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Abstract We apply the Robust Ordinal Regression (ROR) approach to decision
under risk and uncertainty. ROR is a methodology proposed within multiple criteria
decision aiding (MCDA) with the aim of taking into account the whole set of
instances of a given preference model, for example instances of a value function,
which are compatible with preference information supplied by the Decision Maker
(DM) in terms of some holistic preference comparisons of alternatives. ROR results
in two preference relations, necessary and possible; the necessary weak preference
relation holds if an alternative is at least as good as another one for all instances
compatible with the DM’s preference information, while the possible weak pref-
erence relation holds if an alternative is at least as good as another one for at least
one compatible instance. To apply ROR to decision under risk and uncertainty we
have to reformulate such a problem in terms of MCDA. This is obtained by con-
sidering as criteria a set of quantiles of the outcome distribution, which are
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meaningful for the DM. We illustrate our approach in a didactic example based on
the celebrated newsvendor problem.

Keywords Multiple criteria decision aiding - Robust ordinal regression - Decision
under risk and uncertainty - Additive value functions - Outranking methods

JEL Classification C6

1 Introduction

Multiple Criteria Decision Aiding (MCDA) concerns decision problems where an
alternative a, belonging to a finite set of alternatives A = {a, b, c, ...}, is evaluated
by a coherent (Roy 1996) family of criteria G = {gi,...,&j,...,&n} [see (Figueira
et al. 2005a)] for a collection of state of the art surveys on MCDA). There are
several types of MCDA problems, the most important of which are:

e choice problems, where the aim is to select one or more alternatives from
A considered the best,

e ranking problems, where the aim is to order, partially or totally, all alternatives
from the best to the worst,

e sorting problems, where the aim is to assign all alternatives to one or more
contiguous, preferentially ordered categories.

In this paper, we want to use MCDA to deal with decision under risk and
uncertainty. Let us remember that a distinction between risk and uncertainty has
been advocated by Knight (1921) who writes that “The essential fact is that ’risk’
means in some cases a quantity susceptible of measurement”. Thus, this distinction
is based on the possibility to measure the credibility of future events by means of
some probability [for a critical discussion on this topic see (Langlois and Cosgel
1993)]. In general, in decision under risk and uncertainty, acts from a set F are
described in terms of the consequences in a set X corresponding to a set S of
exhaustive and mutually exclusive states of the world. Each subset E C § of states
of the world is called event. More precisely, each act f € F, is a functionf : § — X
that assigns to each state of the world s € S the consequence f(s) € X obtained if fis
selected and s is verified. For the sake of simplicity, let us consider a finite set S. In
this context, a probability is a function p : 25 — [0, 1] such that

() p(0)=0and p(s) = 1,
(i) forall E,E' C S such that ENE =, p(EUE') = p(E) + p(E').

For each event E C S, p(E) represents its credibility. One can distinguish between
objective probability, exogenously given, and subjective probability, that represents
the credibility that a given Decision Maker (DM) assigns to each event E C § as
revealed by her preferences. In this case, for all E, E' C S, p(E) is greater than p(E’)
if and only if for all x,y € X, whenever the DM prefers x to y, then she also prefers
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the act xEy (giving outcome x if E is verified and y otherwise), to the act xE'y
(giving outcome x if E’ is verified and y otherwise). In fact, in the following we shall
consider also non additive probabilities, i.e. probabilities for which above property
ii) is replaced by the following weaker monotonicity property:

(iii)y for all EC E' C S, p(E) <p(E").

We shall consider also qualitative probabilities, i.e. probabilities that are expressed
on some ordinal scale L = {ly,/,...,I,} such that for all i = 1,...,r, I; denotes a
greater degree of probability than /;_;, with [y representing the credibility that an
event will not be verified for sure, and /, the credibility that an event will be
certainly verified.

To fix the ideas, let us consider the following example. An economic agent is
evaluating a certain number of possible investments F, the profits of which depend
on the realization of one state of the world in the set S = {sy, 55,53 }. For example,
for the investment f € F the profit is 100,000€ in s;, 130,000€ in s, and 150,000€ in
s3, that is f(s1) = 100,000€, f(s2) = 130,000€ and f(s3) = 150,000€. To evaluate
comprehensively each investment from F and to compare them, it is not enough to
know what is the profit in each state of the world, but other information is necessary.
First of all, it is necessary to know which is the probability of each of the three states
of the world. In this sense, one possibility is that the economic agent knows a priori
the probabilities of each state of the world, for example p; = 20 %, p» = 30 % and
p3 = 50% for s1,s, and s3, respectively. This is the case of an objective additive
probability. It is also possible that, due to some severe uncertainty on the realization
of the states of the world, only a non-additive probability is given. For example, due
to lack of knowledge about possible realization of s; or s, one can consider a
probability of p; = 10% for s;, p» = 15% for s,, while the probability that one
between s; and s, is realized is p;» = 50 %, which is greater than p; + p,. It is
worthwhile to remember that nonadditive probability is related to ambiguity for non
perfect knowledge of the probability of events suggested by the famous Ellsberg
paradox (1961), in which in one box there are 90 balls, 30 of which are red and 60
are black or yellow in an unknown proportion. In this case it is quite natural to
assign a probability of 1/3 to extract a red ball (because we know that 1/3 of the
balls are red), a probability of 2/3 to extract a black or yellow ball (because, even if
their proportion is unknown, we know that 2/3 of the balls are black or yellow), a
probability let us say of 1/5 to extract a black ball and a probability of 1/5 to extract
a yellow ball (because, even if we know that in total black and yellow balls are the
2/3 of the balls in the box, we do not know exactly their proportion). It is also
possible that the economic agent does not know a priori any probability, but she has
some preferences on acts related to states of the world. For example, she could
consider indifferent an act giving 100€ on s; and nothing otherwise, and an act
giving with certainty 40€; therefore, assuming that 40€ should be the expected value
of the return for the considered act (i.e. 100€ xp; = 40€), one could induce that the
economic agent implicitly assigns a probability of 40 % to s;. In this case, we have a
subjective probability, which can be both additive or nonadditive. Another possible
situation is that the economic agent could not know an a priori “objective”
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probability and, also, she could not have a subjective probability, because, for
example she would not be able or could not want to say if she would exchange an
act giving 100€ on s; and nothing otherwise, with an act giving with certainty 40€ or
another monetary amount. However, the economic agent could accept to give some
qualitative evaluations of the probability of sy, s, and s3. For example, she could say
that s; and s, have a small probability, s; has a medium probability, the event
{s1,$2} has also a medium probability, while the events {s;,s3} and {s,,s3} have a
high probability. In this case we have qualitative probability expressed on a scale
L having among its elements “small”, “medium”, “high”.

Let us now remember that several models of decision under risk and uncertainty
have been proposed in the literature. In this context, the basic model is the expected
utility model which assigns to each act f € F the value

Ep(f) = Y ulf(s:)pi

S;€S

with u : X — R being a utility function representing tastes of the DM on X.

The expected utility model has been considered in case of objective probabilities
(Von Neumann and Morgenstern 1944), subjective probability (Savage 1954) and
both subjective and objective probabilities (Anscombe and Aumann 1963). To take
into account nonadditive probability, a generalization of the expected utility model
based on the Choquet integral (Choquet 1953) has been considered (Schmeidler
1989). Other generalizations representing ambiguity for imperfect knowledge of
probabilities take into account a plurality of probabilities (Bewley 2002; Gilboa
et al. 2010; Gilboa and Schmeidler 1989).

