as the key to aligning non-technical compli-
ance requirements to a technical IT system. The policy language ExPDT is presented and
evaluated with regard to maintaining flexibility of business processes and validating
compliance.
Keywords:  automating compliance, policy language, risk management, flexible
business process management

374 WIRTSCHAFTSINFORMATIK 5 | 2008

WI – Schwerpunktaufsatz

ference on Policies and Research in Identity
Management, Springer, Berlin, pp. 39–48.

Agrawal, R.; Johnson, C.; Kiernan, J.; Leymann,
F. (2006): Taming Compliance with Sarbanes-
Oxley Internal Controls Using Database Tech-
nology. In: Proceedings of the 22nd Internatio-
nal Confeence on Data Engineering (ICDE’06).
IEEE Computer Society, Washington, DC.

Ashley, P.; Hada, S.; Karjoth, G.; Powers, C. et al.
(2003): Enterprise Privacy Authorization Lan-
guage (EPAL 1.2). Submission to W3C.

Bace, J.; Rozwell, C. (2006): Understanding the
Components of Compliance. Gartner, Report
G00137902.

Backes, M.; Karjoth, G.; Bagga, W.; Schunter, M.
(2004): Efficient comparison of enterprise pri-
vacy policies. In: Proceedings of ACM Symposi-
um on Applied Computing (SAC’04), Nicosia,
pp. 375–382.

Bajaj, S.; Box, D. et al. (2006): Web Services Policy
1.2 – Framework (WS-Policy). http://www.w3.
org/Submission/WS-Policy/, last access 2008-
06-27.

Botan, I.; Kossmann, D. et al. (2007): Extending
XQuery with Window Functions. In: Procee-
dings of the 33rd International Conference on
Very Large Data Bases, VLDB Endowment, Vi-
enna, pp. 75–86.

Breaux, T. D.; Anton, A. I.; Karat, C.-M.; Karat, J.
(2005): Enforceability vs. Accountability in
Electronic Policies. Report TR-2005–47, North
Carolina State University Computer Science.

Cannon, J. C.; Byers, M. (2006): Compliance de-
constructed. In: CACM Queue 4 (7), pp. 30–37.

Cranor, L. F.; Dobbs, B. et al. (2006): The Platform
for Privacy Preferences 1.1 (P3P1.1). W3C speci-
fication. http://www.w3.org/TR/P3P11/, last ac-
cess 2008-06-27.

Cranor, L. F.; Langheinrich, M.; Marchiori, M.
(2005): A P3P Preference Exchange Language
1.0 (APPEL). W3C Working Draft.

Delbaere, M.; Ferreira, R. (2007): Addressing the
data aspects of compliance with industry mo-
dels. In: IBM Systems Journal 46 (2), pp. 319–
334.

Gallier, J. H. (1988): Logic for Computer Science.
John Wiley and Sons, New York.

Giblin, C.; Muller, S.; Pfitzmann, B. (2006): From
regulatory policies to event monitoring rules:
Towards model driven compliance automati-
on. IBM Research Zurich, Report RZ 3662.

Goedertier, S.; Vanthienen, J. (2006): Designing
Compliant Business Processes with Obligations
and Permissions. In: Proceedings of Internatio-
nal Conference on Business Process Manage-
ment (BPM06) Workshops. LNCS 4103, Sprin-
ger, Berlin, pp. 5–14.

Hilty, M.; Basin, D.; Pretschner A. (2005): On Obli-
gations. In: Proceedings of 10th European
Symposium on Research in Computer Security
(ESORICS 2005). LNCS 3679, Springer, Berlin,
pp. 98–117.

Iliev, A.; Smith, S. (2005): Protecting Client Privacy
with Trusted Computing at the Server. Procee-
dings of IEEE Security & Privacy 3 (2), pp. 20–
28.

ITGI (2007): COBIT 4.1, Framework, Control Objec-
tives, Management Guidelines, Maturity Mo-

dels. http://www.isaca.org/AMTemplate.cfm?S
ection=Downloads&Template=/MembersOn-
ly.cfm&ContentFileID=14002, last access 2007-
12-01 (free registration required).

Johnson, C. M.; Grandison, T. W. A. (2007): Com-
pliance with data protection laws using Hippo-
cratic Database active enforcement and audi-
ting. IBM Systems Journal 46 (2), pp. 255–264.

