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Abstract We apply the Robust Ordinal Regression (ROR) approach to decision

under risk and uncertainty. ROR is a methodology proposed within multiple criteria

decision aiding (MCDA) with the aim of taking into account the whole set of

instances of a given preference model, for example instances of a value function,

which are compatible with preference information supplied by the Decision Maker

(DM) in terms of some holistic preference comparisons of alternatives. ROR results

in two preference relations, necessary and possible; the necessary weak preference

relation holds if an alternative is at least as good as another one for all instances

compatible with the DM’s preference information, while the possible weak pref-

erence relation holds if an alternative is at least as good as another one for at least

one compatible instance. To apply ROR to decision under risk and uncertainty we

have to reformulate such a problem in terms of MCDA. This is obtained by con-

sidering as criteria a set of quantiles of the outcome distribution, which are
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meaningful for the DM. We illustrate our approach in a didactic example based on

the celebrated newsvendor problem.

Keywords Multiple criteria decision aiding � Robust ordinal regression � Decision

under risk and uncertainty � Additive value functions � Outranking methods

JEL Classification C6

1 Introduction

Multiple Criteria Decision Aiding (MCDA) concerns decision problems where an

alternative a, belonging to a finite set of alternatives A ¼ fa; b; c; . . .g, is evaluated

by a coherent (Roy 1996) family of criteria G ¼ fg1; . . .; gj; . . .; gmg [see (Figueira

et al. 2005a)] for a collection of state of the art surveys on MCDA). There are

several types of MCDA problems, the most important of which are:

• choice problems, where the aim is to select one or more alternatives from

A considered the best,

• ranking problems, where the aim is to order, partially or totally, all alternatives

from the best to the worst,

• sorting problems, where the aim is to assign all alternatives to one or more

contiguous, preferentially ordered categories.

In this paper, we want to use MCDA to deal with decision under risk and

uncertainty. Let us remember that a distinction between risk and uncertainty has

been advocated by Knight (1921) who writes that ‘‘The essential fact is that ’risk’

means in some cases a quantity susceptible of measurement’’. Thus, this distinction

is based on the possibility to measure the credibility of future events by means of

some probability [for a critical discussion on this topic see (Langlois and Cosgel

1993)]. In general, in decision under risk and uncertainty, acts from a set F are

described in terms of the consequences in a set X corresponding to a set S of

exhaustive and mutually exclusive states of the world. Each subset E � S of states

of the world is called event. More precisely, each act f 2 F, is a function f : S ! X

that assigns to each state of the world s 2 S the consequence f ðsÞ 2 X obtained if f is

selected and s is verified. For the sake of simplicity, let us consider a finite set S. In

this context, a probability is a function p : 2S ! ½0; 1� such that

(i) pð;Þ ¼ 0 and pðSÞ ¼ 1,

(ii) for all E;E0 � S such that E \ E0 ¼ ;, pðE [ E0Þ ¼ pðEÞ þ pðE0Þ.

For each event E � S, p(E) represents its credibility. One can distinguish between

objective probability, exogenously given, and subjective probability, that represents

the credibility that a given Decision Maker (DM) assigns to each event E � S as

revealed by her preferences. In this case, for all E;E0 � S, p(E) is greater than pðE0Þ
if and only if for all x; y 2 X, whenever the DM prefers x to y, then she also prefers
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the act xEy (giving outcome x if E is verified and y otherwise), to the act xE0y
(giving outcome x if E0 is verified and y otherwise). In fact, in the following we shall

consider also non additive probabilities, i.e. probabilities for which above property

ii) is replaced by the following weaker monotonicity property:

(iii) for all E � E0 � S, pðEÞ� pðE0Þ.

We shall consider also qualitative probabilities, i.e. probabilities that are expressed

on some ordinal scale L ¼ fl0; l1; . . .; lrg such that for all i ¼ 1; . . .; r; li denotes a

greater degree of probability than li�1, with l0 representing the credibility that an

event will not be verified for sure, and lr the credibility that an event will be

certainly verified.

To fix the ideas, let us consider the following example. An economic agent is

evaluating a certain number of possible investments F, the profits of which depend

on the realization of one state of the world in the set S ¼ fs1; s2; s3g. For example,

for the investment f 2 F the profit is 100,000€ in s1, 130,000€ in s2 and 150,000€ in

s3, that is f ðs1Þ ¼ 100;000€, f ðs2Þ ¼ 130;000€ and f ðs3Þ ¼ 150;000€. To evaluate

comprehensively each investment from F and to compare them, it is not enough to

know what is the profit in each state of the world, but other information is necessary.

First of all, it is necessary to know which is the probability of each of the three states

of the world. In this sense, one possibility is that the economic agent knows a priori

the probabilities of each state of the world, for example p1 ¼ 20%; p2 ¼ 30% and

p3 ¼ 50% for s1; s2 and s3, respectively. This is the case of an objective additive

probability. It is also possible that, due to some severe uncertainty on the realization

of the states of the world, only a non-additive probability is given. For example, due

to lack of knowledge about possible realization of s1 or s2, one can consider a

probability of p1 ¼ 10% for s1, p2 ¼ 15% for s2, while the probability that one

between s1 and s2 is realized is p12 ¼ 50%, which is greater than p1 þ p2. It is

worthwhile to remember that nonadditive probability is related to ambiguity for non

perfect knowledge of the probability of events suggested by the famous Ellsberg

paradox (1961), in which in one box there are 90 balls, 30 of which are red and 60

are black or yellow in an unknown proportion. In this case it is quite natural to

assign a probability of 1/3 to extract a red ball (because we know that 1/3 of the

balls are red), a probability of 2/3 to extract a black or yellow ball (because, even if

their proportion is unknown, we know that 2/3 of the balls are black or yellow), a

probability let us say of 1/5 to extract a black ball and a probability of 1/5 to extract

a yellow ball (because, even if we know that in total black and yellow balls are the

2/3 of the balls in the box, we do not know exactly their proportion). It is also

possible that the economic agent does not know a priori any probability, but she has

some preferences on acts related to states of the world. For example, she could

consider indifferent an act giving 100€ on s1 and nothing otherwise, and an act

giving with certainty 40€; therefore, assuming that 40€ should be the expected value

of the return for the considered act (i.e. 100€�p1 ¼ 40€), one could induce that the

economic agent implicitly assigns a probability of 40% to s1. In this case, we have a

subjective probability, which can be both additive or nonadditive. Another possible

situation is that the economic agent could not know an a priori ‘‘objective’’
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probability and, also, she could not have a subjective probability, because, for

example she would not be able or could not want to say if she would exchange an

act giving 100€ on s1 and nothing otherwise, with an act giving with certainty 40€ or

another monetary amount. However, the economic agent could accept to give some

qualitative evaluations of the probability of s1; s2 and s3. For example, she could say

that s1 and s2 have a small probability, s3 has a medium probability, the event

fs1; s2g has also a medium probability, while the events fs1; s3g and fs2; s3g have a

high probability. In this case we have qualitative probability expressed on a scale

L having among its elements ‘‘small’’, ‘‘medium’’, ‘‘high’’.

Let us now remember that several models of decision under risk and uncertainty

have been proposed in the literature. In this context, the basic model is the expected

utility model which assigns to each act f 2 F the value

EPðf Þ ¼
X

si2S
uðf ðsiÞÞpi

with u : X ! R being a utility function representing tastes of the DM on X.

The expected utility model has been considered in case of objective probabilities

(Von Neumann and Morgenstern 1944), subjective probability (Savage 1954) and

both subjective and objective probabilities (Anscombe and Aumann 1963). To take

into account nonadditive probability, a generalization of the expected utility model

based on the Choquet integral (Choquet 1953) has been considered (Schmeidler

1989). Other generalizations representing ambiguity for imperfect knowledge of

probabilities take into account a plurality of probabilities (Bewley 2002; Gilboa

et al. 2010; Gilboa and Schmeidler 1989).

To clarify the difference of our approach with respect to this literature, let us

remember that there are four main approaches to decision making [the first three

discussed in Bell et al. (1988) and the fourth one proposed in Roy (1993)]:

• the normative approach, that studies decisions on the basis of general axioms of

rationality,

• the descriptive approach, that investigates through experiments how real

decisions are taken pointing out some systematic deviations from rationality,

• the prescriptive approach, that aims at avoiding the systematic deviations

highlighted by the descriptive approach from the rationality postulated by the

first approach (Hammond et al. 1999; Russo and Schoemaker 1989),

• the constructive approach, aiming at supporting a DM to construct her

preferences in complex decision problems, especially when a plurality of points

of view, technically called criteria, are involved.

