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Abstract  Electric vehicles (EVs) and combustion-powered vehicles (CVs) dif-
fer substantially with respect to several characteristic factors that have major impacts 
on vehicle routing. EVs are more energy efficient than CVs, but they have a shorter 
driving range, and compared to CVs with the same gross weight, they have a lower 
payload. In this paper, various vehicle fleets with differently sized EVs and CVs are 
considered for vehicle routing. First, EVs are opposed to CVs. Second, the effect of 
increasing the battery capacity of EVs is investigated. Third, the impact of introducing 
recharge stations for EVs is analyzed. Finally, the characteristics of mixed fleets are 
investigated. The computational results are generated by solving a MIP formulation of 
the introduced Energy Vehicle Routing Problem with Time Windows, Recharge Sta-
tions and Vehicle Classes (EVRPTW-R-VC) by means of a commercial solver.

Keywords  Vehicle routing · Electric powered and combustion-powered vehicles · 
Heterogeneous vehicle fleet · Energy consumption · Recharge stations

JEL Classification  C0 · R4

1  Introduction

The environmental impact of entrepreneurial activities has become increas-
ingly crucial in recent years. This development has led to political reforms and 
incentives by subsides which are projected to reduce the quantity of emitted 

 *	 Benedikt Vornhusen 
	 bvornhusen@uni‑bremen.de

	 Herbert Kopfer 
	 kopfer@uni‑bremen.de

1	 University of Bremen, Wilhelm‑Herbst Straße 5, 28359 Bremen, Germany

http://orcid.org/0000-0002-6033-1667
http://crossmark.crossref.org/dialog/?doi=10.1007/s11573-018-0910-z&domain=pdf


794	 H. Kopfer, B. Vornhusen 

1 3

greenhouse gases and their effect on global warming. Furthermore, a company’s 
current reputation also depends on its engagement in environmental activities. In 
particular, the transportation sector intends to reduce its energy consumption and 
emissions by applying new technologies. Thus, a discussion has begun regarding 
the private and commercial use of electric powered vehicles (EVs). On 1 Janu-
ary 2017, 311 EVs with a gross weight over 2 tons were registered in Germany 
(Kraftfahrt-Bundesamt 2017). This documents that few trucking companies have 
recently started using EVs (Berndt 2016). Of course, they do not entirely abandon 
their conventional fleet but they replace some of their combustion-powered vehi-
cles (CVs) by EVs to reduce their overall energy consumption and emissions (oV 
2015). Dispatchers need time to get used to routing and scheduling EVs, espe-
cially for handling the new challenges which are coming up by EVs. The small 
driving range caused by a limited battery capacity may be the most problematic 
attribute of EVs. Thus, the field application of EVs is restricted to relatively short 
tours unless an exchange or recharge of the vehicles’ batteries takes place. Fur-
thermore, the battery weight leads to a reduction of payload; this is an additional 
challenge in the transportation sector. From a financial perspective, it is impor-
tant to note that the fixed and variable costs of EVs and CVs differ considerably. 
Especially, the investment costs of EVs are significantly higher than the invest-
ment costs of CVs. Nevertheless, currently there are cost advantages for EVs 
operated in rural areas for delivery services with driving ranges of approximately 
100 km (Kopfer and Schopka 2016). In addition, in the foreseeable future, these 
cost advantages will become more significant due to the expected technological 
development (Hacker et al. 2015).

Currently, EVs are used for urban and local rural transport only; the utilization 
of recharge stations during a tour is mostly avoided. Since the network of recharge 
stations is scarce, extra travel time and distance are often required to visit such a 
station; furthermore, considerable additional time is needed for recharging. In 
sum, the on-tour utilization of recharge stations is associated with a loss of time 
and an increase in costs. The costs of a route consist largely of the drivers’ wages; 
thus, from an economic perspective, idle time for a vehicle and its driver should 
be avoided. Another option would be the utilization of recharge stations which are 
provided at the customer locations. Then, the recharge operation can be done during 
the service operation. However, in this case, precise agreements and cooperation are 
necessary, e.g., for the payment of the used electricity and the reservation of cus-
tomer-owned recharge stations; furthermore, the time spent at a customer location 
may increase, since the time needed for recharging often would exceed the service 
time.

EVs are more energy efficient than CVs, but they can only operate within a 
smaller range and have a lower payload than CVs. Consequently, the exchange of a 
combustion-powered fleet for a pure electric powered vehicle fleet leads to a reduc-
tion of the solution space for routing and scheduling. Mixed fleets with EVs and 
CVs lead to routing problems that are heterogeneous with respect to both restric-
tions and the objective function of the corresponding optimization models; there-
fore, research on the fleet size and the utilization of mixed vehicle fleets require 
new specific investigations (Hiermann et  al. 2016). First of all, an analysis of the 



795

1 3

Energy vehicle routing problem for differently sized and powered…

strengths and shortcomings of differently composed fleets under the consideration of 
the specific characteristics of EVs and CVs is needed.

In this study, different types of fleets are considered. Fleets with CVs are opposed 
to fleets with EVs; homogeneous fleets with vehicles of different size and differ-
ent types of powering are opposed to each other; and then the homogeneous fleets 
are opposed to a heterogeneous fleet composed of differently sized EVs and CVs. 
First, we analyze the effect of using EVs instead of CVs on the feasibility and qual-
ity of transportation plans. For this analysis, we consider two optimization goals: 
energy minimization and travel time minimization. Second, the effect of increasing 
the battery capacity of EVs is investigated. Third, the impact of introducing recharge 
stations is analyzed. The question is whether the possibility of refilling batteries 
during the execution of tours has a positive effect on the transportation plans for 
EVs. For the computational experiments, a MIP formulation of the Energy Vehi-
cle Routing Problem with Time Windows, Recharge Stations and Vehicle Classes 
(EVRPTW-R-VC) is developed. This energy model is a comprehensive extension of 
the well-known Vehicle Routing Problem (VRP), which was originally introduced 
by Dantzig and Ramser (1959).

This paper is structured as follows. Section 2 presents an overview of the recent 
literature. The vehicle-specific characteristics of the considered vehicle types are 
presented in Sect.  3. A MIP formulation for the EVRPTW-R-VC is described in 
Sect. 4. Section 5 presents computational studies regarding the utilization of various 
vehicle fleets in different scenarios with and without recharge stations. Additionally, 
EVs with differently sized batteries are considered. Finally, we conclude this study 
in Sect. 6.

2 � Literature review: emission and energy minimization

In recent years, environmental aspects have become crucial, and the quantity of the 
related recent research on vehicle routing has increased. A survey on green VRPs is 
presented by Lin et al. (2014). A summary of VRPs regarding the reduction of envi-
ronmental pollution of CVs is published by Toth and Vigo (2014). Furthermore, we 
refer to the review on green road freight transportation by Demir et al. (2014) and to 
the comprehensive review by Eglese and Bektaş (2014).

2.1 � Combustion vehicles

In the literature, there exist several approaches for vehicle routing based on objec-
tive functions, which minimize the amount of Greenhouse Gases (GHGs) instead 
of costs. The Emission Vehicle Routing Problem is introduced by Figliozzi (2010), 
who studied the minimization of CO2 emissions and fuel consumption on an exten-
sion of the classical VRP. A mathematical formulation and a heuristic approach is 
proposed to solve this problem; computational experiments demonstrate that, rela-
tive to the classical VRP, significant emission savings are possible.
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An analysis of the impact of road gradient and payload is conducted by Scott 
et al. (2010) within a CO2 minimizing vehicle routing approach. Four vehicle types 
are considered, and the effect of gradient and payload on specific vehicle types is 
discussed. The instances used for a modified traveling salesman problem are based 
on real life examples. Suzuki (2011) analyzes the effect of payload also by means 
of experiments on the traveling salesman problem. Based on computational studies, 
Suzuki (2011) finds that delivering heavy goods early in a tour can be worthwhile 
with respect to fuel consumption.

The energy minimizing vehicle routing problem was introduced by Kara et  al. 
(2007). The objective is to generate transportation plans which induce minimal 
cargo (measured in ton-kilometers) to fulfill transportation requests. Thus, the 
amount of used energy can be reduced in comparison to distance minimization.

The Pollution Routing Problem with and without time windows is proposed by 
Bektaş and Laporte (2011). In this paper several mathematical models are developed 
with different objective functions such as minimizing distance, weight load, energy 
or costs. Their energy minimizing objective function refers to speed and payload, 
which are the most influential factors on emissions. In a computational study, all 
described models are compared to each other.

An extension of the classical VRP by introducing fuel costs, carbon emission 
costs and vehicle usage costs is done by Zhang et  al. (2015). The developed tabu 
search algorithm incorporates distance, load and speed simultaneously. The com-
putational study shows that route and vehicle arrangements based on minimal fuel 
consumption are economically and environmentally friendly.

Koç et al. (2014) investigate the fleet size and mix pollution-routing problem to 
quantify the benefits of using a flexible fleet with respect to fuel consumption, emis-
sions and costs. Speed optimization is an important part in this work. Nevertheless, 
their tests demonstrate that using a heterogeneous fleet without speed optimization 
allows for higher benefits than using a homogeneous vehicle fleet with speed optimi-
zation. In the literature, few approaches exist for investigating vehicle routing with 
the specific goal of minimizing GHG emissions of a mixed vehicle fleet. An exten-
sive review on vehicle routing with cost and emission objectives for heterogeneous 
vehicle fleets is given by Koç et al. (2016). They classify and summarize the existing 
literature on heterogeneous vehicle routing problems of the last 30 years.