To clarify the difference of our approach with respect to this literature, let us
remember that there are four main approaches to decision making [the first three
discussed in Bell et al. (1988) and the fourth one proposed in Roy (1993)]:

e the normative approach, that studies decisions on the basis of general axioms of
rationality,

e the descriptive approach, that investigates through experiments how real
decisions are taken pointing out some systematic deviations from rationality,

e the prescriptive approach, that aims at avoiding the systematic deviations
highlighted by the descriptive approach from the rationality postulated by the
first approach (Hammond et al. 1999; Russo and Schoemaker 1989),

e the constructive approach, aiming at supporting a DM to construct her
preferences in complex decision problems, especially when a plurality of points
of view, technically called criteria, are involved.

While most of the literature on decision under risk and uncertainty has adopted the first
three approaches, we would like to propose a methodology related to the fourth
approach. In this sense, it is fundamental that the decision model is expressed in terms
that can be easily understood by the DM, who has to find in the recommendation of the
decision process the arguments useful to explain and justify to herself and to other
subjects the suggested decision. In this perspective, the concept of quantile appears to be
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particularly useful. Indeed, especially when the states of the world are infinite and the
probability distribution is given by means of some analytical formulation, not easily
comprehensible even by a DM with a technical background, it is much more reasonable
to take into account some meaningful probability thresholds and to reformulate the
probability in terms of quantiles. In fact, in our real life experience, very often in front of
some risks we reason answering to questions such as: “Which is the gain I can get with
probability of 90 % (or 75 %, or 50 %, or any other relevant probability threshold)?” or
“Which is the loss I can incur with probability of 10 % (or 25 % or 50 %, or any other
relevant probability threshold)?” Quantiles have been extensively used in finance
where, for example, the p % value at risk is the worst p % loss (Jorion 2007). Some
axiomatic foundations of decision based on quantiles have also been proposed in
economics (Chambers 2007; Manski 1988; Rostek 2010). What is different in our
proposal is that, following Greco et al. (2010) [see also Matos (2007)], we suggest to
consider a certain number of quantiles rather than only one. In this sense, a set of
quantiles can be interpreted as a parsimonious but effective representation of the
whole information contained in a probability distribution, taking into account the
limited capability of human mind. Therefore, in line with the famous Miller’s article
“The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information” (Miller 1956), we suggest a number of quantiles between 5
and 9 because, as argued in that article, this is the number of objects that a human brain
can handle due to the limits of one-dimensional absolute judgment and to the limits of
short-term memory. More formally, we propose to deal with decision problems in case
of risk and uncertainty considering a set of quantiles on the domain of criterion g; € G
corresponding to a set of meaningful probability levels P; = {mi, ..., m, }. For each
n € Pj, a value function g7 : A — R is defined such that, for each a € A, gf(a) =X
means that, fixed the probability 7, the minimum value got by a on criterion g; with
probability at least 7 is x. Therefore, for all j = 1,...,m, for all = € P; and for all
acA,

@) =x & P(gla)=x)=m,

where P is a probability distribution on the space of values attainable by each
alternative from A on criteria from G. Therefore, we propose to deal with uncer-
tainty in MCDA by replacing uncertain criteria g; by the corresponding set of value
functions gJ’F, n € P;.

Let us note that, while “alternatives” are the objects of the decision in MCDA,
they are called “acts” in the framework of decision under risk and uncertainty.
Since our aim is dealing with the decision under risk and uncertainty using the
MCDA framework, in the following, we shall use the term “alternative”.

Continuing the previous example and, considering the following quantiles P; =
{m1, m, 13} = {30%,60 %,90 %} relative to the criterion profit denoted by
f(s1) = 100,000€, f(s;) = 130,000€ and f(s3) = 150,000€, we have that
30%(a) = 150,000€, g®°%(a) =130,000€, and g°”(a) = 100,000€. Let us
observe also that, as explained in Greco et al. (2010), quantiles can be used also
in case of nonadditive probability and even qualitative probability.
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As shown in Greco et al. (2010), this approach can be extended to deal also with
time preferences. In this case, one considers a set of meaningful time epochs
T ={n,...,t},such that for each criterion g €G,mc Piandt € T, afunction gf"’
is defined. Foreacha € A, gf’t(a) = x means that, with respect to criterion g;, action

a gets at least value x within time epoch ¢ with a probability at least 7.

For the sake of simplicity, in this paper we consider only the case of a single
criterion without considering time preferences, deferring to future research discus-
sion of these points. As already observed in Greco et al. (2013), this new formulation
of decision under risk and uncertainty as a multiple criteria decision problem, can be
dealt with other methods proposed in MCDA, such as value function methods
(Keeney and Raiffa 1993), outranking-based methods (Brans and Vincke 1985;
Figueira et al. 2005b), decision rule methods inferred by Dominance-based Rough set
approach (Greco et al. 2001; Stowinski et al. 2009, 2015), interactive multiobjective
optimization and evolutionary multiobjective optimization methods (Branke et al.
2008). In this paper we shall describe how to handle the new formulation of the
multiple criteria decision problem by using an MCDA methodology that is
particularly in line with the principle of the constructive approach. This is the robust
ordinal regression (ROR) (Corrente et al. 2013b; Corrente et al. 2014; Greco et al.
2008). ROR, as classical ordinal regression (Jacquet-Lagreze and Siskos 1982), asks
the DM to supply some preference information, for example in terms of some
pairwise comparisons between alternatives on which the preference of the DM is
certain. Both, ordinal regression and ROR aim at supporting the DM giving some
recommendations on the basis of the provided preference information. However,
adopted a given class of preference models, while ordinal regression selects only one
instance of the preference model among all representing the preference information
provided by the DM, ROR takes into account the whole set of instances of the
considered preference model compatible with the preference information. For
example, if the adopted model is the additive multiple attribute utility function, while
ordinal regression selects a single utility function among all representing the
preference information, ROR considers the whole set of utility functions compatible
with the preference information. To give account of this plurality of instances, ROR
presents recommendations in terms of necessary and possible preference relations.
Given two alternatives a and b, a is (weakly) necessarily preferred to b, if a is at least
as good as b for all instances of the preference model compatible with the preference
information supplied by the DM, while a is (weakly) possibly preferred to b if a is at
least as good as b for at least one compatible instance of the preference model. A great
advantage of ROR is that, considering the whole set of compatible instances, it avoids
to arrive to premature conclusions on preferences as it is possible with classical
ordinal regression. Indeed, different compatible instances of the preference model
can give different preference relations, and therefore, it is always arbitrary to some
extent to select only one of them. Instead, it is more cautious to separate
stable preferences, those resulting from all compatible instances, from unstable pref-
erences, that hold for some compatible instance but do not hold for some other ones.
Necessary and possible preferences so obtained can be presented to the DM who can
react by accepting or criticizing them. If the DM accepts the necessary and the
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possible preferences, and if she is satisfied by the results, she can conclude the
decision process; on the contrary, she can add new preference information in order to
obtain more precise results, i.e., a richer necessary preference relation. Actually, if the
DM criticizes the necessary and the possible preferences, she can modify some
preference information in order to get results better representing her preferences. In
any case, ROR permits to open a discussion with the DM giving her the possibility to
reflect on the decision problem, and to arrive to a mature and convincing decision. For
all these good properties, ROR has been applied to several MCDA preference models,
namely additive utility functions (Corrente et al. 2012; Figueira et al. 2009; Greco
et al. 2008), ELECTRE methods (Corrente et al. 2013a; Greco et al. 2011),
PROMETHEE methods (Kadzinski et al. 2012), Choquet integral (Angilella et al.
2010) and an enriched form of the additive utility function to take into account
interaction between criteria (Greco et al. 2014). Thus, the constructive MCDA
methodology that we present in this approach is based on two pillars that give it its
essential properties: on one hand, the representation of the probability in terms of
quantiles ensures the easy understanding by the DM while, on the other hand, ROR
permits a prudent inference of further preferences on the basis of the current
preference information supplied by the DM.