While most of the literature on decision under risk and uncertainty has adopted the first

three approaches, we would like to propose a methodology related to the fourth

approach. In this sense, it is fundamental that the decision model is expressed in terms

that can be easily understood by the DM, who has to find in the recommendation of the

decision process the arguments useful to explain and justify to herself and to other

subjects the suggested decision. In this perspective, the concept of quantile appears to be
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particularly useful. Indeed, especially when the states of the world are infinite and the

probability distribution is given by means of some analytical formulation, not easily

comprehensible even by a DM with a technical background, it is much more reasonable

to take into account some meaningful probability thresholds and to reformulate the

probability in terms of quantiles. In fact, in our real life experience, very often in front of

some risks we reason answering to questions such as: ‘‘Which is the gain I can get with

probability of 90 % (or 75 %, or 50 %, or any other relevant probability threshold)?’’ or

‘‘Which is the loss I can incur with probability of 10 % (or 25 % or 50 %, or any other

relevant probability threshold)?’’ Quantiles have been extensively used in finance

where, for example, the p % value at risk is the worst p% loss (Jorion 2007). Some

axiomatic foundations of decision based on quantiles have also been proposed in

economics (Chambers 2007; Manski 1988; Rostek 2010). What is different in our

proposal is that, following Greco et al. (2010) [see also Matos (2007)], we suggest to

consider a certain number of quantiles rather than only one. In this sense, a set of

quantiles can be interpreted as a parsimonious but effective representation of the

whole information contained in a probability distribution, taking into account the

limited capability of human mind. Therefore, in line with the famous Miller’s article

‘‘The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for

Processing Information’’ (Miller 1956), we suggest a number of quantiles between 5

and 9 because, as argued in that article, this is the number of objects that a human brain

can handle due to the limits of one-dimensional absolute judgment and to the limits of

short-term memory. More formally, we propose to deal with decision problems in case

of risk and uncertainty considering a set of quantiles on the domain of criterion gj 2 G

corresponding to a set of meaningful probability levels Pj ¼ fp1; . . .; phjg. For each

p 2 Pj; a value function gpj : A ! R is defined such that, for each a 2 A, gpj ðaÞ ¼ x

means that, fixed the probability p, the minimum value got by a on criterion gj with

probability at least p is x. Therefore, for all j ¼ 1; . . .;m, for all p 2 Pj and for all

a 2 A;

gpj ðaÞ ¼ x , P gjðaÞ� x
� �

� p;

where P is a probability distribution on the space of values attainable by each

alternative from A on criteria from G. Therefore, we propose to deal with uncer-

tainty in MCDA by replacing uncertain criteria gj by the corresponding set of value

functions gpj , p 2 Pj.

Let us note that, while ‘‘alternatives’’ are the objects of the decision in MCDA,

they are called ‘‘acts’’ in the framework of decision under risk and uncertainty.

Since our aim is dealing with the decision under risk and uncertainty using the

MCDA framework, in the following, we shall use the term ‘‘alternative’’.

Continuing the previous example and, considering the following quantiles Pj ¼
p1; p2; p3f g ¼ 30%; 60%; 90%f g relative to the criterion profit denoted by

f ðs1Þ ¼ 100;000€, f ðs2Þ ¼ 130;000€ and f ðs3Þ ¼ 150;000€, we have that

g30%
j ðaÞ ¼ 150;000€, g60%

j ðaÞ ¼ 130;000€, and g90%
j ðaÞ ¼ 100;000€. Let us

observe also that, as explained in Greco et al. (2010), quantiles can be used also

in case of nonadditive probability and even qualitative probability.
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As shown in Greco et al. (2010), this approach can be extended to deal also with

time preferences. In this case, one considers a set of meaningful time epochs

T ¼ ft1; . . .; trg, such that for each criterion gj 2 G, p 2 Pj and t 2 T, a function g
p;t
j

is defined. For each a 2 A, g
p;t
j ðaÞ ¼ x means that, with respect to criterion gj, action

a gets at least value x within time epoch t with a probability at least p.

For the sake of simplicity, in this paper we consider only the case of a single

criterion without considering time preferences, deferring to future research discus-

sion of these points. As already observed in Greco et al. (2013), this new formulation

of decision under risk and uncertainty as a multiple criteria decision problem, can be

dealt with other methods proposed in MCDA, such as value function methods

(Keeney and Raiffa 1993), outranking-based methods (Brans and Vincke 1985;

Figueira et al. 2005b), decision rule methods inferred by Dominance-based Rough set

approach (Greco et al. 2001; Słowiński et al. 2009, 2015), interactive multiobjective

optimization and evolutionary multiobjective optimization methods (Branke et al.

2008). In this paper we shall describe how to handle the new formulation of the

multiple criteria decision problem by using an MCDA methodology that is

particularly in line with the principle of the constructive approach. This is the robust

ordinal regression (ROR) (Corrente et al. 2013b; Corrente et al. 2014; Greco et al.

2008). ROR, as classical ordinal regression (Jacquet-Lagrèze and Siskos 1982), asks

the DM to supply some preference information, for example in terms of some

pairwise comparisons between alternatives on which the preference of the DM is

certain. Both, ordinal regression and ROR aim at supporting the DM giving some

recommendations on the basis of the provided preference information. However,

adopted a given class of preference models, while ordinal regression selects only one

instance of the preference model among all representing the preference information

provided by the DM, ROR takes into account the whole set of instances of the

considered preference model compatible with the preference information. For

example, if the adopted model is the additive multiple attribute utility function, while

ordinal regression selects a single utility function among all representing the

preference information, ROR considers the whole set of utility functions compatible

with the preference information. To give account of this plurality of instances, ROR

presents recommendations in terms of necessary and possible preference relations.

Given two alternatives a and b, a is (weakly) necessarily preferred to b, if a is at least

as good as b for all instances of the preference model compatible with the preference

information supplied by the DM, while a is (weakly) possibly preferred to b if a is at

least as good as b for at least one compatible instance of the preference model. A great

advantage of ROR is that, considering the whole set of compatible instances, it avoids

to arrive to premature conclusions on preferences as it is possible with classical

ordinal regression. Indeed, different compatible instances of the preference model

can give different preference relations, and therefore, it is always arbitrary to some

extent to select only one of them. Instead, it is more cautious to separate

stable preferences, those resulting from all compatible instances, from unstable pref-

erences, that hold for some compatible instance but do not hold for some other ones.

Necessary and possible preferences so obtained can be presented to the DM who can

react by accepting or criticizing them. If the DM accepts the necessary and the
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possible preferences, and if she is satisfied by the results, she can conclude the

decision process; on the contrary, she can add new preference information in order to

obtain more precise results, i.e., a richer necessary preference relation. Actually, if the

DM criticizes the necessary and the possible preferences, she can modify some

preference information in order to get results better representing her preferences. In

any case, ROR permits to open a discussion with the DM giving her the possibility to

reflect on the decision problem, and to arrive to a mature and convincing decision. For

all these good properties, ROR has been applied to several MCDA preference models,

namely additive utility functions (Corrente et al. 2012; Figueira et al. 2009; Greco

et al. 2008), ELECTRE methods (Corrente et al. 2013a; Greco et al. 2011),

PROMETHEE methods (Kadziński et al. 2012), Choquet integral (Angilella et al.

2010) and an enriched form of the additive utility function to take into account

interaction between criteria (Greco et al. 2014). Thus, the constructive MCDA

methodology that we present in this approach is based on two pillars that give it its

essential properties: on one hand, the representation of the probability in terms of

quantiles ensures the easy understanding by the DM while, on the other hand, ROR

permits a prudent inference of further preferences on the basis of the current

preference information supplied by the DM.

The paper is structured as follows: in Sect. 2 we introduce the notation used in

the paper; Sect. 3 recalls the different preference models used in MCDA and the

Robust Ordinal Regression (ROR); GRIP and ELECTREGKMS are briefly described

in Sect. 4; in Sect. 5, the new procedure is applied to the newsvendor problem, while

conclusions and further directions of research are given in Sect. 6.

2 Notation

In this section we introduce the notation used in the paper. More details on the

meaning of the parameters will be provided in the sections describing the models in

which these parameters are involved.