Kwon et al. (2013) consider a heterogeneous vehicle fleet with the objective of 
minimizing carbon emissions. By their mathematical model a cost-benefit assess-
ment of the price for purchasing or selling carbon emission rights can be made. They 
develop and apply tabu search algorithms for their experiments and demonstrate that 
the amount of carbon emissions can be decreased through carbon trading without 
increasing the transportation costs.

Kopfer et al. (2014) investigate the Emission Vehicle Routing Problem with Vehi-
cle Classes and extend the work which was introduced in Kopfer and Kopfer (2013). 
Four vehicle types with a gross weight of 3.5, 7.5, 12 and 40 tons are included in 
their study. The researchers demonstrate that, through the utilization of a heteroge-
neous vehicle fleet, significant reductions (to a maximum of 20%) in emissions are 
possible, especially if the customer requests are small. In particular, they prove that 
fragmenting a tour into several smaller tours for vehicles of different size can result 
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in a considerable reduction of emissions. However, fragmentation of tours causes 
increased travel distances and an increase in the number of routes.

Vornhusen and Kopfer (2015) consider mixed fleets with six different types of 
CVs. Additionally, they introduce the option of split delivery into the problem con-
sidered by Kopfer et al. (2014). Their experiments show that the emitted GHGs can 
be reduced further by allowing split deliveries and by using an adapted heterogene-
ous fleet with six vehicle types for transportation.

2.2 � Electric vehicles

A discussion on EVs used for cargo is provided by Pelletier et  al. (2014). The 
researchers provide an overview on existing research on vehicle routing for EVs. 
Additionally, they summarize the technical and marketing background related to this 
topic; they also discuss the future technological perspectives.

A Green Vehicle Routing Problem is described by Erdoğan and Miller-Hooks 
(2012). The developed techniques adress the difficulties that exist for alternatively 
powered vehicles, such as the scarce net for stocking up energy and the limited driv-
ing range. A MIP-model is formulated, and two construction heuristics are provided. 
Schneider et al. (2014) adapt the Green Vehicle Routing Problem to EVs and add 
time window constraints. Thus, the required time for a recharging process depends 
on the state of the remaining charge. The researchers solve the problem with a Vari-
able Neighborhood Search approach using tabu search as local optimization tech-
nique with the objective to satisfy charge constraints and time window constraints.

Desaulniers et al. (2016) consider four Scenarios of the VRPTW including EVs 
and recharge stations. They investigate the effects if only one or multiple recharge 
stations can be visited within a route and they consider scenarios in which the bat-
tery is fully or partially charged at the recharge stations. For their computations 
experiments an exact Branch-Price-and-Cut algorithm is used. The results show that 
through the option of partial and multiple charging operations a reduction of the 
travel costs and the amount of required vehicles is possible compared to the scenario 
in which exactly one fully charging operation is allowed.

Keskin and Çatay (2016) investigate a routing problem for EVs and enable a par-
tially charging of the battery during the execution of a tour. To solve their problem 
an Adaptive Large Neighborhood Search algorithms is used. Through their compu-
tational experiments it is shown that the algorithm performs very well and that a 
partially charging operation can increase the quality of the routes.

Wang and Lin (2013) consider different types of recharge stations, i.e. usual 
charging stations and fast charging stations. A sensitivity analysis shows that an 
increasing driving range of a vehicle leads to a reduction of required recharge sta-
tions to obtain feasible solution plans

Sassi et  al. (2014) provide a mathematical formulation of a VRP with a mixed 
fleet of combustion and battery powered vehicles with time-dependent costs for 
charging operations. The objective minimizes the amount of used vehicles as well 
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as transportation costs and charging costs. They are using two different heuristic 
approaches to solve their problem. However, no information is given on the capacity 
of the vehicles.

The electric fleet size and mix vehicle routing problem with time windows and 
recharge stations is proposed by Hiermann et al. (2016). A MIP formulation is pre-
sented in the researcher’s study as well as an ALNS to solve benchmark instances. In 
their routing problem, several EVs with different capacities and costs are provided. To 
increase the scope of travel distances that can be accomplished by these vehicles, sev-
eral recharge stations are integrated in their instances. Their study shows that at most 
one recharge station is visited per vehicle on its tour. The provision of a mixed fleet 
with several EVs leads to benefits compared to a homogeneous fleet of one electric 
vehicle type.

A study to compare EVs and CVs is performed by Kopfer and Schopka (2016). 
They investigate the strengths of CVs (driving range, number of used vehicles, 
ability of feasible routing plans) and the advantages of EVs (energy efficiency, 
GHG emissions) and present initial experiments on a mixed fleet of both types of 
vehicles.

Goeke and Schneider (2015) propose and evaluate an Adaptive Large Neighbor-
hood Search algorithm for a VRP with time windows and a mixed fleet of EVs and 
CVs. The researchers investigate the effect of considering the actual cargo load dis-
tribution on the structure and quality of the generated solutions; they also study the 
influence of three different objective functions on solution attributes and on the con-
tribution of EVs to the overall routing costs. The considered objectives refer to (1) 
travel time, (2) cost for vehicle propulsion and labor, and (3) vehicle and labor cost 
augmented by costs for battery replacement. In contrast to our study, they assume 
that all vehicles (EVs and CVs) have the same cargo loading capacity; in addition, 
they do not consider vehicles of different size.

3 � Vehicle characteristics

The comparison of vehicles powered by electric and combustion engines is complex, 
as different kinds of energy sources are used by these vehicles. An EV is consum-
ing electric power supplied by a battery. The amount of electric power consumed 
is measured in kWh. A combustion engine is supplied with energy by consuming 
a specific type of fuel. In this case, the amount of consumed energy is quantified 
by the required volume of fuel, measured in liters. To enable a comparison of both 
differently powered vehicle types, conversion factors for transforming the different 

Table 1   Conversion factors 
according to DIN EN 16258 
(Schmied and Knörr, 2013)

Unit TTW​ WTW​

Diesel (no biodiesel) MJ/l 35.9 42.7
Diesel Germany MJ/l 35.7 44.4
Electricity Germany MJ/kWh 3.6 9.7
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kinds of energy to a common measuring unit are necessary. In Table 1, factors are 
shown that enable the conversion of one liter of diesel and one kWh of electricity 
into the standardized unit for energy consumption [megajoules ( MJ)]. Energy con-
sumption can be measured either by Tank-to-Wheel (TTW) or by Well-to-Wheel 
(WTW) method (Schmied and Knörr 2013).

Utilization of EVs in the transportation sector is characterized by the reduced 
loading capacity of EVs and their limited driving range. The driving range of EVs 
depends on the capacity of the installed battery, amongst other factors. In automo-
tive construction, lithium-ion batteries are usually used because of their advantages 
in battery weight and security (Orten 2016). Several types of lithium-ion batteries, 
which differ in their energy density, exist. A lithium iron phosphate battery provides 
an energy density of approximately 100 Wh/kg (Wiki 2016).

Particularly for large trucks with a gross weight of 40 tons, only a few examples 
of using electric power exist. One example for a specific field application is a shuttle 
between a manufacturer and a nearby supplier (Pieringer 2015). In general, however, 
the usage of large electric trucks currently is impracticable and appears to remain 
inefficient in the medium term, particularly since such vehicles are primarily used for 
long-distance cargo. The usage of small vans in city logistics is becoming increas-
ingly more familiar. However, in practice, the usage of medium-sized vehicles has 
only recently begun; therefore, our study refers to the challenging research question 
of using medium-size EVs that are used for medium- and short-distance cargo.

In this paper, four vehicle types are considered: two EVs and two CVs. We con-
sider the following two electric vehicle types that are mainly used in our field of 
application: EVs with a gross weight of 7.5 and 18 tons. Hereafter, these vehicle 
types are denoted as EV(7.5) and EV(18), respectively. To compare the transporta-
tion plans of EVs with corresponding CVs, two types of CVs with 7.5 tons gross 
weight [denoted as CV(7.5)] and 18 tons gross weight [denoted as CV(18)] are intro-
duced. Table 2 specifies the characteristics of the vehicles considered in this study, 
which correspond to the manufacturers’ specifications (Orten 2016; E-Force One 
AG 2016).

Table 2   Characteristics of CVs 
and EVs

Vehicle type CV(7.5) EV(7.5) CV(18) EV(18)

Traction
Energy type Diesel Electric Diesel Electric
Energy content 70 l 62 kWh 200 l 2 × 120 kWh
Maximal range 450 km 130 km 1200 km 300 km
Weights
Empty weight 3.5 tons 4 tons 9 tons 12 tons
Payload 4 tons 3.5 tons 9 tons 6 tons
Energy consumption
(per 100 km)
Empty vehicle 13 l 44 kWh 18 l 80 kWh
Loaded vehicle 16.2 l 63 kWh 24 l 95 kWh
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It is widely accepted that the following Eq. (1) is an appropriate and reasonably 
simplified approximation for the expected energy consumption Fk(i, j) of a truck k 
carrying a payload of weight qij from a location i to a location j with dij representing 
the travel distance for the non-stop travel between i to j (Xiao et al. 2012; Kopfer 
et al. 2014; Vornhusen and Kopfer 2015).