The paper is structured as follows: in Sect. 2 we introduce the notation used in
the paper; Sect. 3 recalls the different preference models used in MCDA and the
Robust Ordinal Regression (ROR); GRIP and ELECTRE®AMS are briefly described
in Sect. 4; in Sect. 5, the new procedure is applied to the newsvendor problem, while
conclusions and further directions of research are given in Sect. 6.

2 Notation

In this section we introduce the notation used in the paper. More details on the
meaning of the parameters will be provided in the sections describing the models in
which these parameters are involved.

e A={a,b,c,...}—a finite set of n alternatives described over a family G of
m evaluation criteria,

® gi,...&,- -, &n-m evaluation criteria, g; : A — R for all j € {1,2,...,m}; the
family of criteria G is supposed to be coherent (Roy 1996), that is exhaustive
(all relevant criteria are taken into account), cohesive (if two alternatives a and
b have the same evaluations on all but one criterion, and a gets an evaluation
better than b on the remaining criterion, then a should be preferred to b), non-
redundant (the removal of one criterion from the family makes the new set of
criteria not exhaustive);

® Wi,...,W,...,w,—importance coefficients (ELECTRE®X™S only), where wj
represents the importance of criterion g; inside the family of criteria G;
e gj,pjandv;,j=1,...,m, being the indifference, preference and veto thresholds,

respectively (ELECTRECXMS only).
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3 Preference models and robust ordinal regression

Since the only information stemming from the evaluations of the alternatives with
respect to the different criteria is the dominance relation,' three main approaches are
used in MCDA to aggregate these evaluations, that are, multi-attribute value theory
(MAVT) (Keeney and Raiffa 1993), outranking methods (Brans and Vincke 1985;
Figueira et al. 2013) and dominance-based rough set approach (DRSA) (Greco et al.
2001; Stowinski et al. 2009):

e MAVT represents preferences of a DM on a set of alternatives A by an overall
value function

Ua) = Ug1(a), .. gnla)) : R" — B (1)

such that a is at least as good as b iff U(a) > U(b); in the following, we shall
suppose that the evaluation criteria are mutually preferentially independent
(Keeney and Raiffa 1993) and, consequently, the value function in Eq. (1) can
be written in an additive way, that is,

Ula) =Y ui(gi(a)) (2)

J=1

where u; : R — R are marginal value functions, for each j =1,...,m;

e outranking methods represent preferences of a DM on a set of alternatives A by
an outranking relation S C A X A, such that, aSb iff a is at least as good as b;

e DRSA is based on “if,...,, then...” decision rules expressed in a natural
language for the DM, linking the performances of the alternatives on the
considered criteria with a comprehensive judgment of the alternative at hand.
For example, “if the consumption of a car is at least 15 km/l and its price is at
most 10,000€, then the car is considered to be good.”

In this paper, we shall deal with the first two aggregation approaches.

In order to apply both families of methods, the DM should provide the
parameters on which they are based, that are, marginal value functions u_,-(-),
j=1,...,m, in MAVT, and weights, indifference, preference and veto thresholds,
as well as the cutting level, for the outranking methods. These parameters can be
provided by the DM in a direct or in an indirect way (Jacquet-Lagréze and Siskos
1982, 2001). In the direct one, the DM has to give directly all the values of the
parameters involved in the model, while, in the indirect one, the DM gives some
preferences on reference alternatives (s)he knows well, from which, parameters
compatible with these preferences can be inferred. If the DM provides an indirect
preference information, in general, more than one instance of the model (a value
function in the MAVT case and a set of weights, thresholds and cutting level in the
second one) could be compatible with the preferences she provided. Each of these

! Supposing that all criteria are gain criteria, a dominates b if g;(a) > g;(b) for all j = 1,...,m, and there
exists at least one j such that g;(a) > g;(b).

@ Springer



Robust ordinal regression for decision... 63

models provides the same recommendations on the reference alternatives but each
of them could provide different recommendations on the other alternatives from the
whole set A. To consider all models compatible with the preferences of the DM,
ROR has been proposed (Corrente et al. 2013b; Corrente et al. 2014; Greco et al.
2008). ROR provides robust recommendations with respect to the problem at hand,
building a necessary and a possible preference relation. The necessary and possible
preference relations hold between two alternatives a and b if a is at least as good as
b for all or, respectively, for at least one instance of the model compatible with the
preferences provided by the DM.

4 GRIP and ELECTREC“XMS

The first method applying ROR concepts is UTA®MS, It is based on the additive
value function shown in Eq. (2) and it is used to deal with ranking and choice
problems. In this section, we shall briefly recall two methods, that are GRIP
(Figueira et al. 2009) and ELECTRE®*™S (Greco et al. 2011). GRIP is the
generalization of the UTA®MS method taking into account not only pairwise
comparisons between alternatives but also information on intensity of preferences
between two pairs of alternatives. ELECTRE“AMS is the extension of the ELECTRE
IS method under the ROR framework.

4.1 GRIP

In the GRIP method, the DM is expected to provide the following indirect
preference information both at comprehensive and at partial level with respect to a
subset of reference alternatives AX C A:

e A partial preorder >~ on AR whose meaning is: for a*, b* € AR

a'zb" & ““a* is at least as good as b*.

e A partial preorder >~ * on AR x AR, whose meaning is: for a*, b*, c*,d* € AR,

(@, b") =" (c*,d") & “a"is preferred to b* at least as
much as ¢ is preferred to d*’.

* A partial preorder 7 ;; on AR whose meaning is: for a*,b* € AR,

if)
a' zZ,)b" < ** the marginal value of a" on criterion g is at
least as much as the marginal value of 5" on criterion g;.

*

e A partial preorder ;) on A* x A¥ whose meaning is: for a*, b*, c*, d* € A¥,
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(a*,b") Z ;j)(c",d") & *‘a” is preferred to b" on criterion g; at least
as much as ¢* is preferred to d* on

criterion g;j, i,j € G”’.

Formally, a compatible value function is an additive value function, as that one in

Eq.

(2), satisfying the following set of constraints:
Ua*)>U(b*) +¢ if a" > b
Ul@) =Ub*) if a ~b*
Ul@)-UB)2U(c") - Ud) +e| . £ Ry o (o g
U(er) > Uld) + 2 if  (a*,b%) >* (c*,d)
U@)-U@")=U(c") - U(@) if (a*,b")~"(c",d") a bt d* €AR; i jeG
ui(a*) >u(b*) +e if  a* -, b*
uij\a ) (b’F if a*~ (,':,-)b* EAR
(@) —wi(b") 2 ui(c) —ui(d") +& if  (a",b%) ~(;; (c",d")
ui(a®) — ui(b*) = w;(c*) — M,(d*) it (a",b") ~ (" dY)

(xk) >ul(xlL 1)’ J: 1 1, k= l -5 My,

u_/(xj(.’):07 j=1,...,m, and Zu,xm’ =

where

=, =", =, and > ;) are the asymmetric parts of =, =%, = Z iy and 2 J)

while ~, ~ *, ~ (i) and ~ ( i) are their symmetric parts; for example, a > b iff
aZ b and not(b a), while a~b iff a5 b and b a;
xj’-‘, k=0,...,m;, are all different evaluations of the alternatives from A on

criterion gj, Jj=1...,m; the values x" k=0,...,mj, are increasingly ordered,

ie., x <x < - <x}"’; in partlcular x]Q = mingeq gj(a), while
m;

x| = Maxgeq g,( a);

¢ is an auxiliary variable used to convert the strict inequality constraints,
translating the preferences of the DM, in weak inequality constraints. For
example, the global preference of a* over b*, translated to the inequality

U(a) > U(b), is converted to the constraint U(a) > U(b) + &.