• A ¼ fa; b; c; . . .g—a finite set of n alternatives described over a family G of

m evaluation criteria,

• g1; . . .; gj; . . .; gm-m evaluation criteria, gj : A ! R for all j 2 f1; 2; . . .;mg; the

family of criteria G is supposed to be coherent (Roy 1996), that is exhaustive

(all relevant criteria are taken into account), cohesive (if two alternatives a and

b have the same evaluations on all but one criterion, and a gets an evaluation

better than b on the remaining criterion, then a should be preferred to b), non-

redundant (the removal of one criterion from the family makes the new set of

criteria not exhaustive);

• w1; . . .;wj; . . .;wm—importance coefficients (ELECTREGKMS only), where wj

represents the importance of criterion gj inside the family of criteria G;

• qj; pj and vj; j ¼ 1; . . .;m; being the indifference, preference and veto thresholds,

respectively (ELECTREGKMS only).
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3 Preference models and robust ordinal regression

Since the only information stemming from the evaluations of the alternatives with

respect to the different criteria is the dominance relation,1 three main approaches are

used in MCDA to aggregate these evaluations, that are, multi-attribute value theory

(MAVT) (Keeney and Raiffa 1993), outranking methods (Brans and Vincke 1985;

Figueira et al. 2013) and dominance-based rough set approach (DRSA) (Greco et al.

2001; Słowiński et al. 2009):

• MAVT represents preferences of a DM on a set of alternatives A by an overall

value function

UðaÞ ¼ Uðg1ðaÞ; . . .; gmðaÞÞ : Rm ! R ð1Þ

such that a is at least as good as b iff UðaÞ�UðbÞ; in the following, we shall

suppose that the evaluation criteria are mutually preferentially independent

(Keeney and Raiffa 1993) and, consequently, the value function in Eq. (1) can

be written in an additive way, that is,

UðaÞ ¼
Xm

j¼1

ujðgjðaÞÞ ð2Þ

where uj : R ! R are marginal value functions, for each j ¼ 1; . . .;m;

• outranking methods represent preferences of a DM on a set of alternatives A by

an outranking relation S � A� A, such that, aSb iff a is at least as good as b;

• DRSA is based on ‘‘if; . . .;, then. . .’’ decision rules expressed in a natural

language for the DM, linking the performances of the alternatives on the

considered criteria with a comprehensive judgment of the alternative at hand.

For example, ‘‘if the consumption of a car is at least 15 km/l and its price is at

most 10,000€, then the car is considered to be good.’’

In this paper, we shall deal with the first two aggregation approaches.

In order to apply both families of methods, the DM should provide the

parameters on which they are based, that are, marginal value functions ujð�Þ,
j ¼ 1; . . .;m, in MAVT, and weights, indifference, preference and veto thresholds,

as well as the cutting level, for the outranking methods. These parameters can be

provided by the DM in a direct or in an indirect way (Jacquet-Lagrèze and Siskos

1982, 2001). In the direct one, the DM has to give directly all the values of the

parameters involved in the model, while, in the indirect one, the DM gives some

preferences on reference alternatives (s)he knows well, from which, parameters

compatible with these preferences can be inferred. If the DM provides an indirect

preference information, in general, more than one instance of the model (a value

function in the MAVT case and a set of weights, thresholds and cutting level in the

second one) could be compatible with the preferences she provided. Each of these

1 Supposing that all criteria are gain criteria, a dominates b if gjðaÞ� gjðbÞ for all j ¼ 1; . . .;m, and there

exists at least one j such that gjðaÞ[ gjðbÞ.
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models provides the same recommendations on the reference alternatives but each

of them could provide different recommendations on the other alternatives from the

whole set A. To consider all models compatible with the preferences of the DM,

ROR has been proposed (Corrente et al. 2013b; Corrente et al. 2014; Greco et al.

2008). ROR provides robust recommendations with respect to the problem at hand,

building a necessary and a possible preference relation. The necessary and possible

preference relations hold between two alternatives a and b if a is at least as good as

b for all or, respectively, for at least one instance of the model compatible with the

preferences provided by the DM.

4 GRIP and ELECTREGKMS

The first method applying ROR concepts is UTAGMS. It is based on the additive

value function shown in Eq. (2) and it is used to deal with ranking and choice

problems. In this section, we shall briefly recall two methods, that are GRIP

(Figueira et al. 2009) and ELECTREGKMS (Greco et al. 2011). GRIP is the

generalization of the UTAGMS method taking into account not only pairwise

comparisons between alternatives but also information on intensity of preferences

between two pairs of alternatives. ELECTREGKMS is the extension of the ELECTRE

IS method under the ROR framework.

4.1 GRIP

In the GRIP method, the DM is expected to provide the following indirect

preference information both at comprehensive and at partial level with respect to a

subset of reference alternatives AR � A:

• A partial preorder % on AR whose meaning is: for a	; b	 2 AR

a	 % b	 , ‘‘a	 is at least as good as b	’’:

• A partial preorder %
	 on AR � AR, whose meaning is: for a	; b	; c	; d	 2 AR,

ða	; b	Þ% 	ðc	; d	Þ , ‘‘a	 is preferred to b	 at least as

much as c	 is preferred to d	’’:

• A partial preorder % ði;jÞ on AR whose meaning is: for a	; b	 2 AR,

a	 % ði;jÞb
	 , ‘‘ the marginal value of a	 on criterion gi is at

least as much as the marginal value of b	 on criterion gj’’:

• A partial preorder %
	
ði;jÞ on AR � AR whose meaning is: for a	, b	, c	, d	 2 AR;
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ða	; b	Þ% 	
ði;jÞðc	; d	Þ , ‘‘a	 is preferred to b	 on criterion gi at least

as much as c	 is preferred to d	 on

criterion gj; i; j 2 G’’:

Formally, a compatible value function is an additive value function, as that one in

Eq. (2), satisfying the following set of constraints:

Uða	Þ�Uðb	Þ þ e if a	 
 b	

Uða	Þ ¼ Uðb	Þ if a	 � b	

Uða	Þ � Uðb	Þ�Uðc	Þ � Uðd	Þ þ e
Uðc	Þ�Uðd	Þ þ e

�
if ða	; b	Þ 
	 ðc	; d	Þ

Uða	Þ � Uðb	Þ ¼ Uðc	Þ � Uðd	Þ if ða	; b	Þ� 	ðc	; d	Þ
uiða	Þ� ujðb	Þ þ e if a	 
ði;jÞ b

	

uiða	Þ ¼ ujðb	Þ if a	 � ði;jÞb
	

uiða	Þ � uiðb	Þ� ujðc	Þ � ujðd	Þ þ e if ða	; b	Þ 
	
ði;jÞ ðc	; d	Þ

uiða	Þ � uiðb	Þ ¼ ujðc	Þ � ujðd	Þ if ða	; b	Þ� 	
ði;jÞðc	; d	Þ

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

a	; b	; c	; d	 2 AR; i; j 2 G

ujðxkj Þ� ujðxk�1
j Þ; j ¼ 1; . . .;m; k ¼ 1; . . .;mj;

ujðx0
j Þ ¼ 0; j ¼ 1; . . .;m; and

Xm

j¼1

ujðxmj

j Þ ¼ 1

9
>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>;

EAR

where

• 
, 
	, 
ði;jÞ and 
	
ði;jÞ are the asymmetric parts of % , %

	, % ði;jÞ and %
	
ði;jÞ,

while � , � 	, � ði;jÞ and � 	
ði;jÞ are their symmetric parts; for example, a 
 b iff

a% b and notðb% aÞ, while a� b iff a% b and b% a;

• xkj , k ¼ 0; . . .;mj, are all different evaluations of the alternatives from A on

criterion gj; j ¼ 1. . .;m; the values xkj ; k ¼ 0; . . .;mj; are increasingly ordered,

i.e., x0
j\x1

j\ � � �\x
mj

j ; in particular, x0
j ¼ mina2A gjðaÞ, while

x
mj

j ¼ maxa2A gjðaÞ;
• e is an auxiliary variable used to convert the strict inequality constraints,

translating the preferences of the DM, in weak inequality constraints. For

example, the global preference of a	 over b	, translated to the inequality

UðaÞ[UðbÞ, is converted to the constraint UðaÞ�UðbÞ þ e.

To check if there exists at least one value function compatible with the preferences

provided by the DM, one has to solve the following LP problem:

eðARÞ ¼ max e; subject to EAR

:

If EAR

is feasible and eðARÞ[ 0, then there exists at least one instance of the model

compatible with the preferences provided by the DM. Otherwise, pieces of pref-

erence information causing the infeasibility need to be checked by means of some of

the methods presented in Mousseau et al. (2003).

Given a; b 2 A, and the following sets of constraints
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UðbÞ�UðaÞ þ e;

EAR

�
ENða; bÞ;

UðaÞ�UðbÞ;
EAR

�
EPða; bÞ

we can say the following:

• a is necessarily preferred to b (a% Nb), iff ENða; bÞ is infeasible or, if ENða; bÞ is

feasible and eNða; bÞ� 0, where eNða; bÞ ¼ max e, subject to ENða; bÞ;
• a is possibly preferred to b (a% Pb), iff EPða; bÞ is feasible and ePða; bÞ[ 0,

where ePða; bÞ ¼ max e, subject to EPða; bÞ.