In Eq. (1), ak denotes the parameter for the energy required by an empty driving 
vehicle of type k per kilometer, whereby bk defines the parameter for the required 
energy per ton payload and kilometer. The values for ak and bk substantially differ 
for CVs and EVs. In Table 3, the values for all considered vehicle types are stand-
ardized by using the conversion factors for the WTW values presented in Table 1. 
In this study, WTW is used for conversion since it provides a more comprehen-
sive and realistic account for energy consumption and CO2 emissions than TTW. 
Table 3 additionally shows the total energy content Ek of the full tank or full battery 
of vehicle k. Finally, the maximum tour length Tk for vehicle k (measured in km) is 
provided in Table 3. For the field applications considered in our study, Tk refers to 
the daily tour length. The directives for maximal working hours and the EC regu-
lations for drivers’ driving hours result in a limitation of the maximal daily travel 
distance of single-manned vehicles. The maximal tour length specified for EVs and 
CVs in Table 3 depends on the average speed of the vehicles during their tour, and 
on the number and duration of stops. Since we assume that smaller vehicles usually 
fulfill tours with more stops than larger vehicles, the maximal tour length is set to 
values that are more restrictive for vehicles with 7.5 ton gross weight than for those 
with 18 ton gross weight. The actual daily travel distance of a CV k is only limited 
by Tk , as its amount of available energy Ek is not restrictive for daily operations. If 
en route recharging is excluded, the tour length of an EV is restricted by Ek , as an 
EV cannot achieve the maximal tour length Tk without recharging its battery.

In this paper, we consider planning situations with and without the possibility of 
en route recharging. The vehicles’ batteries are loaded by 100% when the vehicles are 
leaving the depot. We assume that en route recharging will only be possible at service 
stations for recharging; in other words, the option of recharging at customer locations 
is excluded. During the execution of a delivery tour, only rapid recharge operations at 
special recharge stations are considered; therefore we assume a required time for the 
recharge operation of 1 h, which is acceptable and a reasonable simplification for vehi-
cle routing. However, at recharge stations a battery is only charged to a maximum of 
80% of its total battery capacity since, at the end of a charging operation, the charging 

(1)Fk(i, j) =
(

ak + bk ⋅ qij
)

⋅ dij

Table 3   Parameters of the 
vehicle types

CV(7.5) CV(18) EV(7.5) EV(18)

a
k
 [MJ

km
] 5.772 7.992 4.268 7.760

b
k
 [ MJ

tkm
] 0.3552 0.2960 0.5266 0.2425

E
k
 [MJ] 3108 8880 601 2328

T
k
 [km] 450 500 450 500
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power must be reduced to avoid an overloading of the batteries. Thus, the last phase of a 
charging operation is omitted since it would take the longest time (Pelletier et al. 2017).

4 � Mathematical model

In this study the EVRPTW-R-VC describes an extended vehicle routing problem 
providing an objective function that minimizes the total amount of required energy. 
Furthermore, the vehicles are allowed to visit recharge stations. Every recharge sta-
tion can be visited more than once in a route and, in addition, each recharge station 
can be used in several routes from different vehicles. This requires a specific math-
ematical formulation of the EVRPTW-R-VC to track the vehicle’s load and visiting 
times at the customer nodes within predefined time windows. The EVRPTW-R-VC 
can be represented on a complete, undirected graph G = (N,A) . This graph is speci-
fied through the set of nodes N and the set of arcs A = N × N . The set of nodes 
N = C ∪ D ∪ R represents the customer locations ( C = {1, ..., n} ), the duplicated 
depot ( D = {0, n + 1} ) and the recharge stations ( R = {n + 1 + 1, ..., n + 1 + r} ). At 
the depot, a fleet of vehicles is stationed and given as the set K = {1, ..., k} . Each 
vehicle has a specific loading capacity Qk . Each arc (i, j) ∈ A is associated with a 
travel distance dij and a travel time tij with tij = dij∕v , whereby v defines the constant 
average speed of a vehicle. All nodes i ∈ N have a request of �i , whereby the request 
of the depots and the recharge stations is equal to zero. Furthermore, each node has 
a predefined time window [ta

i
, tb
i
] . To fulfill the unloading operation or the recharg-

ing of a vehicle, each customer node is associated with a service time si ( i ∈ C ), and 
each recharge station with a service time sh ( h ∈ R).

The following decision variables are necessary to formulate the MIP Model for 
the EVRPTW-R-VC. To determine the route (including all possible visits to recharge 
stations) of each vehicle k, the binary variable xijk is introduced with i, j ∈ N and 
k ∈ K . The variable xijk will be equal to one iff a vehicle travels along the arc 
(i, j) ∈ A . The variable xijk cannot be used in a similar way as it is usually used in 
VRP-like models for identifying the sequence of customer visits for each vehicle, 
since the recharge stations substantially differ from customer locations. In contrast 
to customer locations, a recharge station can be visited by a single vehicle once, sev-
eral times or even not at all. Additionally, a recharge station is not exclusively 
assigned to one single vehicle since its service should be accessible for all vehicles; 
i.e. it can be visited by more than one vehicle. That is why a complex construction is 
needed for scheduling the customer visits for each vehicle. For this construction we 
introduce the binary variable zh

ijk
 with h ∈ R, i, j ∈ C ∪ D , k ∈ K. The sequence of 

customer visits of a vehicle k is represented by considering the term 
∑

h∈R zh
ijk

 . 
According to the sequence of customer services of vehicle k, 

∑

h∈R zh
ijk

= 1 denotes 
that a customer j is the direct successor of a customer i; otherwise 

∑

h∈R z
h
ijk

= 0 . 
This means that the above term has the same meaning as a binary variable xijk usu-
ally has in a VRP-like model for indicating that a vehicle directly travels on the link 
from i to j; except that for zh

ijk
 the visit of a recharge station h is allowed in between. 
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Consequently, in our model, it is not possible that a vehicle visits on its way from a 
customer location to its direct successor two recharge stations; it can only visit one 
recharge station in between. However, the model below enables that a vehicle can 
come back to a recharge station as often as it seems to be advantageous; addition-
ally, it can freely choose to visit any recharge station at any time, since we allow that 
several vehicles can use a recharge station simultaneously. The binary variable yjk 
indicates whether vehicle k ∈ K visits the customer node j ∈ C ( yjk = 1 ) or not 
( yjk = 0 ). Please note that xijk is defined on N × N while yjk is defined on C × C , 
only. To determine the payload that is transported by vehicle k ∈ K from node i ∈ N 
to node j ∈ N , the decision variable qijk is introduced. For a better understanding 
and in advance to the detailed presentation of the model of the EVRPTW-R-VC, we 
add some more explanations referring to the relationship between xijk and zh

ijk
 . On its 

trip from i ∈ C to the direct successor j ∈ C , it is allowed that a vehicle k ∈ K trav-
els to a recharge station h� ∈ R . As we will be see below, the binary variable zh′

ijk
 will 

be equal to one for this recharge station h′ . If vehicle k ∈ K serves customer node 
j ∈ C directly after customer node i ∈ C without making use of any recharge sta-
tion, then it is meaningless for which recharge station h ∈ R the binary variable zh

ijk
 

will be equal to one. However, there will be exactly one recharge station h with 
zh
ijk

= 1 since 
∑

h∈R z
h
ijk

 has to be equal to one. In other words, 
∑

h∈R z
h
ijk

= 1 opens up 
the possibility to visit a recharge station between two customers, but the decision 
which arc is used by vehicle k ∈ K will be determined by the value of xijk.

The service at node j ∈ C will start at wj . To calculate the energy content of vehi-
cle k ∈ K before it leaves node i ∈ N in direction j ∈ N , the decision variable eijk is 
implemented. The EVRPTW-R-VC is formalized by the model (2)– (30)

subject to

(2)min

n+1+r
∑

i=0

n+1+r
∑

j=0

m
∑

k=1

dij ⋅ (ak ⋅ xijk + bk ⋅ qijk)

(3)
n+1
∑

j=1

n+1+r
∑

h=n+2

zh
0jk

= 1 ∀k ∈ K

(4)
n+1+r
∑

i=0,i≠n+1

n+1+r
∑

h=n+2

zh
in+1k

= 1 ∀k ∈ K

(5)
n
∑

i=0

n+1+r
∑

h=n+2

zh
ijk
−

n+1
∑

i=1

n+1+r
∑

h=n+2

zh
jik

= 0 ∀j ∈ N ⧵ D,∀k ∈ K
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(6)
n+1
∑

i=0

n+1+r
∑

h=n+2

zh
ijk

= yjk ∀j ∈ C, ∀k ∈ K

(7)

m
∑

k=1

yjk = 1 ∀j ∈ C

(8)
n
∑

j=0

�j ⋅ yjk ≤ Qk ∀k ∈ K

(9)xijk +
1

2
⋅

(

xihk + xhjk
)

≥ zh
ijk

∀i, j ∈ N⧵R, h ∈ R, k ∈ K

(10)

xijk +

n+1+r
∑

h=n+2

1

2
⋅

(

xihk + xhjk
)