To check if there exists at least one value function compatible with the preferences
provided by the DM, one has to solve the following LP problem:

e(A®) = maxe, subject to EY.

If EA" is feasible and ¢(AR) > 0, then there exists at least one instance of the model
compatible with the preferences provided by the DM. Otherwise, pieces of pref-
erence information causing the infeasibility need to be checked by means of some of
the methods presented in Mousseau et al. (2003).

&

Given a,b € A, and the following sets of constraints
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Ub)>U(a) +¢,
BN

}EN(a,b), - }Ep(a, b)
we can say the following:

e ais necessarily preferred to b (a == "'b), iff E¥(a, b) is infeasible or, if EN (a, b) is
feasible and & (a,b) <0, where &V (a,b) = max ¢, subject to EV(a,b);

e a is possibly preferred to b (a = "b), iff EP(a,b) is feasible and & (a,b) > 0,
where ¢ (a, b) = max ¢, subject to E”(a, b).

More details from the computational point of view on the necessary and possible
preference relations could be found in Corrente et al. (2015), while for some
properties of the necessary and possible preference relations, as well as for an
axiomatic basis of the same preference relations, the interested reader is referred to
Greco et al. (2008) and Giarlotta and Greco (2013), respectively.

In general, in ranking and choice problems, one needs to assign a real number to
each alternative being representative of its value in the problem at hand. For this
reason, to summarize the results obtained by ROR, a representative value function
can be computed (Figueira et al. 2008; Kadziniski et al. 2011). It is obtained in two
steps maximizing, at first, the difference U(a) — U(b) for the pairs of alternatives
(a, b) such that a is strictly necessarily preferred to b and, then, minimizing the
difference U(a) — U(b) for the pairs of alternatives (@, b) such that a is possibly
preferred to b and b is possibly preferred to a. From a computational point of view,
the two steps are the following:

Step 1) solve the LP problem:
max ¢, subject to
U(@)>U(b)+¢ if a="b and not(b="a),
EAR.
Step 2) denoting by ¢, the value of ¢ optimizing the LP problem solved in step 1),
solve the following LP problem:

mind, subject to
Ula) = U(D) <9

} if a>="b and b>="a,
U(b) - Ufa) <4

&= ¢y,
A
4.2 ELECTRECKMS

Before introducing the ELECTRE®®™S method, we recall the basic aspects of the
ELECTRE IS method.
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Given the weights of criteria wy, ..., w,,, such that w; >0 forall j = 1,...,m, and
> i1 wj = 1, and the indifference and preference thresholds, g;(a) and p;(a), for all
gain-type criteria g;, and for all a € A, ELECTRE IS builds, for each criterion gj,

and for each pair of alternatives (a, b), the partial concordance index
1 if g;(b) — gj(a) < g;(a)

gj(a) — [gj(b) _pj<a)] i (a : —o:(a i(a
pi(a) — g;(a) f gj(a) <g(b) — g(a) <pj(a)

0 if g;(b) — gj(a) > p;(a).

The indifference and preference thresholds gj(a) and p;(a) have the following
meaning:

(pj(avb) =

e gj(a) is the greatest difference between g;(b) and gj(a) compatible with their
indifference on criterion g;,

e pj(a) is the smallest difference between g;(b) and gj(a) compatible with the
preference of b over a on criterion g;.

@j(a,b) € [0,1] for all j = 1,...,m, and for each (a,b) € A x A. It represents the
degree of preference of a over b with respect to criterion g; and it is a non-increasing
function of the difference g;(b) — gj(a). Observe that, for the sake of simplicity, the
indifference and preference thresholds could be considered constant for each
alternative a and, therefore, independent of the evaluations g;(a).

After building the partial concordance indices ¢;(a,b), ELECTRE IS builds the
comprehensive concordance index C(a, b) for each (a,b) € A x A, defined as
follows:

C(a,b) = Z (pj(a,b) X Wj.
=

C(a,b) € 10,1] and it represents the degree of preference of a over b. The
outranking relation of the ELECTRE IS method is therefore based on the concor-
dance and the non-discordance tests; the concordance test is verified if C(a,b) > 4,
where 4 € [0.5, 1] is called the cutting level and it represents the minimum coalition
of criteria necessary to the outranking of a over b. The non-discordance test is
verified if, for all j = 1,...,m, g;(b) — g;j(a) <vj(a) that is, for each criterion g; the
difference in the performances of b and a on criterion g; is lower than the veto
threshold v;(a). From a formal point of view, we can therefore write that

aSb iff C(a,b)>7 and g;(b)—gi(a)<vi(a), for all j=1,... m.

The negation of the preference relation S will be denoted by S and, of course, it
will be true that aSCb if at least one of the concordance and the non-discordance test
is not fulfilled.

As already observed in Sect. 3, the application of the ELECTRE methods
involves the knowledge of several parameters that are, weights of criteria,
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indifference, preference and veto thresholds and the cutting level. In order to induce
a set of parameters, the DM can provide the following direct or indirect preference
information regarding the evaluation criteria and the comparison between
alternatives:

1. the weight w; of criterion g; belongs to the interval [ij, wﬂ, where ij <wk,

2. criterion g; is more important than criterion g;, that is w; > wj,
3. the indifference threshold for criterion g; related to alternative a, g;(a), belongs

to the interval [qu(a), q]’?(a)}, where ¢ (a) < qf(a),

4. the preference threshold for criterion g; related to alternative a, p;(a), belongs to
the interval {ij(a), Py (a)}, where pf(a) <pf(a),

5. a~;b, that is “the difference between g;(a) and g;(b) is non-significant for the
DM,

6. a b, that is “the difference between gj(a) and g;(b) is significant for the
DM”,

7. a outranks b, that is aSbh,

8. a does not outrank b, that is aS€b.

Details on the constraints translating the preference information provided by the
DM can be found in Greco et al. (2011) and, for the sake of completeness, also in
the Appendix 1.

If the preferences of the DM are not inconsistent, in general, more than one
instance of the model (weights, thresholds and cutting level) compatible with these
preferences could be inferred. Even if there exists different methods aiming to find
only one model compatible with the preferences provided by the DM [see for
example Dias and Mousseau 2006 and Mousseau and Dias 2004], in this section we
shall concentrate our attention on the ELECTRE®A™S method. ELECTRE®X™S takes
into account simultaneously all compatible instances of the outranking model
defining, as all ROR methods, a necessary and a possible preference relation as
follows:

e a is necessarily preferred to b (denoted by aSVb), iff aSb for all compatible
instances of the model,

e ais possibly preferred to b (denoted by aS”h), iff aSh for at least one compatible
instance of the model.