More details from the computational point of view on the necessary and possible

preference relations could be found in Corrente et al. (2015), while for some

properties of the necessary and possible preference relations, as well as for an

axiomatic basis of the same preference relations, the interested reader is referred to

Greco et al. (2008) and Giarlotta and Greco (2013), respectively.

In general, in ranking and choice problems, one needs to assign a real number to

each alternative being representative of its value in the problem at hand. For this

reason, to summarize the results obtained by ROR, a representative value function

can be computed (Figueira et al. 2008; Kadziński et al. 2011). It is obtained in two

steps maximizing, at first, the difference UðaÞ � UðbÞ for the pairs of alternatives

(a, b) such that a is strictly necessarily preferred to b and, then, minimizing the

difference UðaÞ � UðbÞ for the pairs of alternatives (a, b) such that a is possibly

preferred to b and b is possibly preferred to a. From a computational point of view,

the two steps are the following:

Step 1) solve the LP problem:

max e; subject to

UðaÞ�UðbÞ þ e if a% Nb and notðb% NaÞ;
EAR

;

)

Step 2) denoting by e1 the value of e optimizing the LP problem solved in step 1),

solve the following LP problem:

min d; subject to

UðaÞ � UðbÞ� d

UðbÞ � UðaÞ� d

�
if a% Pb and b% Pa;

e ¼ e1;

EAR

:

9
>>=

>>;

4.2 ELECTREGKMS

Before introducing the ELECTREGKMS method, we recall the basic aspects of the

ELECTRE IS method.
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Given the weights of criteria w1; . . .;wm, such that wj � 0 for all j ¼ 1; . . .;m; andPm
j¼1 wj ¼ 1, and the indifference and preference thresholds, qjðaÞ and pjðaÞ, for all

gain-type criteria gj, and for all a 2 A, ELECTRE IS builds, for each criterion gj,

and for each pair of alternatives (a, b), the partial concordance index

ujða; bÞ ¼

1 if gjðbÞ � gjðaÞ� qjðaÞ
gjðaÞ � gjðbÞ � pjðaÞ

� �

pjðaÞ � qjðaÞ
if qjðaÞ� gjðbÞ � gjðaÞ� pjðaÞ

0 if gjðbÞ � gjðaÞ� pjðaÞ:

8
>>><

>>>:

The indifference and preference thresholds qjðaÞ and pjðaÞ have the following

meaning:

• qjðaÞ is the greatest difference between gjðbÞ and gjðaÞ compatible with their

indifference on criterion gj,

• pjðaÞ is the smallest difference between gjðbÞ and gjðaÞ compatible with the

preference of b over a on criterion gj.

ujða; bÞ 2 0; 1½ � for all j ¼ 1; . . .;m; and for each ða; bÞ 2 A� A. It represents the

degree of preference of a over b with respect to criterion gj and it is a non-increasing

function of the difference gjðbÞ � gjðaÞ: Observe that, for the sake of simplicity, the

indifference and preference thresholds could be considered constant for each

alternative a and, therefore, independent of the evaluations gjðaÞ.
After building the partial concordance indices /jða; bÞ, ELECTRE IS builds the

comprehensive concordance index C(a, b) for each ða; bÞ 2 A� A, defined as

follows:

Cða; bÞ ¼
Xm

j¼1

ujða; bÞ � wj:

Cða; bÞ 2 0; 1½ � and it represents the degree of preference of a over b. The

outranking relation of the ELECTRE IS method is therefore based on the concor-

dance and the non-discordance tests; the concordance test is verified if Cða; bÞ� k,

where k 2 0:5; 1½ � is called the cutting level and it represents the minimum coalition

of criteria necessary to the outranking of a over b. The non-discordance test is

verified if, for all j ¼ 1; . . .;m, gjðbÞ � gjðaÞ\vjðaÞ that is, for each criterion gj the

difference in the performances of b and a on criterion gj is lower than the veto

threshold vjðaÞ. From a formal point of view, we can therefore write that

aSb iff Cða; bÞ� k and gjðbÞ � gjðaÞ\vjðaÞ; for all j ¼ 1; . . .;m:

The negation of the preference relation S will be denoted by SC and, of course, it

will be true that aSCb if at least one of the concordance and the non-discordance test

is not fulfilled.

As already observed in Sect. 3, the application of the ELECTRE methods

involves the knowledge of several parameters that are, weights of criteria,
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indifference, preference and veto thresholds and the cutting level. In order to induce

a set of parameters, the DM can provide the following direct or indirect preference

information regarding the evaluation criteria and the comparison between

alternatives:

1. the weight wj of criterion gj belongs to the interval wL
j ;w

R
j

h i
, where wL

j �wR
j ,

2. criterion gi is more important than criterion gj, that is wi [wj,

3. the indifference threshold for criterion gj related to alternative a, qjðaÞ; belongs

to the interval qLj ðaÞ; qRj ðaÞ
h i

; where qLj ðaÞ� qRj ðaÞ,
4. the preference threshold for criterion gj related to alternative a, pjðaÞ; belongs to

the interval pLj ðaÞ; pRj ðaÞ
h i

; where pLj ðaÞ� pRj ðaÞ,
5. a� jb, that is ‘‘the difference between gjðaÞ and gjðbÞ is non-significant for the

DM’’,

6. a 
j b, that is ‘‘the difference between gjðaÞ and gjðbÞ is significant for the

DM’’,

7. a outranks b, that is aSb,

8. a does not outrank b, that is aSCb:

Details on the constraints translating the preference information provided by the

DM can be found in Greco et al. (2011) and, for the sake of completeness, also in

the Appendix 1.

If the preferences of the DM are not inconsistent, in general, more than one

instance of the model (weights, thresholds and cutting level) compatible with these

preferences could be inferred. Even if there exists different methods aiming to find

only one model compatible with the preferences provided by the DM [see for

example Dias and Mousseau 2006 and Mousseau and Dias 2004], in this section we

shall concentrate our attention on the ELECTREGKMS method. ELECTREGKMS takes

into account simultaneously all compatible instances of the outranking model

defining, as all ROR methods, a necessary and a possible preference relation as

follows:

• a is necessarily preferred to b (denoted by aSNb), iff aSb for all compatible

instances of the model,

• a is possibly preferred to b (denoted by aSPb), iff aSb for at least one compatible

instance of the model.

Analogously, other two preference relations related to the non-outranking can be

defined:

• a does not necessarily outrank b (denoted by aSCNb), iff aSCb for all compatible

instances of the model,

• a does not possibly outrank b (denoted by aSCPb), iff aSCb for at least one

compatible instance of the model.

Robust ordinal regression for decision... 67

123



It is obvious that SN � SP and SCN � SCP. Moreover, it can easily be proved that

aSNb iff notðaSCPbÞ and aSPb iff notðaSCNbÞ. The interested reader could find these

and other properties of the four preference relations in Greco et al. (2011). Details

on the computations of the necessary ðSNÞ and possible ðSPÞ preference relations can

be found in Greco et al. (2011) and, for the completeness of description, in the

Appendix 2.

5 A didactic example concerning the newsvendor problem

The newsvendor problem is a classic problem of operational research that was faced

for the first time by the economist Edgeworth in his paper ‘‘The mathematical theory

of banking’’ in 1888 (Edgeworth 1888). The newsvendor problem consists in finding

the correct amount of a certain resource that should be bought, knowing the

probability distribution of demand, in order to maximize the pay-offs, from one side,

or to minimize the costs from the other side. In the last decade, tens of papers were

published about this problem and about its application in different situations: buying

seasonal goods, making the last buying or last production run decision, setting safety

stock levels, setting target inventory levels, selecting the right capacity for a facility

or machine, overbooking customers, etc. Some literature reviews of the newsvendor

problem are the following (Khouja 1999; Petruzzi and Dada 1999; Qin et al. 2011).

Now, after formulating the problem in the nice case of the newsboy, we will

approach it in a new way, as announced in the introduction.

Let’s suppose the newsboy has to choose the number of newspapers to be ordered.

If he didn’t order enough newspapers he will have a stockout problem, so that some

customers will be disappointed and sales and profit will be lost. If he orders too many

newspapers, he will loose a certain amount of money. The newsboy’s goal is,

therefore, to choose the amount of newspapers maximizing his gain. The newsboy

evaluates that each newspaper involves the following costs and gains:

• Unit cost, c ¼ 1:4 €,

• Unit selling price, p ¼ 2 €,

• Salvage value (estimated worth of a newspaper not sold), s ¼ 1 €,

• Stockout cost (cost of buying one unit less than the demand), sc ¼ 0:15 €.