−

M ⋅

(

1 −

n+1+r
∑

h=n+2

zh
ijk

)

≤ 1 ∀i, j ∈ N ⧵ R, ∀k ∈ K

(11)wi + si + tij −M ⋅ (1 − zh
ijk
) ≤ wj ∀i, j ∈ N ⧵ R, ∀h ∈ R,∀k ∈ K

(12)
wi + si + sh + tih + thj−

M ⋅ (2 − zh
ijk
− xihk) ≤ wj ∀i, j ∈ N ⧵ R,∀h ∈ R, ∀k ∈ K

(13)ta
i
≤ wi ≤ tb

i
∀i ∈ N ⧵ R

(14)xiik = 0 ∀i ∈ N,∀k ∈ K

(15)
n+1+r
∑

i=0

qijk −

n+1+r
∑

i=0

qjik = �j ⋅ yjk ∀j ∈ N ⧵ D,∀k ∈ K

(16)

qihk +M ⋅

(

1 − zh
ijk

)

≥ qhjk ∀i ∈ N ⧵ {R ∪ n + 1},

∀j ∈ N ⧵ {R ∪ 0},

∀h ∈ R,∀k ∈ K
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(17)
n+1+r
∑

h=n+2

Qk ⋅ z
h
ijk

≥ qijk ∀i, j ∈ N ⧵ R, ∀k ∈ K

(18)Qk ⋅ xijk ≥ qijk ∀i, j ∈ N, ∀k ∈ K

(19)
n+1+r
∑

i=0

n+1+r
∑

j=0

dij ⋅ xijk ≤ Tk ∀k ∈ K

(20)

n+1+r
∑

i=0

eijk −

n+1+r
∑

i=1

ejik−

n+1+r
∑

i=0

dij ⋅
(

ak ⋅ xijk + bk ⋅ qijk
)

= 0 ∀j ∈ C,∀k ∈ K

(21)dij ⋅
(

ak ⋅ xijk + bk ⋅ qijk
)

≤ eijk ∀i, j ∈ N,∀k ∈ K

(22)Ek ⋅ x0jk = e0jk ∀j ∈ N, ∀k ∈ K

(23)0.8 ⋅ Ek ⋅ xhjk = ehjk ∀h ∈ R, ∀j ∈ N, ∀k ∈ K

(24)Ek ⋅ xijk ≥ eijk ∀i, j ∈ N, ∀k ∈ K

(25)
n+1+r
∑

h=n+2

Ek ⋅ z
h
ijk

≥ eijk ∀i, j ∈ N ⧵ R, ∀k ∈ K

(26)qijk ≥ 0 ∀i, j ∈ N,∀k ∈ K

(27)wi ≥ 0 ∀i ∈ N

(28)xijk ∈ {0, 1} ∀i, j ∈ N,∀k ∈ K

(29)zh
ijk

∈ {0, 1} ∀i, j ∈ N,∀h ∈ R,∀k ∈ K

(30)yik ∈ {0, 1} ∀i ∈ N,∀k ∈ K



805

1 3

Energy vehicle routing problem for differently sized and powered…

The objective function (2) minimizes the total amount of energy used. Constraints 
(3) to (7) are trivial equations usually used in the same way for modeling typical 
VRPs; except that in (3) to (7) the term ∑

h∈R z
h
ijk

 is used instead of a binary variable 
xijk . Constraints (3) ensure that all vehicles will leave the starting depot; Constraints 
(4) guarantee that all vehicles will end their route at the duplicated ending depot 
n + 1 . If a vehicle travels to a node, it must leave this node as well (Eq. (5)). Each 
customer will be served exactly once by one vehicle due to Constraints (6) and (7). 
The total loading capacity of a vehicle k ∈ K will not be exceeded (Constraints (8)). 
Constraints (9) and (10) specify the relationship between xijk and zh

ijk
 . Due to Con-

straints (3) - (7), the decision variable zh
ijk

 will be set to one for exactly one h ∈ R if 
vehicle k serves customer i directly before j. Constraints (9) postulate that, if a vehi-
cle k has customer j as direct successor of customer i in its route, then this vehicle k 
must go directly from node i to node j, or it must use a recharge station h. Moreover, 
Constraints (9) require that this vehicle k has to chose exactly that recharge station h′ 
which has caused 

∑

h∈R z
h
ijk

 to become equal to one. To determine whether a vehicle 
travels in between to the recharge station h′ or not, the sum of the decision variables 
xih′k and xh′jk or alternatively xijk must be equal to one. Constraints (10) prohibit that 
vehicles do both, going the direct way from i to j and visiting a recharge station. The 
time windows are observed by Constraints (11)–(13). Constraints (11) refer to the 
case that no recharge station is used between the visits of customers i and j. In this 
case a formulation similar to the widespread Big M formulation for time windows 
within VRPs is used. Constraints (12) consider the situation that a recharge station is 
used between visiting customer i and j. In this case, which is equivalent to the fact 
that both variables zh

ijk
 and xijk are equal to one, the time for traveling to and from the 

recharge station as well as the time for the recharging process itself have to be 
included in the Big M formulation for the time windows. The model does not set a 
service starting time at a recharge station. This allows to build subtours that are 
starting and ending at any of these recharge stations. Furthermore, a vehicle can visit 
a recharge station more than one time. Constraints (13) ensure that all nodes are vis-
ited during their predefined time windows. Constraints (14) forbid that xiik becomes 
equal to one. Constraints (15) are responsible for balancing the flow of goods and 
for determining the quantity of goods that are transported between customer loca-
tions and/or recharge stations. Note that Eq. (15) are not sufficient for balancing the 
flow at recharge stations because only the sum of goods reaching a recharge station 
and the sum of goods leaving the recharge station are balanced. Equation (16) are 
needed additionally because a vehicle can visit a recharge station more than one 
time. If a vehicle visits a recharge station, the quantity of goods that is transported to 
this station must be equal to the quantity of goods that will be transported from this 
station. This requirement is ensured through Eq. (16) separately for each arrival at a 
recharge station. Constraints (17) and (18) are needed to prohibit that flows qijk will 
be installed on arcs which are never traversed by any vehicle. The maximal travel 
distance of a vehicle cannot be transcended (Eq. (19)). The energy consumption of a 
vehicle k on an arc (i, j) is represented by Constraints (20). Due to Constraints (21), 
(22), (23), (24) and (25) the decision variable eijk ranges between the required energy 
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to travel along an arc (i,  j) and the maximal provided energy Ek . Furthermore, the 
total energy content respectively 80% of the maximal energy content of a vehicle is 
available after leaving the depot respectively visiting a recharge station. Constraints 
(26) and (27) exclude negative payload and service starting times, respectively. The 
binary decision variables are set through Constraints (28)–(30).

The above MIP formulation is used for solving test instances in case of energy 
minimization. Additionally, we solve and compare the test instances in case of mini-
mizing the total travel distance, which is equivalent to minimizing the total travel 
time and to minimizing the total drivers’ working time without waiting time. In case 
of comparing times, the required time to travel over arcs, the time for service opera-
tions at customer nodes and the required time for recharge operations are summed 
in the objective function. Consequently, the following formulation (31) is used for 
travel time minimization.

5 � Computational study

In this section, a computational study is provided to analyze the utilization of CVs 
and EVs of different size and capacity. Therefore, specific instances with typical 
characteristics for urban and local rural transport are created. The optimal transpor-
tation plans of these instances are generated by solving the MIP model from Sect. 4 
using the commercial solver IBM ILOG CPLEX 12.6.1. CPLEX is run on a com-
puter with an Intel(R) Core(TM) i7-6500U CPU, 8GB random access memory and a 
Windows 10 operating system.

5.1 � General construction of test cases

The general setting that is valid for the computational study is as follows. First, we 
have generated 10 different generic problem instances with ten customer nodes. The 
zone of interest of all instances has a size of 50 × 50 km; in other words, all rel-
evant locations are positioned in the square [0, 50] × [0, 50]. One depot is main-
tained and located at the middle of the square (at the coordinates (25, 25) for the 
generic instances). The customer locations are randomly scattered in the square. 
Each customer node has a randomly generated demand that varies within the inter-
val ]0to, 3to]. The time windows of the customer nodes i ∈ C are randomly gener-
ated within the interval [t0i, 500 – tin+1 – si] and have a duration of 10 min. The time 
window of the depot is set open. The service time at a customer node is defined to 
be 15 min. Then, based on the initial set of 10 generic problem instances, specific 
test cases are generated by variations.