Kähmer, M. (2007): ExPDT Ontologies and Exa-
mples. http://www.telematik.uni-freiburg.de/
mitarbeiter/kaehmer/expdt/, last access 2008-
06-27.

Kähmer, M. (2008): Extended Privacy Definition
Tool – A Formalism for Specification and Com-
parison of Privacy Policies. PhD Thesis, Univer-
sity of Freiburg, to appear.

Kähmer, M.; Gilliot, M. (2008): Extended Privacy
Definition Tool. In: Proceedings of the Multi-
konferenz Wirtschaftsinformatik (MKWI 2008),
LNI, Springer, Berlin.

Karagiannis, D. (2008): A Business Process-Based
Modelling Extension for Regulatory Compli-
ance. In: Proceedings of the Multikonferenz
Wirtschaftsinformatik (MKWI 2008), LNI, Sprin-
ger, Berlin.

Klempt, P.; Schmidpeter, H.; Sowa, S.; Tsinas, L.
(2007): Business Oriented Information Security
Management – A Layered Approach. In: Pro-
ceedings of the 2nd International Symposium
on Information Security (IS’07), Vilamoura, pp.
1835–1852.

Liebenau, J.; Kärrberg, P. (2006): International
Perspectives on Information Security Practices.
London School of Economics and Political Sci-
ence, McAfee.

McGuinness, D. L.; van Harmelen, F. (2004): OWL
Web Ontology Language – Overview. W3C re-
commendation. http://www.w3.org/TR/2004/
REC-owl-features-20040210/, last access
2008.06.27.

Moses, T. (2005): eXtensible Access Control Mark
up Language (XACML), version 2.0, Oasis Stan-
dard. http://xml.coverpages.org/xacml.html,
last access 2008-06-27.

Muehlen, M. zur; Rosemann, M. (2005): Integra-
ting Risks in Business Process Models. In: Pro-
ceedings of the 16th Australasian Conference
on Information Systems (ACIS 2005), Sydney.

Müller, G.; Sackmann, S.; Prokein, O. (2008): IT
Security: New Requirements, Regulations and
Approaches. In: Frank-Schlottmann, F. et al.
(Eds.): Handbook on Information Technology
in Finance, Springer, Berlin, pp. 711–730.

Namiri, D.; Stojanovic, N. (2008): Towards a For-
mal Framework for Business Process Compli-
ance. In: Proceedings of the Multikonferenz
Wirtschaftsinformatik (MKWI 2008), LNI, Sprin-
ger, Berlin.

OCG (2007): ITIL V3 – Service Life Cycle, Office of
Governance Commerce, http://www.itil.org/
en/itilv3-servicelifecycle/index.php, last access
2008-06-27.

Raghupathi, W. R. P. (2007): Corporate gover-
nance of IT: a framework for development. In:
Communications of the ACM 50 (8), pp. 94–99.

Raub, D. (2004): Algebraische Spezifikation von
Privacy Policies. Master’s thesis, Uni. Karlsruhe
(in German).

Raub, D.; Steinwandt, R. (2006): An Algebra for
Enterprise Privacy Policies Closed Under Com-
position and Conjunction. In: Proceedings of In-
ternational Conference on Emerging Trends in
Information and Communication Security (ET-
RICS), LNCS 3995, Springer, Berlin, pp. 130–144.

Sackmann, S.; Kähmer, M.; Gilliot, M.; Lowis, L.
(2008): A Classification Model for Automating
Compliance. In: Proceedings of the IEEE Con-
ference on E-Commerce Technology (CEC08),
to appear.

Sackmann, S.; Strücker, J.; Accorsi, R. (2006): Per-
sonalization in Privacy-Aware Highly Dynamic
Systems. In: Communications of the ACM
49 (9), pp. 32–38.

Sadiq, S. W.; Governatori, G.; Namiri, K. (2007):
Modeling Control Objectives for Business Pro-
cess Compliance. In: Proceedings of the 5th In-
ternational Conference Business Process Ma-
nagement (BPM 2007). LNCS 4714, Springer,
Berlin, pp. 149–164.

Schneider, F. B.; Morrisett, G.; Harper, R. (2001): A
Language-Based Approach to Security. In: In-
formatics: 10 Years Back, 10 Years Ahead. LNCS
2000, Springer, Berlin, pp. 86–101.

Schneider, F. B. (2006): Computability classes for
enforcement mechanisms. In: ACM Transac-
tions on Programming Languages and Sys-
tems 28 (1), pp. 175–205.