Let’s suppose that the newsboy has to choose to order among 5; . . .; 17 newspapers,

and that the demand can assume values 5, 6, 7, 8, 9, 10 with probability 5%, values

11, 12, 13, 14, 15, 16, 17, with probability 10%, and probability 0% otherwise.

Formally,

pr ¼
5% if r 2 f5; . . .; 10g

10% if r 2 f11; . . .; 17g
0% otherwise

8
><

>:

Denoting by D the demand of newspapers and by Q the number of ordered news-

papers, the newsboy’s gain, denoted by G(Q, D), is the following:
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GðQ;DÞ ¼ p � min ðQ;DÞ � c � Qþ s � max ðQ� D; 0Þ � sc � max ð0;D� QÞ: ð3Þ

Table 1 contains the gain for the newsboy as a function of the demand and of the

number of newspapers bought. For each k ¼ 5; . . .; 17 and for each j ¼ 5; . . .; 17,

zðQk;DjÞ is the probability that buying Qk newspapers the newsboy will gain not

less than GðQk;DjÞ. Formally,

zðQk;DjÞ ¼
X

r: GðQk ;DrÞ�GðQk ;DjÞ
pr:

zðQk;DjÞ ¼ p could be interpreted such that buying Qk newspapers the newsboy

will gain not less than GðQk;DjÞ with probability p. In Table 2, we show the values

of zðQk;DjÞ, with k; j ¼ 5; . . .; 17: Choosing to buy Qk newspapers, k ¼ 5; . . .; 17,

the best realization of the demand for the newsboy is Dj	 such that

zðQk;Dj	Þ ¼ min
j2f5;...;17g

zðQk;DjÞ.

After computing the values of zðQk;DjÞ; for all k; j ¼ 5; . . .; 17, for each quantile

p 2 0; 1½ � one can define the following quantity:

qðQk; pÞ ¼ max
j: zðQk ;DjÞ�p

GðQk;DjÞ
� �

: ð4Þ

qðQk; pÞ is the minimum gain the newsboy gets with probability at least equal to p
when buying Qk newspapers. The computation of qðQk;pÞ can be explained in an

easy way. Suppose the newsboy decides to buy 10 newspapers (Qk ¼ 10). We order

the possible corresponding gains from the lowest to the greatest one as shown in

Table 3 and, under the possible gains GðQ10;DjÞ, we show the corresponding

probabilities zðQ10;DjÞ. After choosing, for example, the quantile p ¼ 75%, we

Table 1 Possible gains of the newsboy depending on the demand and on the number of ordered news-

papers expressed in €

GðQk;DjÞ D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

Q5 3.00 2.85 2.70 2.55 2.40 2.25 2.10 1.95 1.80 1.65 1.50 1.35 1.20

Q6 2.60 3.60 3.45 3.30 3.15 3.00 2.85 2.70 2.55 2.40 2.25 2.10 1.95

Q7 2.20 3.20 4.20 4.05 3.90 3.75 3.60 3.45 3.30 3.15 3.00 2.85 2.70

Q8 1.80 2.80 3.80 4.80 4.65 4.50 4.35 4.20 4.05 3.90 3.75 3.60 3.45

Q9 1.40 2.40 3.40 4.40 5.40 5.25 5.10 4.95 4.80 4.65 4.50 4.35 4.20

Q10 1.00 2.00 3.00 4.00 5.00 6.00 5.85 5.70 5.55 5.40 5.25 5.10 4.95

Q11 0.60 1.60 2.60 3.60 4.60 5.60 6.60 6.45 6.30 6.15 6.00 5.85 5.70

Q12 0.20 1.20 2.20 3.20 4.20 5.20 6.20 7.20 7.05 6.90 6.75 6.60 6.45

Q13 �0.20 0.80 1.80 2.80 3.80 4.80 5.80 6.80 7.80 7.65 7.50 7.35 7.20

Q14 �0.60 0.40 1.40 2.40 3.40 4.40 5.40 6.40 7.40 8.40 8.25 8.10 7.95

Q15 �1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 8.85 8.70

Q16 �1.40 �0.40 0.60 1.60 2.60 3.60 4.60 5.60 6.60 7.60 8.60 9.60 9.45

Q17 �1.80 �0.80 0.20 1.20 2.20 3.20 4.20 5.20 6.20 7.20 8.20 9.20 10.20
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look at the gains that could be obtained with probability no lower than 75%, that are

1€, 2€, 3€, 4€ and 4.95€, and we take the maximum among them, that is 4.95€.

Obviously, in the extreme cases, choosing to buy 10 newspapers, the newsboy will

gain with probability 99% at least 1€ (qðQ10; 99%Þ ¼ 1€) and with probability of

the 1%, at least 6€ (qðQ10; 1%Þ ¼ 6€).

In Table 4 we show the values of qðQk; pÞ, with k ¼ 5; . . .; 17, corresponding to

the meaningful quantiles for the DM 1%; 25%; 50%; 75%; 99%f g.

5.1 GRIP applied to the newsvendor problem

To help the newsboy to find the best number of newspapers to order, at first we will

use the GRIP method; the newsboy can compare reference alternatives at

comprehensive level, i.e. on all criteria, and at the partial level, i.e. on particular

criteria.

Without any further information, the only information stemming from the values

in Table 4 is the dominance relation D on the set of alternatives (in our case the

different numbers of newspapers that could be bought from the newsboy) shown in

Fig. 1.

Let us suppose that the newsboy is confident on expressing four preferences

regarding the alternatives Q6, Q7, Q12 and Q17; at first he says that, the difference

Table 2 Values of zðQk;DjÞ with k; j ¼ 5; . . .; 17 expressed in percentage. zðQk;DjÞ represents the

probability that buying Qk newspapers the newsboy will gain not less than GðQk;DjÞ

zðQk;DjÞ D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17

Q5 5 10 15 20 25 30 40 50 60 70 80 90 100

Q6 50 5 10 15 20 25 35 45 60 70 80 90 100

Q7 100 55 5 10 15 20 30 40 50 65 75 85 95

Q8 100 95 60 5 10 15 25 35 45 55 70 80 90

Q9 100 95 90 65 5 10 20 30 40 50 60 75 85

Q10 100 95 90 85 70 5 15 25 35 45 55 65 80

Q11 100 95 90 85 80 75 10 20 30 40 50 60 70

Q12 100 95 90 85 80 75 70 10 20 30 40 50 60

Q13 100 95 90 85 80 75 70 60 10 20 30 40 50

Q14 100 95 90 85 80 75 70 60 50 10 20 30 40

Q15 100 95 90 85 80 75 70 60 50 40 10 20 30

Q16 100 95 90 85 80 75 70 60 50 40 30 10 20

Q17 100 95 90 85 80 75 70 60 50 40 30 20 10

Table 3 Practical explanation of the computation of qðQ10; 75%Þ

D5 D6 D7 D8 D17 D9 D16 D15 D14 D13 D12 D11 D10

GðQ10;DjÞ 1 2 3 4 4.95 5 5.10 5.25 5.40 5.55 5.70 5.85 6

zðQ10;DjÞ 100 95 90 85 80 70 65 55 45 35 25 15 5
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between the evaluations of Q12 and Q6 with respect to quantile 75% is greater than

the difference between the evaluations of Q6 and Q12 with respect to quantile 99%.

This piece of preference information is translated to the constraints u75%ðQ12Þ �
u75%ðQ6Þ[ u99%ðQ6Þ � u99%ðQ12Þ and u99%ðQ6Þ � u99%ðQ12Þ[ 0. Including this

piece of preference information, the corresponding necessary preference relation is

shown in Fig. 2. Bold arrows in Fig. 2 represent new pairs in the necessary

preference relation resulting from the first piece of preference information provided

by the DM. Therefore, Q11 and Q12 are necessarily preferred to Q6.