The first type of variation is provided by considering vehicles of different size 
and powering. There are four vehicle types, as shown in Table 2. For each of these 
vehicle types, we consider one homogeneous fleet. Each homogeneous vehicle fleet 

(31)min

n+1+r
∑

i=0

n+1+r
∑

j=0

m
∑

k=1

(

tij + sj
)

⋅ xijk
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consists of 10 vehicles of its specific type. Additionally, a heterogeneous fleet is 
considered. Since we want to investigate the maximal potential of mixed fleets, we 
ensure that there is no lack of vehicles of any type when the heterogeneous fleet is 
used; therefore, the heterogeneous vehicle fleet consists of 10 vehicles of each vehi-
cle type. In other words, we assume an ideal heterogeneous fleet whose potential for 
vehicle routing allows the generation of a reference value for mixed fleets that can 
only be achieved by other heterogeneous fleets for a given problem instance if the 
number of available vehicles of any type does not become restrictive for solving the 
given instance. We admit that carriers cannot change the composition of their fleet 
from day to day. However, carriers may approximate the reference value of the ideal 
fleet by operating a fleet that is well adapted to their own order situation. Addition-
ally, carriers can improve the conformity of the used vehicle types by subcontract-
ing a portion of their transportation requests (Wang et al. 2014). In the following, a 
homogeneous fleet with EVs of type EV(7.5) and EV(18) is denoted as E-HOM(7.5) 
and E-HOM(18) , respectively. Analogously, a homogeneous fleet with CVs of size 
7.5 tons and 18 tons is denoted as C-HOM(7.5) and C-HOM(18) , respectively. The 
heterogeneous fleet composed of all the above vehicle types is called HET.

The second type of variation for generating test cases is provided by scaling 
the square of relevant locations by a gauge factor g ( g = 1, 2, 3, or 4). Scaling the 
square means that the side length SL of the square is stretched by the gauge fac-
tor. The depot remains in the middle of the square. All distances from the depot to 
relevant locations (i.e. customer locations and recharge stations) are also stretched 
by the gauge factor. Of course, the distances between all locations are consistently 
stretched, too. The distance from the depot to a customer location is denoted as cos-
tumer distance. Since the distance from the depot to a location in the corner of the 
square is 1∕2 ⋅ SL ⋅

√

2 , the maximal customer distance amounts to 35, 70, 105 and 
140 km for g = 1, 2, 3, and 4, respectively.

In addition to the above variations for generating test cases, the option of including 
recharge stations is considered. The time windows of the recharge stations are set open; 
and the time for recharging is set to 60 min. The demand �h , h ∈ R , is equal to zero. The 
recharge stations are located within the considered square, but they should not be located 
close to the depot; therefore, they are required to be located outside of an inner circle that 
identifies the prohibited area for recharge stations. The center of the inner circle is pro-
vided by the depot, and its radius is equal to half of the side length of the original square. 
Furthermore, the effect of an augmentation of the battery-size of EVs is analyzed.

Two different objective functions are considered: energy minimization (Scenario 
E) and travel time minimization (Scenario T). For energy minimization, the objec-
tive function (2) from Sect.  4 is used. For travel time minimization, the objective 
function (31) is used. The assignment of vehicle types to the time-optimal routes of 
Scenario T is determined by choosing for each route the most energy efficient vehi-
cle type out of all feasible types (with respect to the driving range and the capacity). 
The computational experiments are based on the vehicle characteristics shown in 
Tables 2 and 3. Five different vehicle fleets are investigated: the homogeneous fleets 
E-HOM(7.5), E-HOM(18), C-HOM(7.5), and C-HOM(18) as well as the heteroge-
neous fleet HET composed of these four homogeneous fleets.
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Nongeneric (i.e. real) test cases are generated by considering the 10 generic test 
instances for each gauge factor ( g = 1, 2, 3, and 4) and each of the five different 
fleets. The set of 10 test cases for a fixed value of g and a specific fleet is denoted as 
test-set (g, F). Altogether, there are 200 test cases for each Scenario E and T.

5.2 � Instances without recharge stations

In this section, test cases without the option of recharging EVs are considered. 
All 400 test cases (for Scenario T and E together) could be solved to optimality 
within an average computation time of 2.4 s for Scenario T and 5.5 s for Scenario 
E. Table 4 shows the portions of different types of vehicles used by the heterogene-
ous fleet HET in case of Scenario T. The first column ( Vtotal ) denotes the number 
of overall used vehicles; and the next four columns show the numbers of vehicles 
used for each single vehicle type contained in HET. For both Scenarios T and E, 
it can be observed that all available vehicle types come into operation for request 
fulfillment by HET for any value of g. Furthermore, it can be seen that the num-
ber of totally used vehicles decreases if the customer distances increase; concur-
rently, the portion of EVs decreases, whereas the portion of used CVs increases. 
This might be caused by the fact that, for longer customer distances, it is profit-
able to make use of the CVs’ ability to execute large tours with more customers, 
while for test instances with shorter customer distances, it is more beneficial to 
generate smaller tours which are fulfilled by additional energy-efficient vehicles. 
EV(18) is the most used vehicle type in Scenario T (Table 5). This shows that, on 
the one hand, the aggregated customer demand and tour length of most travel time-
optimal routes are too high for vehicles with 7.5 tons gross weight, while on the 
other hand, vehicles of type EV(18) are sufficient (with respect to the driving range 
(maximal 300 km for an empty vehicle) and payload (maximal 6 tons)) to fulfill 
most of the generated travel time-optimal routes. In Scenario E (Table 7), however, 
vehicles of type EV(18) are hardly used and replaced by vehicles of types EV(7.5) 
and CV(7.5), since the smaller vehicles are more energy efficient than the vehicles 
of type EV(18).

For homogeneous fleets, the number of used vehicles is shown in Tables 5 and 8. 
Since the driving range of an EV(7.5) is limited to 130 km, it can only be warranted 
for g = 1 (i.e. a maximum customer distance of 35 km) that all test cases are feasi-
ble for E-HOM(7.5). For all other fleets, there is no infeasibility, since the driving 
range is sufficient to install a pendulum tour from the depot to any customer location 

Table 4   Scenario T: number of 
used vehicles of heterogeneous 
fleet HET 

g V (total) EV(7.5) EV(18) CV(7.5) CV(18)

1 3.5 1.5 1.2 0.3 0.5
2 3.4 0.7 1.0 1.0 0.7
3 3.3 0.5 0.9 1.1 0.8
4 3.2 0.2 0.8 1.2 1.0
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for any value of g. For g > 1 and E-HOM(7.5), the number of feasible test cases is 
shown in brackets.

Similar to HET, the number of CVs used in C-HOM(18) decreases, and the num-
ber of EVs used in E-HOM(18) increases when the customer distances increase. 
C-HOM(7.5) needs more vehicles than E-HOM(18), although the driving range of 
vehicles from C-HOM(7.5) is larger. In this case, the higher payload of E-HOM(18) 
is decisive.

The rows “Time”, respectively “Energy” in Table 6 denote the total travel times 
of the routes of the optimal solutions respectively the amount of energy needed for 
fulfilling these routes.

Scenario T applies the same objective function (travel time minimization) for 
all vehicle types. Consequently, it is always beneficial to choose a fleet composed 
of vehicles with a high potential (with respect to both driving range and loading 
capacity) for transportation planning. That is why, the travel time-optimal values in 
Table 6 are equal for C-HOM(18) and HET. In all other cases, fleets with vehicles of 
less potential lead to a ranking with more or less substantially worse optimal values 
for the travel time. Refer to Table 6 for a comparison of the optimal values of the 
travel times. If g = 1 , all relevant locations are near (below 35 km) the depot; in this 
case, using E-HOM(7.5) leads to the longest travel times (i.e. worst objective value) 
but the lowest energy consumption, compared with all other homogeneous fleets.

Especially, the comparison of the two fleets C-HOM(7.5) and E-HOM(18) with 
diverging capabilities (with respect to driving range and payload) might be suspense-
ful. It can be seen that (for Scenario T averaged over all values of g) the optimal 
values for the total travel time for E-HOM(18) are 11% better than for C-HOM(7.5). 

Table 5   Scenario T: number of 
used vehicles of homogeneous 
fleets

g EV(7.5) EV(18) CV(7.5) CV(18)

1 5.3 3.8 4.5 3.5
2 6.1 (7) 3.8 4.5 3.4
3 – (0) 3.7 4.5 3.3
4 – (0) 4.1 4.6 3.2

Table 6   Scenario T: values for minimal travel time and resulting energy consumption

g HET E-HOM (7.5) E-HOM (18) C-HOM (7.5) C-HOM (18)

1 Time 367.93 426.60 373.45 404.33 367.93
Energy 1516.49 1371.96 1831.27 1608.60 1869.11

2 Time 575.42 – 591.81 654.21 575.42
Energy 3165.59 – 3626.05 3194.39 3666.33

3 Time 783.25 – 808.13 903.19 783.25
Energy 4804.47 – 5404.22 4771.79 5470.31

4 Time 985.52 – 1074.10 1155.54 985.52
Energy 6397.89 – 7549.22 6345.26 7212.95
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This result is caused by the higher payload of E-HOM(18). However, Table 6 shows 
that the fleet C-HOM(7.5) is surprisingly more energy efficient for time-optimal 
routes than any other homogeneous fleet (except E-HOM(7.5) for g = 1 ; see above). 
In particular, C-HOM(7.5) needs 18% less energy than E-HOM(18). This result 
shows that vehicles of type CV(7.5) can take advantage of their low dead weight. 
For vehicle routing problems, most planners apply (working-) time minimiza-
tion because they believe minimizing their transportation costs in this way. Conse-
quently, for the criterion that is primarily applied in practice (time), C-HOM(7.5) is 
by far the most energy efficient homogeneous fleet in typical field applications for 
mid-sized cargo on short and medium travel distances.