Analogously, other two preference relations related to the non-outranking can be
defined:

e a does not necessarily outrank b (denoted by aSVb), iff aSCb for all compatible
instances of the model,

e a does not possibly outrank b (denoted by aS¢b), iff aSCh for at least one
compatible instance of the model.
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It is obvious that S¥ C §F and SV C S°P. Moreover, it can easily be proved that
aSVb iff not(aSTb) and aS”h iff not(aSVb). The interested reader could find these
and other properties of the four preference relations in Greco et al. (2011). Details
on the computations of the necessary (SV) and possible (S”') preference relations can
be found in Greco et al. (2011) and, for the completeness of description, in the
Appendix 2.

5 A didactic example concerning the newsvendor problem

The newsvendor problem is a classic problem of operational research that was faced
for the first time by the economist Edgeworth in his paper “The mathematical theory
of banking” in 1888 (Edgeworth 1888). The newsvendor problem consists in finding
the correct amount of a certain resource that should be bought, knowing the
probability distribution of demand, in order to maximize the pay-offs, from one side,
or to minimize the costs from the other side. In the last decade, tens of papers were
published about this problem and about its application in different situations: buying
seasonal goods, making the last buying or last production run decision, setting safety
stock levels, setting target inventory levels, selecting the right capacity for a facility
or machine, overbooking customers, etc. Some literature reviews of the newsvendor
problem are the following (Khouja 1999; Petruzzi and Dada 1999; Qin et al. 2011).

Now, after formulating the problem in the nice case of the newsboy, we will
approach it in a new way, as announced in the introduction.

Let’s suppose the newsboy has to choose the number of newspapers to be ordered.
If he didn’t order enough newspapers he will have a stockout problem, so that some
customers will be disappointed and sales and profit will be lost. If he orders too many
newspapers, he will loose a certain amount of money. The newsboy’s goal is,
therefore, to choose the amount of newspapers maximizing his gain. The newsboy
evaluates that each newspaper involves the following costs and gains:

Unit cost, c = 1.4 €,

Unit selling price, p = 2 €,

Salvage value (estimated worth of a newspaper not sold), s = 1 €,
Stockout cost (cost of buying one unit less than the demand), s. = 0.15 €.

Let’s suppose that the newsboy has to choose to order among 5, . . ., 17 newspapers,
and that the demand can assume values 5, 6, 7, 8, 9, 10 with probability 5%, values
11, 12, 13, 14, 15, 16, 17, with probability 10 %, and probability 0 % otherwise.
Formally,
5% if re{s,...,10}
pr=1 10% if re{ll,... 17}
0%  otherwise

Denoting by D the demand of newspapers and by Q the number of ordered news-
papers, the newsboy’s gain, denoted by G(Q, D), is the following:
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Table 1 Possible gains of the newsboy depending on the demand and on the number of ordered news-
papers expressed in €

G(Q«,Dj) Ds Dg D; Dy Dy Dy Dy Do Dz Dy Dis D Dp

0Os 3.00 285 270 255 240 225 210 195 180 1.65 150 135 120
0Os 2.60 360 345 330 3.5 3.00 285 270 255 240 225 210 195
07 2.20 320 420 4.05 390 375 3.60 345 330 3.15 3.00 285 270
0Os 1.80 280 3.80 4.80 465 450 435 420 405 390 375 3.60 345
Q9 1.40 240 340 440 540 525 5.10 495 480 4.65 450 435 420
Qo 1.00 2.00 3.00 4.00 500 600 585 570 555 540 525 510 495
On 0.60 1.60 2.60 3.60 460 560 6.60 645 630 6.15 6.00 585 570
O 0.20 120 220 320 420 520 620 7.20 7.05 690 6.75 6.60 645
013 —-020 080 1.80 2.80 380 480 580 6.80 7.80 7.65 7.50 735 720
O —0.60 040 140 240 340 440 540 640 740 840 825 810 795
Ois —-1.00 000 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 8.85 8.70
Ois —140 —-0.40 0.60 1.60 2.60 3.60 4.60 560 660 7.60 8.60 9.60 945
017 —-1.80 —-0.80 0.20 1.20 220 320 420 520 620 7.20 820 9.20 10.20

G(Q,D)=p-min(Q,D) —c-Q+s-max (Q — D,0) —s.-max (0,D — Q). (3)

Table 1 contains the gain for the newsboy as a function of the demand and of the
number of newspapers bought. For each k =5,...,17 and for each j =5,...,17,
z(QOk, Dj) is the probability that buying Q, newspapers the newsboy will gain not
less than G(Qx, D;). Formally,

2(Ok, Dy) = Z Pr-
r: G(Qk,Dy) > G(Qx,Dj)

z2(Qk, D;) = p could be interpreted such that buying O newspapers the newsboy
will gain not less than G(Qx, D;) with probability p. In Table 2, we show the values
of z(Qk, D;), with k,j =5,...,17. Choosing to buy Q) newspapers, k =5,...,17,
the best realization of the demand for the newsboy is Dj;. such that

D.) = mi D).
«(Qx D) je{rsl}%.nn}Z(Qk )

After computing the values of z(Q, D;), for all k,j =5, .. ., 17, for each quantile
7 € [0, 1] one can define the following quantity:
= G D .

PQum) = max  {G(Ow D)} 4)
p(Oy, ) is the minimum gain the newsboy gets with probability at least equal to
when buying O, newspapers. The computation of p(Qy, ) can be explained in an
easy way. Suppose the newsboy decides to buy 10 newspapers (Q; = 10). We order
the possible corresponding gains from the lowest to the greatest one as shown in
Table 3 and, under the possible gains G(Qio,D;), we show the corresponding
probabilities z(Q19,D;). After choosing, for example, the quantile 7 = 75%, we
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Table 2 Values of z(Qk,D;) with k,j=35,...,17 expressed in percentage. z(Qx,D;) represents the
probability that buying Oy newspapers the newsboy will gain not less than G(Qx, D;)

2(O,Dj)  Ds D¢ D; Dg Dy Dy Dy D D Du Dis D Diy

0Os 5 10 15 20 25 30 40 50 60 70 80 90 100
0Os 50 5 10 15 20 25 35 45 60 70 80 90 100
07 100 55 5 10 15 20 30 40 50 65 75 85 95
03 100 95 60 5 10 15 25 35 45 55 70 80 90
Q9 100 95 90 65 5 10 20 30 40 50 60 75 85
Qo 100 95 90 8 70 5 15 25 35 45 55 65 80
On 100 9 90 8 80 75 10 20 30 40 50 60 70
On 100 9 90 8 80 75 70 10 20 30 40 50 60
013 100 95 9% 8 80 75 70 60 10 20 30 40 50
O 100 95 9 8 80 75 70 60 50 10 20 30 40
0Ois 100 9 9 8 80 75 70 60 50 40 10 20 30
Oi6 100 9 9 8 80 75 70 60 50 40 30 10 20
017 100 9 9 8 80 75 70 60 50 40 30 20 10

Table 3 Practical explanation of the computation of p(Q0,75 %)

Ds Ds¢ D; Ds Dy Dy D D5 Dy D3 Dy, Dy, Do

G(Q10,Dj) 1 2 3 4 495 5 5.10 525 540 555 570 585 6
z2(Q,D;) 100 95 90 85 80 70 65 55 45 35 25 15 5

look at the gains that could be obtained with probability no lower than 75 %, that are
1€, 2€, 3€, 4€ and 4.95€, and we take the maximum among them, that is 4.95€.
Obviously, in the extreme cases, choosing to buy 10 newspapers, the newsboy will
gain with probability 99 % at least 1€ (p(Q10,99 %) = 1€) and with probability of
the 1%, at least 6€ (p(Q19,1%) = 6€).

In Table 4 we show the values of p(Qy, n), with k =5, ..., 17, corresponding to
the meaningful quantiles for the DM {1 %, 25 %, 50 %, 75 %, 99 %}.