After that, the newsboy gives another piece of preference information at the

partial level. Supposing to buy 7 newspapers, the newsboy prefers gaining at least

3€ with probability 75% than 2.20€ with probability 99%, showing, therefore, to be

quite risk prone. The constraint translating this piece of preference information is

u75%ðQ7Þ[ u99%ðQ7Þ. In Fig. 3, we show the new necessary preference relation

obtained after including the second piece of preference information provided by the

DM. As one can observe, in consequence of this piece of information, six new pairs

appear in the new necessary preference relation with respect to that one obtained in

Table 4 Values of qðQk; pÞ,
with k ¼ 5; . . .; 17,

corresponding to the meaningful

quantiles for the DM

1%; 25%; 50%; 75%; 99%f g

qðQk;pÞ 1 % 25 % 50 % 75 % 99 %

Q5 3.00 2.40 1.95 1.50 1.20

Q6 3.60 3.00 2.60 2.25 1.95

Q7 4.20 3.60 3.30 3.00 2.20

Q8 4.80 4.35 3.90 3.60 1.80

Q9 5.40 4.95 4.65 4.35 1.40

Q10 6.00 5.70 5.25 4.95 1.00

Q11 6.60 6.30 6.00 5.60 0.60

Q12 7.20 6.90 6.60 5.20 0.20

Q13 7.80 7.50 7.20 4.80 -0.20

Q14 8.40 8.10 7.40 4.40 -0.60

Q15 9.00 8.70 7.00 4.00 -1.00

Q16 9.60 8.60 6.60 3.60 -1.40

Q17 10.20 8.20 6.20 3.20 -1.80

Q5

Q6

Q7

Q8 Q9

Fig. 1 Dominance relation on
the set of considered alternatives
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the previous step. In particular, Q10, Q13, Q14, Q15, Q16 and Q17 are now necessarily

preferred to Q5.

In the end, the newsboy provides the third piece of preference information stating,

on one hand, that Q17 is preferred to Q7 and, on the other hand, that Q12 is preferred to

Q17 more thanQ7 is preferred toQ6. The constraints translating this piece of preference

information are UðQ17Þ[UðQ7Þ and UðQ12Þ � UðQ17Þ[UðQ7Þ � UðQ6Þ. The

new necessary preference relation is shown in Fig. 4.

Since not all alternatives are pairwise comparable in Fig. 4 and the newsboy

would like to have a complete ranking of the alternatives at hand, we compute a

representative value function summarizing the ROR results. The marginal utilities

and the comprehensive utility of each alternative are shown in Table 5. Looking at

results in Table 5 it appears that the best choice for the newsboy is buying 12

newspapers, followed by the possibility of buying 11 newspapers, and so on.

Analogously, the worst choice for the newsboy is buying 5, 6 and 7 newspapers,

being the alternatives presenting the lowest comprehensive utilities.

5.2 ELECTREGKMS applied to the newsvendor problem

In this subsection, we shall show how to apply the ELECTREGKMS method to obtain

robust recommendations on the same problem we dealt with GRIP, on the base of

the preference information provided by the DM; for the sake of simplicity, we shall

suppose that the newsboy is able to provide the indifference, preference and veto

thresholds shown in Table 6. As a consequence, in this problem, the unknown

Q5

Q6

Q7

Q8 Q9

Q11 Q12Fig. 2 Necessary preference
relation obtained after including
the first piece of preference
information provided by the
DM. Bold arrows represent new
pairs of alternatives in the
necessary preference relation

Q5

Q6

Q7

Q8 Q9

Q11 Q12

Q13 Q14 Q15 Q16 Q17 Q10

Fig. 3 Necessary preference relation obtained after including the second piece of preference information
provided by the DM. Bold arrows represent new pairs of alternatives in the necessary preference relation
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Q5

Q6

Q7

Q8 Q9

Q11

Q12

Q17

Q13 Q14 Q15 Q16 Q10

Fig. 4 Necessary preference relation obtained after including the last piece of preference information
provided by the DM. Bold arrow represents the new pair of alternatives in the necessary preference
relation

Table 5 Marginal Utilities with

respect to the five quantiles and

comprehensive utility of the

alternatives at hand obtained by

applying a representative value

function

u1% u25% u50% u75% u99% U

Q5 0 0 0 0 � 0 � 0

Q6 0.0384 0.0384 0.0368 0.0864 � 0 � 0:2

Q7 0.0647 0.0647 0.0619 0.2087 � 0 � 0:4

Q8 0.0966 0.0966 0.0914 0.2487 � 0 � 0:5333

Q9 0.0966 0.0966 0.0914 0.2487 � 0 � 0:5333

Q10 0.0966 0.0966 0.0914 0.3522 � 0 � 0:6368

Q11 0.0966 0.0966 0.0914 0.5821 � 0 � 0:8667

Q12 0.1289 0.1289 0.1601 0.5821 � 0 � 1

Q13 0.1289 0.1289 0.1601 0.2487 � 0 � 0:6667

Q14 0.1289 0.1289 0.1601 0.2487 � 0 � 0:6667

Q15 0.1289 0.1289 0.1601 0.2487 � 0 � 0:6667

Q16 0.1289 0.1289 0.1601 0.2487 � 0 � 0:6667

Q17 0.1289 0.1289 0.1190 0.2232 0 � 0:6

Table 6 Thresholds on

qðQk;pÞ provided by the DM for

the considered quantiles

qp pp vp

p ¼ 1% 1.0 2.0 4.0

p ¼ 25% 1.0 2.0 4.0

p ¼ 50% 0.5 1.5 3.0

p ¼ 75% 0.5 1.5 3.0

p ¼ 99% 0.5 1.5 3.0
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parameters are the cutting level k and the weights underlining the importance

assigned to the considered quantiles.

Let’s suppose that the newsboy states that Q12 outranks Q6 ðQ12SQ6Þ and, at the

same time, Q5 does not outrank Q8 ðQ5S
CQ8Þ. By solving the programming problem

presented in Appendix 1, there exists at least one instance of the preference model

compatible with the preference provided by the DM. On the basis of this preference

information, we obtained the necessary and possible outranking relations shown in

Tables 7 and 8.

To summarize the results got by the application of the ROR in this case, we use

the same procedure presented in Greco et al. (2011). On the base of the results

shown in Tables 7 and 8, and reminding that aSCPb iff notðaSNbÞ, and aSCNb iff

notðaSPbÞ, for each alternative Qk, k ¼ 5; . . .; 17; we computed the following

values, where A ¼ Qk; k ¼ 5; . . .; 17f g:

• TSN ðQkÞ ¼ Qr 2 A; r 6¼ k : QkS
NQrj j; that is the number of alternatives Qr 2 A

such that Qk necessarily outranks Qr,

• WSN ðQkÞ ¼ Qr 2 A; r 6¼ k : QrS
NQkj j; that is the number of alternatives Qr 2 A

such that Qr necessarily outranks Qk,

• TSCN ðQkÞ ¼ Qr 2 A : notðQrS
PQkÞj j; that is the number of alternatives Qr 2 A

such that Qr does not possibly outrank Qk,

• WSCN ðQkÞ ¼ Qr 2 A : notðQkS
PQrÞj j; that is the number of alternatives Qr 2 A

such that Qk does not possibly outrank Qr,

• TðQkÞ ¼ TSN ðQkÞ þ TSCN ðQkÞ, WðQkÞ ¼ WSN ðQkÞ þWSCN ðQkÞ and NFSðQkÞ ¼
TðQkÞ �WðQkÞ:

Table 7 Necessary outranking relation for the ELECTREGKMS method computed on the base of the

preference information provided by the DM

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Q5 1 0 0 0 0 0 0 0 0 0 0 0 0

Q6 1 1 0 0 0 0 0 0 0 0 0 0 0

Q7 1 1 1 0 0 0 0 0 0 0 0 0 0

Q8 1 1 1 1 0 0 0 0 0 0 0 0 0

Q9 1 1 1 1 1 0 0 0 0 0 0 0 0

Q10 1 1 1 1 1 1 0 0 0 0 0 0 0

Q11 1 1 1 1 1 1 1 0 0 0 0 0 0

Q12 1 1 1 1 1 1 1 1 0 0 0 0 0

Q13 1 1 1 1 1 1 0 1 1 1 0 0 0

Q14 1 1 1 1 1 0 0 0 1 1 1 0 0

Q15 1 1 0 1 1 0 0 0 0 1 1 1 0

Q16 1 0 0 0 0 0 0 0 0 0 1 1 1

Q17 0 0 0 0 0 0 0 0 0 0 0 1 1
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By using the values of the Net Flow Score (NFS) shown in Table 9, we obtain the

following complete ranking of the alternatives at hand:

Q13 
 Q12 
 Q14 
 Q11 
 Q15 
 Q16 �Q10 
 Q17 
 Q9 
 Q8 
 Q7 
 Q6 
 Q5:

In this case, one can see that the best choice for the newsboy is buying 13 news-

papers while, the worst one, is buying 5 newspapers only. As one can see, while

both methods (GRIP and ELECTREGKMS) recommend that buying 5 newspapers is

Table 9 Values summarizing the results of the necessary and possible outranking relations provided in

Tables 7 and 8

TSN ðQÞ WSN ðQÞ TSCN ðQÞ WSCN ðQÞ T(Q) W(Q) NFS(Q)