It may also be interesting to compare the two vehicles with the identical gross 
weight of 18 tons for Scenario T. Averaged over all values of g, C-HOM(18) is 
6% less time consuming than E-HOM(18). With respect to energy consumption, 
E-HOM(18) performs better for short customer distances ( g = 1 and g = 2 ), while 
C-HOM(18) performs better for longer customer distances ( g = 3 and g = 4 ). 
However, it is, surprising that, not only in terms of travel time but also in terms of 
energy consumption, C-HOM(18) is, on average, slightly superior (by 1%) to the 
E-HOM(18). This result is caused by the large driving range and the high loading 
capacity of C-HOM(18), which enable a more efficient bundling with a reduced 
number of required vehicles, mainly for g = 4.

Tables 7, 8 and 9 show the computational results for Scenario E. Since the objec-
tive function of Scenario E is composed of different vehicle-specific terms for the 
energy consumption of different types of vehicles, the effect of choosing fleets with 
more powerful vehicles (with respect to range and payload) cannot be predicted sim-
ply. Nevertheless, as a matter of course, the best values of the objective function 
will definitively always be achieved for HET, since HET comprises all other vehi-
cle types; consequently, each solution for any homogeneous fleet is also contained 
in the solution space of HET. The computational experiments performed for Sce-
nario E are shown in Table  9. The results of these experiments demonstrate that 

Table 7   Scenario E: number of 
used vehicles of heterogeneous 
fleet HET 

g V(total) EV(7.5) EV(18) CV(7.5) CV(18)

1 4.9 4.2 0.0 0.4 0.3
2 5.0 3.5 0.0 1.0 0.5
3 4.7 1.8 0.1 2.4 0.4
4 4.1 0.8 0.3 2.5 0.5

Table 8   Scenario E: number of 
used vehicles of homogeneous 
fleets

g EV(7.5) EV(18) CV(7.5) CV(18)

1 5.5 3.8 4.8 3.6
2 6.3 (7) 3.9 4.8 3.5
3 – (0) 3.8 4.7 3.4
4 – (0) 4.2 4.7 3.2
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the superiority of HET compared with heterogeneous fleets is greater than that for 
Scenario T. HET outperforms E-HOM(7.5) (for its solely applicable value of the 
gauge factor g = 1 ) not only with respect to energy (which is self-evident since this 
is the objective function) but also with respect to travel time. HET also outperforms 
C-HOM(7.5) with respect to both energy consumptions and travel time. It further 
turns out that the ranking of homogeneous fleets for Scenario E is the same as for 
Scenario T. Averaged on all values of g, HET needs 7.48, 19.23 and 20.15% less 
energy than C-HOM(7.5), C-HOM(18), and E-HOM(18), respectively. Considering 
homogeneous fleets only, it can be seen that E-HOM(7.5) is the most energy effi-
cient fleet for g = 1 in Scenario E. For all other values of g, C-HOM(7.5) has turned 
out to be the most energy efficient homogeneous fleet.

Surprisingly, for g = 3 and g = 4 the amount of energy consumed by C-HOM(7.5) 
in Scenario E is less than the amount of energy used by HET in Scenario T. This 
makes the use of C-HOM(7.5) in energy minimized routes an attractive alternative 
to using HET in travel time minimized routes, provided that the customer demands 
are below 3 tons and customer locations are located between 70 and 140 km away 
from the depot.

Additionally, we performed experiments on a truck-trailer combination consisting 
of a CV(18) and a trailer of 18 tons gross weight. However, in case of adding such a 
truck-trailer combination as a fifth vehicle type to the heterogeneous fleet, this vehi-
cle type is not used in Scenario E. Furthermore, the travel times of optimal solutions 
are identical for Scenario T and Scenario E. Finally, the minimal travel times of the 
truck-trailer combination are nearly equal to the values obtained for C-HOM(18) in 
Scenario T. In sum, we observe that the truck-trailer combination cannot exploit its 

Table 9   Scenario E: values for minimal energy consumption and resulting travel time

g HET E-HOM (7.5) E-HOM (18) C-HOM (7.5) C-HOM 
(18)

1 Time 401.88 427.38 373.45 404.78 368.17
Energy 1344.33 1369.66 1831.27 1602.18 1864.23

2 Time 640.68 – 591.82 655.21 575.90
Energy 2824.38 – 3623.89 3183.44 3656.56

3 Time 855.21 – 808.14 904.54 783.96
Energy 4484.59 – 5400.98 4754.34 5455.65

4 Time 1046.55 – 1074.64 1156.06 985.52
Energy 6038.35 – 7541.96 6339.13 7212.95

Table 10   Scenario E vs. 
Scenario T: relative difference 
((E-T)/T) of characteristic values

Fleet Vehicle (%) Time (%) Energy (%)

HET 39.55 8.56 – 7.51
E-HOM(7.5) 3.77 0.18 – 0.17
E-HOM(18) 1.95 0.02 – 0.07
C-HOM(7.5) 4.97 0.11 – 0.26
C-HOM(18) 2.24 0.05 – 0.16
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advantage of having a high capacity. It is simply too large for such small customer 
demands and such short customer distances as considered in our test cases.

Tables 6 and 9 demonstrate that the objective values of the optimal solutions are 
not exactly proportional to the value of the gauge factor. In Table 6, the travel times 
deviate for E-HOM(18) by – 1,  + 3, + 3% from the proportional values for g = 2 , 
g = 3 , g = 4 , respectively. For C-HOM(7.5) the deviations are – 1, – 1, – 1%, and for 
C-HOM(18) the values are – 2, – 3, – 3%, respectively. In general, the increase of 
travel times for E-HOM(18) tends to values that are slightly higher than proportional 
in relation to the growth of the customer distances, whereas the increase for homo-
geneous fleets with CVs is less than proportional.

To compare the energy versus travel time minimization, the relative deviations 
of Scenario E to Scenario T (i.e.((E-T)/T)) are presented in Table 10 for the num-
ber of used vehicles, the total travel time and the amounts of energy used. Table 10 
shows that the values derived for Scenario T and Scenario E are similar unless HET 
is used. For HET, the potential for energy reduction is tremendous if Scenario E 
instead of Scenario T is considered. This finding is consistent with the insights 
derived from the existing research on green vehicle routing for heterogeneous fleets 
(see e.g. (Kopfer et al., 2014)).

5.3 � Variation of the battery size

Recently, the market for commercial vehicles has been providing flexibility with 
respect to the energy capacity of EVs. In particular, trucks with modular battery 
systems are offered (oV 2015, 2016). These modular battery systems consist of 
one, two or more identical batteries installed in an electric powered truck.

To vary the characteristics of the EVs considered in Sect. 3, an alternative type 
of EVs with a gross weight of 7.5 tons and an alternative type of EVs with 18 
tons gross weight are introduced. While vehicles of type EV(7.5) and EV(18) are 
standard vehicles equipped with normal battery size, the vehicles of the alterna-
tive types (denoted as DEV(7.5) and DEV(18), respectively) are equipped with a 
modular system containing more battery capacity. This results in a nearly doubled 
battery capacity for DEV(7.5) and a 50% higher battery capacity for DEV(18). A 
homogeneous fleet consisting of vehicles of type DEV(7.5) respectively DEV(18) 
is denoted as DE-HOM(7.5) respectively DE-HOM(18).

The maximum driving range of a DEV(7.5) is drastically increased to 250 km, 
in comparison to 130 km for an EV(7.5); the range of a DEV(18) is increased 
to 430 km compared to 300 km for an EV(18). However, the maximal payload 
is reduced for both vehicle types due to the weight of the additional battery. 

Table 11   Characteristics and 
parameters of DEV(7.5) and 
DEV(18)

Empty 
weight [to]

Payload [to] a
k

b
k

E
k

[
MJ

km
] [

MJ

tkm
] [MJ]

DEV(7.5) 4.5 3.0 4.531 0.5266 1086
DEV(18) 13.2 4.8 8.051 0.2425 3492
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Table 11 shows the relevant characteristics of vehicles of type DEV(7.5) and type 
DEV(18).

In this section, the effect of augmenting the battery size of EVs is analyzed. 
All test cases for g = 1, 2, and 3 become feasible for DE-HOM(7.5), since the 
driving range of a DEV(7.5) is sufficient to realize pendulum tours for test sets 
with g = 3 ; i.e. with a maximal customer distance to a maximum of 105 km. The 
computational experiments have shown that two test cases were even feasible for 
g = 4 . A comparison between DE-HOM(7.5) and E-HOM(7.5) is only possible 
for g = 1 , since for other values of g, the test cases are infeasible for E-HOM(7.5). 
For g = 1 , the augmentation of the battery capacity worsens the results for Sce-
nario T; specifically, the value of the objective function (needed total travel 
time) is 5.6% higher than for EV(7.5), while the amount of energy used also 
increases. For Scenario E, the comparison shows that DE-HOM(7.5) needs 12% 
more energy than E-HOM(7.5) for g = 1 . Compared to C-HOM(7.5), however, 
DEV(7.5) needs 2.5% less energy averaged on g = 1, 2, and 3. The optimal values 
of HET nearly remain unchanged (+ 0.3% for Scenario T and −0.3 % for Scenario 
E) if vehicles of type EV(7.5) are replaced by vehicles of type DEV(7.5).