5.1 GRIP applied to the newsvendor problem

To help the newsboy to find the best number of newspapers to order, at first we will
use the GRIP method; the newsboy can compare reference alternatives at
comprehensive level, i.e. on all criteria, and at the partial level, i.e. on particular
criteria.

Without any further information, the only information stemming from the values
in Table 4 is the dominance relation A on the set of alternatives (in our case the
different numbers of newspapers that could be bought from the newsboy) shown in
Fig. 1.

Let us suppose that the newsboy is confident on expressing four preferences
regarding the alternatives Qg, Q7, Q12 and Q7; at first he says that, the difference
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Table 4 Values of p(Qx, ),

with k=5, 17, p(Qx, ™) 1 % 25 % 50 % 75 % 99 %

;32;?‘1’;)5“?::%;2 g&meamngf”l 0s 3.00 2.40 1.95 1.50 1.20

{1%,25%,50 %, 75 %,99 %} (03 3.60 3.00 2.60 2.25 1.95
07 4.20 3.60 3.30 3.00 2.20
0Os 4.80 435 3.90 3.60 1.80
Qo 5.40 4.95 4.65 435 1.40
O 6.00 5.70 5.25 4.95 1.00
O 6.60 6.30 6.00 5.60 0.60
On 7.20 6.90 6.60 5.20 0.20
O3 7.80 7.50 7.20 4.80 —0.20
O 8.40 8.10 7.40 4.40 —0.60
Ois 9.00 8.70 7.00 4.00 —1.00
Q6 9.60 8.60 6.60 3.60 —1.40
Oi7 10.20 8.20 6.20 3.20 —1.80

Fig. 1 Dominance relation on 0

the set of considered alternatives

between the evaluations of O, and Qg with respect to quantile 75 % is greater than
the difference between the evaluations of Qg and Q, with respect to quantile 99 %.
This piece of preference information is translated to the constraints uss59(Q12) —
u75%(Q6) > 199%(Q6) — oo %(Q12) and ugg 9 (Qs) — g9 % (Q12) > 0. Including this
piece of preference information, the corresponding necessary preference relation is
shown in Fig. 2. Bold arrows in Fig. 2 represent new pairs in the necessary
preference relation resulting from the first piece of preference information provided
by the DM. Therefore, Q1; and Q;, are necessarily preferred to Qg.

After that, the newsboy gives another piece of preference information at the
partial level. Supposing to buy 7 newspapers, the newsboy prefers gaining at least
3€ with probability 75% than 2.20€ with probability 99 %, showing, therefore, to be
quite risk prone. The constraint translating this piece of preference information is
u75%(07) > uggy(Q7). In Fig. 3, we show the new necessary preference relation
obtained after including the second piece of preference information provided by the
DM. As one can observe, in consequence of this piece of information, six new pairs
appear in the new necessary preference relation with respect to that one obtained in
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Fig. 2 Necessary preference

relation obtained after including @ @ @
the first piece of preference

information provided by the

DM. Bold arrows represent new
pairs of alternatives in the @ @ @

necessary preference relation

Fig. 3 Necessary preference relation obtained after including the second piece of preference information
provided by the DM. Bold arrows represent new pairs of alternatives in the necessary preference relation

the previous step. In particular, Qy9, Q13, Q14, Q15, O16 and Q7 are now necessarily
preferred to QOs.

In the end, the newsboy provides the third piece of preference information stating,
on one hand, that Q7 is preferred to Q7 and, on the other hand, that Q1 is preferred to
Q17 more than Q5 is preferred to Q. The constraints translating this piece of preference
information are U(Q17) > U(Q7) and U(Q12) — U(Q17) > U(Q7) — U(Q¢). The
new necessary preference relation is shown in Fig. 4.

Since not all alternatives are pairwise comparable in Fig. 4 and the newsboy
would like to have a complete ranking of the alternatives at hand, we compute a
representative value function summarizing the ROR results. The marginal utilities
and the comprehensive utility of each alternative are shown in Table 5. Looking at
results in Table 5 it appears that the best choice for the newsboy is buying 12
newspapers, followed by the possibility of buying 11 newspapers, and so on.
Analogously, the worst choice for the newsboy is buying 5, 6 and 7 newspapers,
being the alternatives presenting the lowest comprehensive utilities.

5.2 ELECTREYXMS applied to the newsvendor problem

In this subsection, we shall show how to apply the ELECTRE®X™S method to obtain
robust recommendations on the same problem we dealt with GRIP, on the base of
the preference information provided by the DM; for the sake of simplicity, we shall
suppose that the newsboy is able to provide the indifference, preference and veto
thresholds shown in Table 6. As a consequence, in this problem, the unknown
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Fig. 4 Necessary preference relation obtained after including the last piece of preference information
provided by the DM. Bold arrow represents the new pair of alternatives in the necessary preference
relation

Table S Marginal Utilities with

respect to the five quantiles and 1% 425 % #50% ¥15% ooy U
comprehensive utility of the

alternatives at hand obtained by 0 0 0 0 0 ~0 ~0
applying a representative value 0O¢ 0.0384 0.0384 0.0368  0.0864 ~0 ~0.2
function 07 0.0647  0.0647 0.0619  0.2087 ~0 ~0.4

O3 0.0966  0.0966  0.0914  0.2487 ~0  ~0.5333
Q9 0.0966  0.0966  0.0914  0.2487 ~0  ~0.5333
Q1o 0.0966 0.096 0.0914  0.3522 ~0  ~0.6368
O 0.096 0.096 0.0914  0.5821 ~0  ~0.8667
QO 01289  0.1289  0.1601  0.5821 ~0 ~1
Qi3 01289  0.1289  0.1601  0.2487 ~0  ~0.6667
Qs 01289 0.1289  0.1601  0.2487 ~0  ~0.6667
Q5 0.1289  0.1289  0.1601  0.2487 ~0  ~0.6667
Qi 0.1289  0.1289  0.1601  0.2487 ~0  ~0.6667

Q17 0.1289  0.1289  0.1190  0.2232 0 ~0.6
Table 6 Thresholds on
p(Qk, ) provided by the DM for dr Pr v
the considered quantiles = 1% 10 20 40
n=25% 1.0 2.0 4.0
T=50% 0.5 1.5 3.0
n=75% 0.5 1.5 3.0
T=99% 0.5 1.5 3.0
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Table 7 Necessary outranking relation for the ELECTRE®AMS method computed on the base of the
preference information provided by the DM

Os Os 07 0Oz Qo O

©
©
0~
©
©
=
©
©
(=)
©
=

0s 1 0 0 0 0 0 0 0 0 0 0 0 0
Os 1 1 0 0 0 0 0 0 0 0 0 0 0
s 1 1 1 0 0 0 0 0 0 0 0 0 0
O 1 1 1 1 0 0 0 0 0 0 0 0 0
Qo 1 1 1 1 1 0 0 0 0 0 0 0 0
O 1 1 1 1 1 1 0 0 0 0 0 0 0
on 1 1 1 1 1 1 1 0 0 0 0 0 0
On 1 1 1 1 1 1 1 1 0 0 0 0 0
O 1 1 1 1 1 1 0 1 1 1 0 0 0
Ou 1 1 1 1 1 0 0 0 1 1 1 0 0
Ois 1 1 0 1 1 0 0 0 0 1 1 1 0
Qi 1 0 0 0 0 0 0 0 0 0 1 1 1
Q7 0 0 0 0 0 0 0 0 0 0 0 1 1

parameters are the cutting level 4 and the weights underlining the importance
assigned to the considered quantiles.