Q5 0 11 1 9 1 20 �19

Q6 1 9 2 8 3 17 �14

Q7 2 7 3 7 5 14 �9

Q8 3 7 2 6 5 13 �8

Q9 4 6 2 2 6 8 �2

Q10 5 3 2 1 7 4 3

Q11 6 1 3 0 9 1 8

Q12 7 1 4 0 11 1 10

Q13 8 1 4 0 12 1 11

Q14 7 2 4 0 11 2 9

Q15 6 2 4 1 10 3 7

Q16 3 2 5 3 8 5 3

Q17 1 1 6 5 7 6 1

Table 8 Possible outranking relation for the ELECTREGKMS method computed on the base of the

preference information provided by the DM

Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Q5 1 1 1 1 0 0 0 0 0 0 0 0 0

Q6 1 1 1 1 1 0 0 0 0 0 0 0 0

Q7 1 1 1 1 1 1 0 0 0 0 0 0 0

Q8 1 1 1 1 1 1 1 0 0 0 0 0 0

Q9 1 1 1 1 1 1 1 1 1 1 1 0 0

Q10 1 1 1 1 1 1 1 1 1 1 1 1 0

Q11 1 1 1 1 1 1 1 1 1 1 1 1 1

Q12 1 1 1 1 1 1 1 1 1 1 1 1 1

Q13 1 1 1 1 1 1 1 1 1 1 1 1 1

Q14 1 1 1 1 1 1 1 1 1 1 1 1 1

Q15 1 1 0 1 1 1 1 1 1 1 1 1 1

Q16 1 0 0 0 1 1 1 1 1 1 1 1 1

Q17 0 0 0 0 0 1 1 1 1 1 1 1 1
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the worst choice for the newsboy, the recommendation on the best choice is dif-

ferent on the two methods (12 newspapers is the best choice if one applies GRIP,

while 13 is the best choice if one decides to use ELECTREGKMS). This is not

surprising since GRIP, as all additive methods, is a compensatory method while

ELECTREGKMS, as all outranking methods, is not compensatory.

6 Conclusions

In this paper we presented a new methodology to handle decision under risk and

uncertainty in a constructive approach. This methodology is based on two points:

• On one hand, the risk and the uncertainty is represented through meaningful

quantiles. They are very manageable, since they permit to deal with additive and

nonadditive probabilities as well as with qualitative probabilities. Quantiles are

very understandable for the DM because, taking into account the limitation of

the human mind, few quantiles can synthesize all the very often rich and

complex information contained in a probability distribution.

• On the other hand, ROR is used to induce in a cautious way new preferences

from the whole set of instances of the adopted preference model compatible with

the preference information supplied by the DM.

We have shown in an illustrative example how the proposed methodology can be

applied to a very classical problem of operational research, namely the newsvendor

problem. We believe that the proposed methodology has quite good properties and

that the results shown by the illustrative example are convincing. This encourages to

further develop this approach in a number of directions that we sketch in the

following:

• in this paper we considered application of ROR to additive multiple attribute

value functions and ELECTRE approach, but there are other MCDA methods to

which ROR has been applied and that can be used to handle decision under risk

and uncertainty, such as PROMETHEE methods (Kadziński et al. 2012),

Choquet integral (Angilella et al. 2010) and an enriched multiattribute value

function (Greco et al. 2014);

• our methodology could be applied also to Stochastic Ordinal Regression (SOR)

(Kadziński and Tervonen 2013a, b) which has been recently proposed, coupling

ROR with stochastic multicriteria acceptability analysis (SMAA) (Lahdelma

et al. 1998) in which a probability distribution is considered on the family of all

compatible instances of the preference model to determine the probability that

alternative a is preferred to alternative b, or that alternative a ranks in the kth

position;

• ROR has been recently coupled with Evolutionary Multiobjective Optimization

(EMO) (Deb 2001), to focus the research of the nondominated solutions in the

part of Pareto front that is the most preferred by the DM (Branke et al. 2015,

76 S. Corrente et al.

123



2016); our methodology of decision under risk and uncertainty can also be

applied to this class of EMO algorithms based on ROR;

• in this paper we considered the newsvendor problem, however, there are many

other problems in operational research formulated in terms of decision under

risk and uncertainty; only to give another classical example, let us mention the

Markowitz’s financial portfolio choice problem (Markowitz 1952), that has been

already treated in terms of quantiles but considering ordinal regression rather

than ROR in Greco et al. (2013);

• in this paper we considered risk and uncertainty in monocriterion problems that

were transformed in multicriteria problems using quantiles; however, we can

apply our methodology also in the context of risk and uncertainty related to a

plurality of criteria, and for each criterion we can consider a certain number of

quantiles;

• one can consider not only the aspect of risk and uncertainty, but also the aspect

of distribution of the consequences of a decision over time, which is a common

framework in which practically all real world problems are formulated. Our

approach can be extended to take into account also this aspect.

In conclusion, we believe that, since our approach permits to deal in an effective

way with the risk and uncertainty aspects present in all real world decision

problems, it can be considered as an important component of the toolboox of

operational research.
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Appendix 1: Constraints of the ELECTREGKMS method

In this Appendix, we shall give more details on the technical constraints of the

ELECTREGKMS method as well as on the constraints translating the preference

information provided by the DM.

• Preference information on comparisons between alternatives a	; b	 2 AR � A:

– For all ða	; b	Þ 2 AR such that a	Sb	:

Cða	;b	Þ ¼
Xm

j¼1

wjða	;b	Þ�k and gjðb	Þ � gjða	Þ\vjða	Þ; j¼ 1; . . .;m;

where wjða; bÞ ¼ ujða; bÞ � wj for all j and for all ða; bÞ 2 A� A.

– For all ða	; b	Þ 2 AR such that a	SCb	:
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Cða	; b	Þ ¼
Xm

j¼1

wjða	; b	Þ\k or 9j 2 G : gjðb	Þ � gjða	Þ � vjða	Þ;

which can be modeled as:

Cða	;b	Þ ¼
Xm

j¼1

wjða	;b	Þ\kþM0ða	;b	Þ and gjðb	Þ � gjða	Þ� vjða	Þ

� dMjða	;b	Þ;

where Mjða	; b	Þ 2 f0; 1g; j ¼ 0; . . .;m,
Xm

j¼0

Mjða	; b	Þ�m and d is an

auxiliary variable equal to a big positive value (i.e. d�maxjfxmj

j � x0
j g).

A vector M of binary variables is used to express that either the concordance

test or non-discordance test has to be negative. Notice that if Mjða	; b	Þ ¼ 0,

then a corresponding j-th condition causes discordance with statement a	Sb	.
On the contrary, if Mjða	; b	Þ ¼ 1, then the respective condition is always

satisfied, not making veto. However, there has to be at least one non-equality

for which Mjða	; b	Þ ¼ 0, as
Xm

j¼0

Mjða	; b	Þ�m:

• Limitations on the values of inter-criteria parameters: k; vjðaÞ; 8a 2 A; and

wj j ¼ 1; . . .;m:

• The range of allowed values of a concordance threshold, 0:5� k� 1:0,

• Normalization of the marginal concordance indices for all criteria so that the

indices corresponding to the largest difference in evaluations of two

alternatives on each criterion ðgjða	j Þ � gjðaj;	Þ ¼ x
mj

j � x0
j Þ sum up to 1:

Xm

j¼1

wjða	j ; aj;	Þ ¼ 1 with a	j ; aj;	 2 A; j ¼ 1; . . .;m:

As we previously normalized weights of the criteria so that they sum up to 1,

each weight is now understood as a maximal share of each criterion in the

global concordance index. Consequently, wj ¼ wjða	j ; aj;	Þ; j ¼ 1; . . .;m:

• Lower bounds on the values of veto thresholds vjðaÞ; j ¼ 1; . . .;m; 8a 2 A:

• vjðaÞ needs to be larger than corresponding preference threshold (the

greatest value of a preference threshold pRj ðaÞ allowed by the DM),

vjðaÞ[ pRj ðaÞ; j 2 G1,2

2 G1 is the subset of criteria G on which the DM has expressed direct preferences of the type 3 and 4

shown in Sect. 4.2.
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• vjðaÞ is required to be larger than gjðbÞ � gjðaÞ for all pairs of alternatives

(a, b) for which the DM stated that the difference between gjðaÞ and

gjðbÞ is non-significant (gjðaÞ� gjðbÞ), a� jb; j 2 G2
3 (we do not refer

here to pairs ða	; b	Þ such that a	 
j b
	, because even if the DM states

that the difference between gjða	Þ and gjðb	Þ is relevant, the veto

threshold vj can still be less, equal, or larger than gjða	Þ � gjðb	Þ).