The effects of augmenting the battery size of EVs with 18 tons gross weight is 
considered for Scenarios T and E.

Table  12 shows the relative difference of the optimal objective values 
achieved for DE-HOM(18) compared to the optimal values for E-HOM(18) (i.e. 
(DE-HOM – E-HOM) / E-HOM) for both scenarios. Furthermore, the relative 
difference for replacing E-HOM(18) by DE-HOM(18) in HET is shown. It turns 
out that all values are positive; in other words, the objective values obtained for 

Table 12   Scenarios T and E: 
relative deviation to E-HOM(18) 
and HET caused by battery 
augmentation

g Scenario T Scenario E

E-HOM(18) (%) HET (%) E-HOM(18) (%) HET (%)

1 3.49 0.27 9.00 0.00
2 4.49 0.35 9.30 0.00
3 5.12 0.39 9.51 0.02
4 0.82 0.41 4.56 0.36

Table 13   Scenario E: relative deviations from C-HOM(7.5)

g C-HOM(7.5) 
(%)

E-HOM(7.5) 
(%)

DE-HOM(7.5) 
(%)

C-HOM(18) 
(%)

E-HOM(18) 
(%)

DE-HOM(18) 
(%)

1 0.00 − 14.51 − 4.40 16.36 14.30 24.59
2 0.00 − − 3.77 14.86 13.84 24.42
3 0.00 − − 0.94 14.75 13.60 24.40
4 0.00 − − 13.78 18.97 24.40
Ø 0.00 − − 14.55 15.86 24.43
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Scenarios T and E could not be improved for any test set. This finding shows 
that the battery capacity of vehicles of type EV(18) is well-suited for field appli-
cations with customer demands below 3 tons and customer distances as much as 
140 km. Since the vehicle characteristics in Table 2 are taken from the attrib-
utes of real EVs, which constitute standard types in the market for commercial 
vehicles, this result affirms that the 18 ton-EVs offered by the market are well-
configured for medium- and short-distance cargo.

Table  13 summarizes the results obtained for the experiments which have 
been performed on test cases without recharge stations. This table uses the 
energy consumption of C-HOM(7.5) as the reference value and, for all other 
homogeneous fleets, shows the relative difference of their energy consumption 
to the amount of energy consumed by C-HOM(7.5). For Scenario T, the results 
are similar since the deviations between Scenarios E and T are only small for 
homogeneous fleets (cf. Table  10). To obtain meaningful entries for a mixed 
fleet in Table 13, HET should be extended by including DE-HOM(7.5) and DE-
HOM(18). The test sets for the extended heterogeneous fleet are not considered 
in Table 13 since solving the test cases of these test sets is very time consuming. 
However, it is self-evident that the extended heterogeneous fleet would outper-
form each homogeneous fleet in Table 13.

5.4 � Instances with recharge stations

The option of recharging vehicle batteries en route extends the driving range 
of EVs; thus, the solution space for routing a fleet consisting of EVs is enlarged. 
Consequently, some of the infeasible test cases of Scenario T and Scenario E may 
become feasible. First, we modify the planning situation of the test cases analyzed 
in Sect. 5.2 by providing randomly located recharge stations. Therefore, we modify 
each planning situation five times; in other words, we randomly generate 5 coor-
dinates for the first and 5 coordinates for the second recharge station and include 
one respectively two of them into the instances. For our analysis, we have utilized 
the average of the 5 solutions obtained for each scenario. Expanding Scenario T 
respectively Scenario E by the existence of one recharge station yields Scenario 
T-1 respectively Scenario E-1. Extending T respectively E by two recharge stations 
yields Scenario T-2 respectively Scenario E-2. Second, we add four recharge stations 
to the planning situation described by the generic problem instances. The recharge 
stations of the generic instances are located at the coordinates (10,  10), (10,  40), 
(40, 10) and (40, 40). For test cases with g > 1 , the positions of the recharge sta-
tions are consistently adjusted to the scaling of the square of relevant locations. The 
positions and arrangement of the recharge stations guarantee that all test cases will 
be feasible for E-HOM(7.5) so long as g ≤ 3 . Scenarios extended by four recharge 
stations are denoted as T-4 and E-4, respectively. The additional time for recharging 
is considered in scenarios with recharge stations.

In a first computational study, the scenarios with randomly located recharge sta-
tions (i.e. T-1, E-1, T-2, and E-2) are analyzed. For Scenarios T-1 and E-1, all test 
cases could be solved to optimality without any gap. The average computation time 
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for solving the test cases of T-1 amounts to 27.6 s (compared to 2.4 s for Scenario 
T). The average computation time for Scenario E-1 is even higher. It amounts to 
45.2 s. The existence of one randomly located research station only has the follow-
ing effects. In 2 of 5 planning situations, all test cases become feasible for test-set 
(2, E-HOM(7.5)). For these feasible test sets, a comparison of E-HOM(7.5) with C-
HOM(7.5) shows that C-HOM(7.5) averagely needs 1.8 vehicles less and 19.3% less 
time. However, E-HOM(7.5) needs 7.8% less energy than C-HOM(7.5).

For Scenarios T-2 and E-2 the maximal computation time was set to 3 h. The 
average computation time for Scenario T-2 amounts to 839.0 s; and all test cases can 
be solved to optimality. For Scenario E-2 the average computation time increases to 
1034.6 s; and there are the following optimality gaps. For DE-HOM(7.5) and DE-
HOM(18) one test set with g = 3 exhibits an optimality gap of 0.07% and 0.02%, 
respectively (averaged on all generic problem instances). For HET, 32 of 40 test 
cases have been solved to optimality. The test-sets with optimality gaps exhibit gaps 
of 0.03, 0.81 and 0.35% for g = 1, 2, and 3, respectively.

Adding a second randomly located recharge station has the following effects. For 
E-HOM(7.5), in 2 of 5 planning situations all test cases become feasible for the test-
set with g = 2 . Comparing E-2 with E-1, on average, a reduction of 0.1 vehicles, 
1.2% energy, and 0.3% time is achieved. Only HET and E-HOM(7.5) slightly benefit 
from the option to use two recharge stations. The travel time cannot be reduced by 
providing a second recharge station; and the total energy consumption can only be 
reduced for three test cases by less than 0.5%. In case of T-2, the values of the objec-
tive function of the solutions obtained for one recharge station cannot be improved 
for any test case. Obviously, the time lost by recharging cannot be compensated by 
the enlarged driving range and more efficient routing of EVs which might be ena-
bled by the second recharge station.

Table 14 summarizes the comparison of Scenario E-1 and E-2 with Scenario E; 
i.e. it demonstrates the benefits possibly achieved by adding recharge stations to 
the generic problem instances. In particular, for characteristic values of the optimal 
solutions obtained for Scenarios E-1 and E-2, Table 14 shows the average relative 
differences to the values obtained for Scenario E. The values in Table 14 are aver-
aged for all values of g and for all test sets with differently located recharge stations. 
Homogeneous fleets with CVs are not included in Table 14, since they have no need 
for and no benefit from refueling. For E-HOM(7.5), only the results of the feasible 

Table 14   Scenario E-1 and E-2: relative deviation to Scenario E

Fleet One recharge station (E-1) Two recharge station (E-2)

Vehicle (%) RS Time (%) Energy (%) Vehicle (%) RS Time (%) Energy (%)

HET 0.21 + 0.26 2.62 – 0.64 0.64 + 0.53 5.47 – 1.32
E-HOM(7.5) 0.00 + 0.00 0.00 0.00 0.00 + 0.00 0.00 0.00
E-HOM(18) – 1.02 + 0.09 0.24 – 0.57 – 1.53 + 0.12 0.33 – 0.69
DE-HOM(7.5) – 0.92 + 0.48 0.17 – 0.32 – 1.22 + 0.45 0.20 – 0.43
DE-HOM(18) 0.00 + 0.01 0.03 0.00 0.00 + 0.01 0.03 0.00
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test cases are compared with each other. In sum, the conclusion is that the randomly 
located recharge stations are seldom used. Using these stations only has a small pos-
itive effect on the objective function.

For Scenarios T-4 and E-4, the maximal computation time was also set to 3 h. 
Except for five test cases of test set (4, E-HOM(7.5)), all test cases are feasible. All 
feasible test cases could successfully be solved but none of the test sets could be 
solved without optimization gap. Solving Scenario E-4 for HET, E-HOM(7.5), and 
E-HOM(18) yields an optimization gap of averagely 8.9, 7.7 and 3.0%, respectively. 
Nevertheless, the relative improvement (i.e. deviation of Scenario E-4 to Scenario 
E) achieved for HET, E-HOM(7.5), and E-HOM(18) amounts to 3.0, 0.0 and 1.2%, 
respectively. The homogeneous fleet E-HOM(7.5) does not achieve any improve-
ment since for this fleet the comparison of the scenarios is only possible for g = 1 . 
It turned out that none of the fleets made use of a recharge station for g = 1 . For 
g = 2 and g = 3 , however, E-HOM(7.5) frequently uses recharge stations and even 
is superior to DE-HOM(7.5), which is the most energy efficient homogeneous fleet 
for g = 2 and g = 3 in Scenario E. Actually, using E-HOM(7.5) in Scenario E-4 out-
performs the reference values of C-HOM(7.5) in Scenario E (cf. Table 13) by 11.9% 
for g = 2 and 5.7% for g = 3 . However, using E-HOM(7.5) with the option of four 
recharge stations is by far the least time-efficient fulfillment mode; it needs 41% 
more time (for g = 3 ) and 70% more time (for g = 4 ) than E-HOM(18) without the 
option of recharging. Consequently, the energy costs decrease, while the labor costs 
of routes drastically increase due to the drivers’ time spent on tour fulfillment. An 
analysis of EVs and CVs with respect to their total costs composed of cost factors 
such as energy costs and labor cost can be found in Goeke and Schneider (2015).