Let’s suppose that the newsboy states that O, outranks Qg (Q125Q¢) and, at the
same time, Qs does not outrank Qg (QsS¢Qg). By solving the programming problem
presented in Appendix 1, there exists at least one instance of the preference model
compatible with the preference provided by the DM. On the basis of this preference
information, we obtained the necessary and possible outranking relations shown in
Tables 7 and 8.

To summarize the results got by the application of the ROR in this case, we use
the same procedure presented in Greco et al. (2011). On the base of the results
shown in Tables 7 and 8, and reminding that aS’b iff not(aSVb), and aSVb iff
not(aSth), for each alternative Qy, k=35,...,17, we computed the following
values, where A = {Q, k=5,...,17}:

o Tow(Qy) =0, €A, r#k:QuSYQ,|; that is the number of alternatives Q, € A
such that Oy necessarily outranks Q,,

o We(Oi) =10, €A,r# k:Q,SV0Oxl; that is the number of alternatives Q, € A
such that Q, necessarily outranks Oy,

o Tson(Qx) = |Q, €A :not(Q,S°Qy;)|; that is the number of alternatives Q, € A
such that Q, does not possibly outrank O,

o Wy (Qr) = |Qr € A : not(QrSTQ,)|; that is the number of alternatives Q, € A
such that Q; does not possibly outrank Q,,

o T(Q) =Tsv(Ox) + Tsen (Or)s W(Ok) = Wen (Qr) + Ween (Qx) and NFS(Qx) =
T(Qk) — W(Qx).
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Table 8 Possible outranking relation for the ELECTRE®A™S method computed on the base of the
preference information provided by the DM

Os Os 07 0Oz Qo O

©
©
0~
©
©
-
©
©
(=)
©
=

0Os 1 1 1 1 0 0 0 0 0 0 0 0 0
Os 1 1 1 1 1 0 0 0 0 0 0 0 0
s 1 1 1 1 1 1 0 0 0 0 0 0 0
O 1 1 1 1 1 1 1 0 0 0 0 0 0
Qo 1 1 1 1 1 1 1 1 1 1 1 0 0
O 1 1 1 1 1 1 1 1 1 1 1 1 0
Ou 1 1 1 1 1 1 1 1 1 1 1 1 1
On 1 1 1 1 1 1 1 1 1 1 1 1 1
O 1 1 1 1 1 1 1 1 1 1 1 1 1
Qu 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1 1 1 1 1 1
O, 1 0 0 0 1 1 1 1 1 1 1 1 1
Q7 0 0 0 0 0 1 1 1 1 1 1 1 1

Table 9 Values summarizing the results of the necessary and possible outranking relations provided in
Tables 7 and 8

Ty (Q) Wev (Q) Tyer (Q) Wsev (Q) Q) W(Q) ~ NFSQ)

0s 0 11 1 9 1 20 —-19
Os 1 9 2 8 3 17 —14
0, 2 7 3 7 5 14 -9
O 3 7 2 6 5 13 -8
Qo 4 6 2 2 6 8 -2
Qo 5 3 2 1 7 4 3
On 6 1 3 0 9 1 8
On 7 1 4 0 11 1 10
O3 8 1 4 0 12 1 11
Ou 7 2 4 0 11 2 9
Ois 6 2 4 1 10 3 7
Q6 3 2 5 3 8 5 3
On 1 1 6 5 6 1

By using the values of the Net Flow Score (NFS) shown in Table 9, we obtain the
following complete ranking of the alternatives at hand:

Q13> 012 = Qua = Qi > Q15 = Qie~ Q1o > Q17 = Qo = Og = Q7 = O >~ Os.
In this case, one can see that the best choice for the newsboy is buying 13 news-

papers while, the worst one, is buying 5 newspapers only. As one can see, while
both methods (GRIP and ELECTRE“AMS) recommend that buying 5 newspapers is
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the worst choice for the newsboy, the recommendation on the best choice is dif-
ferent on the two methods (12 newspapers is the best choice if one applies GRIP,
while 13 is the best choice if one decides to use ELECTRE®A™S). This is not
surprising since GRIP, as all additive methods, is a compensatory method while
ELECTRE®AMS  as all outranking methods, is not compensatory.

6 Conclusions

In this paper we presented a new methodology to handle decision under risk and
uncertainty in a constructive approach. This methodology is based on two points:

e On one hand, the risk and the uncertainty is represented through meaningful
quantiles. They are very manageable, since they permit to deal with additive and
nonadditive probabilities as well as with qualitative probabilities. Quantiles are
very understandable for the DM because, taking into account the limitation of
the human mind, few quantiles can synthesize all the very often rich and
complex information contained in a probability distribution.

e On the other hand, ROR is used to induce in a cautious way new preferences
from the whole set of instances of the adopted preference model compatible with
the preference information supplied by the DM.

We have shown in an illustrative example how the proposed methodology can be
applied to a very classical problem of operational research, namely the newsvendor
problem. We believe that the proposed methodology has quite good properties and
that the results shown by the illustrative example are convincing. This encourages to
further develop this approach in a number of directions that we sketch in the
following:

e in this paper we considered application of ROR to additive multiple attribute
value functions and ELECTRE approach, but there are other MCDA methods to
which ROR has been applied and that can be used to handle decision under risk
and uncertainty, such as PROMETHEE methods (Kadziniski et al. 2012),
Choquet integral (Angilella et al. 2010) and an enriched multiattribute value
function (Greco et al. 2014);

e our methodology could be applied also to Stochastic Ordinal Regression (SOR)
(Kadzinski and Tervonen 2013a, b) which has been recently proposed, coupling
ROR with stochastic multicriteria acceptability analysis (SMAA) (Lahdelma
et al. 1998) in which a probability distribution is considered on the family of all
compatible instances of the preference model to determine the probability that
alternative a is preferred to alternative b, or that alternative a ranks in the kth
position;

e ROR has been recently coupled with Evolutionary Multiobjective Optimization
(EMO) (Deb 2001), to focus the research of the nondominated solutions in the
part of Pareto front that is the most preferred by the DM (Branke et al. 2015,

@ Springer



Robust ordinal regression for decision... 77

2016); our methodology of decision under risk and uncertainty can also be
applied to this class of EMO algorithms based on ROR;

e in this paper we considered the newsvendor problem, however, there are many
other problems in operational research formulated in terms of decision under
risk and uncertainty; only to give another classical example, let us mention the
Markowitz’s financial portfolio choice problem (Markowitz 1952), that has been
already treated in terms of quantiles but considering ordinal regression rather
than ROR in Greco et al. (2013);

e in this paper we considered risk and uncertainty in monocriterion problems that
were transformed in multicriteria problems using quantiles; however, we can
apply our methodology also in the context of risk and uncertainty related to a
plurality of criteria, and for each criterion we can consider a certain number of
quantiles;

e one can consider not only the aspect of risk and uncertainty, but also the aspect
of distribution of the consequences of a decision over time, which is a common
framework in which practically all real world problems are formulated. Our
approach can be extended to take into account also this aspect.