• The function determining the values of veto thresholds vjðaÞ is required to be

monotone non-decreasing with respect to gjðaÞ:

vjðaÞ� vjðbÞ if gjðaÞ[ gjðbÞ and vjðaÞ ¼ vjðbÞ if gjðaÞ ¼ gjðbÞ; j ¼ 1; . . .;m:

If the DM wishes to model the veto threshold with a constant value (not

dependent on gjðaÞ), we would skip the monotonicity constraints and replace

vjðaÞ with vj in all aforementioned formulas.

• Restrictions concerning the value of marginal concordance indices

wjða; bÞ; j ¼ 1; . . .;m:

• wjða; bÞ ¼ 0 if gjðbÞ � gjðaÞ� pRj ðaÞ, for all ða; bÞ 2 A� A,

• wjða; bÞ[ 0 if gjðaÞ � gjðbÞ[ � pLj ðaÞ for all ða; bÞ 2 A� A,

• wjða; bÞ ¼ wjða	j ; aj;	Þ if gjðaÞ � gjðbÞ� � qLj ðaÞ, for all ða; bÞ 2 A� A;

• wjða; bÞ\wjða	j ; aj;	Þ if gjðbÞ � gjðaÞ[ qRj ðaÞ, for all ða; bÞ 2 A� A,

• wjða; bÞ ¼ 0 if b 
j a,

• wjða; bÞ ¼ wjða	j ; aj;	Þ; wjðb; aÞ ¼ wjða	j ; aj;	Þ if a� jb.

• Monotonicity of the functions of marginal concordance indices

wjða; bÞ; j ¼ 1; . . .;m:

• If, according to the preferences of the DM, indifference qj and preference pj
thresholds for criterion gj are not dependent on gjðaÞ, then 8a; b; c; d 2 A,

and for j ¼ 1; . . .;m:

• wjða; bÞ�wjðc; dÞ if gjðaÞ � gjðbÞ[ gjðcÞ � gjðdÞ;
• wjða; bÞ ¼ wjðc; dÞ if gjðaÞ � gjðbÞ ¼ gjðcÞ � gjðdÞ:

• If according to the preferences of the DM indifference qjðaÞ and preference

pjðaÞ thresholds depend on the value of gjðaÞ, then, for j ¼ 1; . . .;m:

• wjða; cÞ�wjðb; cÞ if gjðaÞ[ gjðbÞ for all a; b; c 2 A;

• wjða; cÞ ¼ wjðb; cÞ if gjðaÞ ¼ gjðbÞ for all a; b; c 2 A;

3 G2 is the subset of criteria G on which the DM has expressed indirect preferences of the type 5 and 6

shown in Sect. 4.2.
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• wjða; bÞ�wjða; cÞ if gjðbÞ\gjðcÞ for all a; b; c 2 A;

• wjða; bÞ ¼ wjða; cÞ if gjðbÞ ¼ gjðcÞ for all a; b; c 2 A:

The whole set of monotonicity and normalization constraints together with the

constraints translating the preference information provided by the DM is denoted by

EAR0
:

Pairwise comparison stating a	Sb	 or a	SCb	 :

Cða	; b	Þ ¼
Pm

j¼1 wjða	; b	Þ� k and gjðb	Þ � gjða	Þ þ e� vjða	Þ; j ¼ 1; . . .;m;

if a	Sb	; for ða	; b	Þ 2 AR;

Cða	; b	Þ ¼
Pm

j¼1 wjða	; b	Þ þ e� kþM0ða	; b	Þ and gjðb	Þ � gjða	Þ� vjða	Þ � dMjða	; b	Þ;
if a	SCb	; for ða	; b	Þ 2 AR;

Mjða	; b	Þ 2 f0; 1g; j ¼ 0; . . .;m;
Pm

j¼0 Mjða	; b	Þ�m;

Values of inter-criteria parameters:

0� k� 1;
Pm

j¼1 wjða	j ; aj;	Þ ¼ 1; for all j ¼ 1; . . .;m : ðgjða	j Þ ¼ x
mj

j Þ and ðgjðaj;	Þ ¼ x0
j Þ

with a	j ; aj;	 2 A; j ¼ 1; . . .;m;

vjðaÞ� pRj ðaÞ þ e; j ¼ 1; . . .;m; for all a 2 A;

vjðaÞ� gjðbÞ � gjðaÞ þ e if a� jb; and gjðaÞ� gjðbÞ; j 2 G2;

vjðaÞ� vjðbÞ if gjðaÞ[ gjðbÞ; j ¼ 1; . . .;m; for all ða; bÞ 2 A� A;

vjðaÞ ¼ vjðbÞ if gjðaÞ ¼ gjðbÞ; j ¼ 1; . . .;m; for all ða; bÞ 2 A� A;

Values of marginal concordance indices conditioned by intra-criterion preference information:

wjða; bÞ ¼ 0 if gjðaÞ � gjðbÞ� � pRj ðaÞ; for all ða; bÞ 2 A� A; j 2 G1;

wjða; bÞ� e if gjðaÞ � gjðbÞ[ � pLj ðaÞ; for all ða; bÞ 2 A� A; j 2 G1;

wjða; bÞ ¼ wjða	j ; aj;	Þ if gjðaÞ � gjðbÞ� � qLj ðaÞ; for all ða; bÞ 2 A� A; j 2 G1;

wjða; bÞ þ e�wjða	j ; aj;	Þ if gjðaÞ � gjðbÞ\� qRj ðaÞ; for all ða; bÞ 2 A� A; j 2 G1;

wjða; bÞ ¼ wjða	j ; aj;	Þ; wjðb; aÞ ¼ wjða	j ; aj;	Þ if a� jb; j 2 G2;

wjða; bÞ ¼ 0 if b 
j a; j 2 G2;

Monotonicity of the functions of marginal concordance indices:

If the thresholds for gj are not dependent ongjðaÞ :
wjða; bÞ�wjðc; dÞ if gjðaÞ � gjðbÞ[ gjðcÞ � gjðdÞ; for all a; b; c; d 2 A; j ¼ 1; . . .;m;

wjða; bÞ ¼ wjðc; dÞ if gjðaÞ � gjðbÞ ¼ gjðcÞ � gjðdÞ; for all a; b; c; d 2 A; j ¼ 1; . . .;m;

If the thresholds for gj are dependent ongjðaÞ :
wjða; cÞ�wjðb; cÞ if gjðaÞ[ gjðbÞ; for all a; b; c 2 A; j ¼ 1; . . .;m;

wjða; cÞ�wjðb; cÞ if gjðaÞ ¼ gjðbÞ; for all a; b; c 2 A; j ¼ 1; . . .;m;

wjða; bÞ�wjða; cÞ if gjðbÞ\gjðcÞ; for all a; b; c 2 A; j ¼ 1; . . .;m;

wjða; bÞ�wjða; cÞ if gjðbÞ ¼ giðcÞ; for all a; b; c 2 A; j ¼ 1; . . .;m:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

EAR0

Analogously to what has been done in Sect. 4.1, to verify the feasibility of this set of

constraints EAR0
by linear programming, one has to transform the strict inequality

constraints into weak inequalities involving a variable e. EAR0
has the form of 0-1

mixed integer program (MIP). If EAR0
is feasible and e	 [ 0, where e	 ¼ max e,

subject to EAR0
, then there exists at least one instance of the preference model

compatible with the preference information provided by the DM.

80 S. Corrente et al.

123



Appendix 2: Computation of the relations SN and SP

Given a pair of alternatives ða; bÞ 2 A� A, and the following sets of constraints

EAR0

Cða; bÞ ¼
Xn

i¼1

wiða; bÞ þ e� kþM0ða; bÞ and giðbÞ � giðaÞ� viðaÞ � dMiða; bÞ;

Xn

i¼0

Miða; bÞ� n; Miða; bÞ 2 f0; 1g; i ¼ 0; . . .; n

9
>>>>>>=

>>>>>>;

ESN ða; bÞ

and

EAR0

Cða; bÞ ¼
Xn

i¼1

wiða; bÞ� k and giðbÞ � giðaÞ þ e� viðaÞ; i ¼ 1; . . .; n

9
>=

>;
ESPða; bÞ

we have the following:

• aSNb iff ESN ða; bÞ is infeasible or eNða; bÞ� 0, where eNða; bÞ ¼ max e subject to

ESN ða; bÞ,
• aSPb iff ESPða; bÞ is feasible and ePða; bÞ[ 0, where ePða; bÞ ¼ max e subject to

ESPða; bÞ.
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Greco S, Kadziński M, Mousseau V, Słowiński R (2011) ELECTREGKMS: robust ordinal regression for

outranking methods. Eur J Oper Res 214(1):118–135

Greco S, Matarazzo B, Slowinski R (2013) Beyond Markowitz with multiple criteria decision aiding.

J Bus Econ 83(1):29–60
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