The outcome of the first computational study for including recharge stations has 
shown that the test cases of Scenarios T-2, E-2, and E-4 could not be solved to opti-
mality. In order to get more reliable data through a second computational study, Sce-
nario E-4 is considered for test cases with 8 customer locations; in other words, the 
10 generic problem instances from Sect. 5.1 are reduced from ten randomly located 
customers to eight randomly located customers.

In case of eight customers, all feasible test cases for E-HOM(7.5) and E-HOM(18) 
can be solved to optimality within 16 minutes, on average. Only four test cases of 
(4, E-HOM(7.5)) are infeasible. The experiments for HET yield an optimality gap 
of 3.1% and a computation time of almost 2 h, on average. The relative improve-
ment achieved by inserting four recharge stations amounts to 3.4, 0.0 and 1.2%, for 
HET, E-HOM(7.5), and E-HOM(18), respectively; i.e., the results are similar to 
those obtained for Scenario E-4 with ten customers. Similar to the test cases with 
ten customers, recharge stations have no effect for g = 1 ; they are only used in one 
single test case. Like in case of ten customers, E-HOM(7.5) frequently uses recharge 
stations, especially for g = 2 and g = 3 . Due to the availability of four recharge sta-
tions, which are nearly perfectly located, E-HOM(7.5) is the most energy efficient 
homogeneous fleet for g = 1, 2, and 3. However, using E-HOM(7.5) in Scenario E-4 
is by far more time consuming than using any other fleet in any other Scenario.
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5.5 � Configuration of efficient fleets

This section concentrates on scenarios without recharge stations and on the rank-
ing of all homogeneous fleets introduced within these scenarios. Furthermore, the 
efficiency of the homogeneous fleets is set in relation to HET (as introduced in 
Sect. 5.2) and to two newly introduced heterogeneous fleets with a realistic number 
of available vehicles. Scenario T applies the same objective function (travel time 
minimization) to all vehicle types; therefore, the ranking of fleets considering the 
time efficiency only depends on the differences between the fleets with respect to 
their solution space. Let SP(F) denote the solution space for routing vehicles of a 
fleet F. Due to a greater driving range and a higher vehicle capacity, it holds that 
SP(HET) > SP(C-HOM(18)) > SP(E-HOM(18)) > SP(E-HOM(7.5)) and SP(C-
HOM(18)) > SP(C-HOM(7.5)) > SP(E-HOM(7.5)). The only fleets with overlap-
ping solution spaces are E-HOM(18) and C-HOM(7.5). The quality of the optimal 
solutions for Scenario T will always be ranked according to the above relations for 
the size of the fleets. Furthermore, replacing a vehicle of a given fleet by another 
vehicle with more potential will increase the solution quality. Moreover, adding a 
vehicle to a homogeneous fleet or extending a heterogeneous fleet by an additional 
vehicle type will also increase the solution quality. Things are more complicated for 
Scenario E since the objective function for energy minimization is composed of dif-
ferent terms for different vehicle types. Predicting the ranking of fleets or even find-
ing a fleet which outperforms all other fleets (with respect to some given criterion) is 
a very challenging task for Scenario E.

All heterogeneous fleets considered in Sects. 5.2 and 5.3 are ideal fleets with 10 
vehicles for each of their vehicle types. In this section, heterogeneous fleets with a 
reasonable number of vehicles are considered. The experiments in Sect.  5.2 have 
shown that six vehicles are sufficient to guarantee the feasibility of nearly all test 
cases. That is why we investigate heterogeneous fleets which are composed of six 
vehicles, maybe EVs or CVs. There are 11!

5!⋅6!
 (= 462) possibilities of building hetero-

geneous fleets with six vehicles. Based on the results from Sect. 5.2 and based on 
additional experiments on seeking attractive fleets, two supremely attractive fleets 
called HET-A and HET-B have been identified. HET-A consists of four vehicles of 
type EV(7.5) and two vehicles of type CV(18). HET-B is composed of one vehicle of 
type EV(7.5), one vehicle of type DEV(7.5), three vehicles of type CV(7.5) and one 
vehicle of type CV(18). Tables 15 and 16 show the results for the generic problem 
instances with ten customers (as in Sects. 5.2 and 5.3). The tables compare the effi-
ciency of different fleets by showing their relative difference to HET as introduced 
in Sect. 5.2. First, the tables show that HET-A is very attractive for the test sets with 
short customer distances to a maximum of 35 km ( g = 1 ). HET-A outperforms all 
other fleets considered for these test sets in travel time and energy minimization. 
Second, for test sets with longer customer distances ( g = 2, 3, and 4), HET-B is the 
most attractive fleet in Tables 15 and 16; it outperforms all other fleets for these test 
sets.
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6 � Conclusions

In this study, fleets composed of EVs and CVs with a gross weight of 7.5 tons and 
18 tons have been analyzed and compared in planning situations with small and 
medium-sized cargo and customer distances to a maximum of 140 km. This study 
concentrates primarily analyzes planning situations without recharge stations. For 
short customer distances to a maximum of 35 km, E-HOM(7.5) is the most energy 
efficient but most time consuming homogenous fleet. For customer distances above 
35 km, this fleet can only be operated by accepting that recharging will be necessary 
and that, otherwise, only a small portion of the test cases are feasible. Additionally, 
the number of vehicles used as well as the total travel time increase drastically for 
distances above 35 km. For customer distances between 35 km and 105 km DE-
HOM(7.5) is the most energy efficient fleet. C-HOM(7.5) is by far (more than 13% 
better than other homogeneous fleets) the most energy efficient homogeneous fleet 
for customer distances above 105 km, in both the energy minimization and travel 
time minimization scenarios. With respect to travel time and in case of Scenario T, 
size (i.e. payload) is the all-dominant factor. Specifically, C-HOM(18) is 6% supe-
rior to E-HOM(18), which, in turn, is 11% superior to C-HOM(7.5). However, in 
case of energy minimization the performance indicators for fleets with EVs and CVs 
of 18 tons gross weight are nearly equal. EVs are better for customer distances as 
high as 105 km, while CVs are better for distances above 105 km.

There is a positive effect of introducing one randomly located recharge station 
but it is rather small. First, the usability of small EVs with 7.5 tons gross weight is 
improved. However, only a subset of test cases with customer distances between 35 
and 70 km become feasible for E-HOM(7.5). Second, EVs with 18 tons gross weight 
occasionally employ a recharge station but do so only for test cases with long cus-
tomer distances to a maximum of 140 km. In this case, the energy consumption of 
E-HOM(18) can be reduced by 2%. Adding a second recharge station again slightly 
improves the usability of EVs with 7.5 tons gross weight. In sum, however, there is 
no significant positive effect on the energy efficiency of the homogeneous fleets.

Augmenting the battery size for vehicles of type EV(7.5) has nearly no effect on 
the solutions of HET and a relatively great impact on the feasibility of test cases 

Table 15   Scenario T: relative deviations from HET 

g HET-A 
(%)

HET-B 
(%)

E-
HOM(7.5) 
(%)

DE-
HOM(7.5) 
(%)

E-
HOM(18) 
(%)

DE-
HOM(18) 
(%)

C-HOM(7.5) 
(%)

C-
HOM(18) 
(%)

1 0.88 2.95 15.95 22.50 1.50 5.05 9.89 0.00
2 2.63 4.14 – 30.59 2.85 7.47 13.69 0.00
3 – 4.79 – 38.10 3.18 8.45 15.31 0.00
4 – 5.79 – – 8.99 9.88 17.25 0.00
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for E-HOM(7.5). All test cases with a maximal customer distance below 105 km 
become feasible for DE-HOM(7.5). For distances below 35 km however, the optimal 
values for travel time respectively energy consumption are increased by 6% respec-
tively 12%. For distances between 35 km and 105 km DE-HOM(7.5) is the most 
energy efficient homogeneous fleet. Augmenting the battery size for vehicles of type 
EV(18) has no positive effect on the solutions of HET and E-HOM(18). Quite the 
contrary, the solution quality has been declined by battery augmentation.

Comparing Scenario T with Scenario E shows that minimizing energy consump-
tion instead of travel time leads to substantially more energy efficient transportation 
plans only for heterogeneous fleets. Finally, the search for attractive heterogeneous 
fleets has demonstrated that it is possible to configure highly energy- and time-effi-
cient heterogeneous fleets with a reasonable number of vehicles. For future research, 
it will be challenging to develop approaches for optimizing the size and composition 
of heterogeneous fleets. Furthermore, it may be attractive to apply methods of multi-
criteria optimization for amalgamating the travel time minimization of Scenario T 
with the energy minimization of Scenario E.
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