In conclusion, we believe that, since our approach permits to deal in an effective
way with the risk and uncertainty aspects present in all real world decision
problems, it can be considered as an important component of the toolboox of
operational research.
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Appendix 1: Constraints of the ELECTRE“AM5 method
In this Appendix, we shall give more details on the technical constraints of the
ELECTRE®A™S method as well as on the constraints translating the preference

information provided by the DM.

e Preference information on comparisons between alternatives a*, b* € AR C A:

— For all (a*,b*) € AR such that a*Sb*:

Cla’,b") Z‘/// )>7 and  gi(b") —gj(a")<vi(a*), j=1,....m,
j=1

where V/;(a,b) = @;(a,b) x w; for all j and for all (a,b) € A X A.
— For all (a*,b*) € AR such that a*Sb*:
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Cla*,b*) = Zzﬁj(a*,b*)<i or FjeG:gib")—gia)>vi(a"),
J=1
which can be modeled as:

zm:l// (a*,b*) <X+ My(a*,b*) and g(b*) — gi(a*) >v;(a*)

- 51‘/11(61 ab*)7

m
where M;(a*,b*) € {0,1}, j=0,...,m, ZMJ-(a*,b*) <m and 0 is an
=0
auxiliary variable equal to a big positive value (i.e. 6 > maxj{x}”j — x})}).
A vector M of binary variables is used to express that either the concordance
test or non-discordance test has to be negative. Notice that if M;(a*,b*) = 0,
then a corresponding j-th condition causes discordance with statement a*Sb*.
On the contrary, if M;(a*,b*) = 1, then the respective condition is always

satisfied, not making veto. However, there has to be at least one non-equality
m

for which M;(a*,b*) =0, as ZMj(a*,b*) <m.
=0

e Limitations on the values of inter-criteria parameters: A,v;(a),Va € A, and
wj ] = 1, co.m
e The range of allowed values of a concordance threshold, 0.5 <1 <1.0,
e Normalization of the marginal concordance indices for all criteria so that the
indices corresponding to the largest difference in evaluations of two
alternatives on each criterion (g;(a;) — gj(aj.) = x;” — xjo) sum up to 1:

m
Z Ga.) =1 withai,aq. €A, j=1,...m.

As we previously normalized weights of the criteria so that they sum up to 1,
each weight is now understood as a maximal share of each criterion in the
global concordance index. Consequently, w; = ¥;(a;,a;+), j = 1,.

e Lower bounds on the values of veto thresholds v;(a ), j=1,...,m, Va € A:

e vj(a) needs to be larger than corresponding preference threshold (the
greatest value of a preference threshold pf(a) allowed by the DM),

vi(a) >ij(a), jE€G?

2 G, is the subset of criteria G on which the DM has expressed direct preferences of the type 3 and 4
shown in Sect. 4.2.
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o vj(a) is required to be larger than g;(b) — g;(a) for all pairs of alternatives
(a, b) for which the DM stated that the difference between g;(a) and
gj(b) is non-significant (g;(a) < g;(h)), a~ b, j € G,> (we do not refer
here to pairs (a*,b*) such that a* >; b*, because even if the DM states
that the difference between gj(a*) and g;(b*) is relevant, the veto
threshold v; can still be less, equal, or larger than g;(a*) — g;(b*)).

o The function determining the values of veto thresholds v;(a) is required to be
monotone non-decreasing with respect to g;(a):

vi(a) >v;(b) if gj(a) > gi(b) and vj(a) = v;(b) if gj(a) = gj(b), j=1,...,m.
If the DM wishes to model the veto threshold with a constant value (not

dependent on gj(a)), we would skip the monotonicity constraints and replace
vj(a) with v; in all aforementioned formulas.

e Restrictions concerning the value of marginal concordance indices

l//j(aab)a J: 1,...71’}’!

o Yj(a,b) = 0if g(b) — gi(a) > pi(a), for all (a,b) € A x A,

. lﬂ,(a,b)>01fgj( a) — gi(b) > —pf(a) for all (a,b) € A x A,

¢ @) = e, .) i ) 5 (5) > — gHa),forall (0. 5) < A x A
e Yi(a,b)< ( ,a;.) if g(b) — gj(a) > qf(a), for all (a,b) € A x A,

* Yi(a,b)=0 1f b-ja

b lﬁ](avb) ( a.l,*)a lpj(b7 a) = lpj(ajva.i;*) if aij'

e Monotonicity of the functions of marginal concordance indices

lpj(d,b), Jj= 13"'7m

e If, according to the preferences of the DM, indifference g; and preference p;
thresholds for criterion g; are not dependent on g;j(a), then Va,b,c,d € A,
and forj=1,....m

o Yj(a,b) > y;(c,d) if gi(a) — gi(b) > gj(c) — gi(d),
o Y(a,b) =y;(c,d) if gi(a) — g(b) = gj(c) — gi(d).

e If according to the preferences of the DM indifference ¢;(a) and preference
pj(a) thresholds depend on the value of g;(a), then, for j=1,...,m
* Yila,c) > ;(b,c) if gj(a) > g;(b) for all a,b,c € A,
e Yila,c) =y;(b,c) if gj(a) = gi(b) for all a,b,c € A,

* G, is the subset of criteria G on which the DM has expressed indirect preferences of the type 5 and 6
shown in Sect. 4.2.
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* Yila,b) >y;(a,c) if gj(b) <gj(c) for all a,b,c € A,
e Yi(a,b) =y;(a,c) if gj(b) = gj(c) for all a,b,c € A.

The whole set of monotonicity and normalization constraints together with the
constraints translating the preference information provided by the DM is denoted by

EAR/ .

Pairwise comparison stating a*Sh* or a*SCb* :
Cla*,b*) = 377 y(a*, b*) > J and g;(b*) — g;(a*) +e<vj(a*), j=1,...,m,
if a*Sb*, for (a*,b*) € AR,
Cla',b%) = Y y(a* b7) + 6 < 4+ Mo(a”,b°) and gi(b") — g(a") > vj(a") — oMy (a”, b°),
if a*SCb*, for (a*,b*) € AR,
Mi(a*,b*) € {0,1}, j=0,...,m, Z;"ZOMj(a*,b*) <m,
Values of inter-criteria parameters:
0<A<1,
Yivilar, ) =1, for allj=1,....m: (g(a}) =x_;-"’) and (gj(a;.) = x;))
w1tha Jai €A, j=1,....m
vi(a)>pf(a) +e j=1,...,m, for allacA,
vj(a) > gj(b) — gj(a) + ¢ if a~;b, and g;(a) <g;(b), j € Ga,
vi(a) >v;(b) if gj(a) > g;(b), j=1,...,m, for all (a,b) € A x A,
vi(a) = v;(b) if gj(a) = g;(b), j=1,...,m, for all (a,b) € A x A,
Values of marginal concordance indices conditioned by intra-criterion preference information: ¥
Wi(a,b) = 0 if g;(a) — g(b) < 71)/’?((1), for all (a,b) €A x A, j€ G,

a

¥i(a,b) > ¢ if g;(a) — gi(b) > —pr(a), for all (a,b) €A XA, j€Gy,
Wila,b) = y;(a;, a;,) if gi(a) — g;(b) > — qu(a), for all (a,b) €A XA, j€ G,
Wila,b) +e<ij(al,a;.) if gi(a) — gi(b) < — qf(a), for all (a,b) €A XA, j€ Gy,
vila,b) =y;(a;,a;.), w;(b,a) = (@}, a;,) if a~ b, j € Gy,

Yi(a,b) =0if b=ja, j € Gy,

Monotonicity of the functions of marginal concordance indices:
If the thresholds for g; are not dependent ong;(a) :
Yi(a,b) > y;(c,d) if gi(a) — g;(b) > gj(c) — gi(d), for all a,b,c,d €A, j=1,...,m,
Wi(a,b) = (e, d) if gj(a) — gi(b) = gi(c) — g(d), for alla,b,c,d €A, j=1,....m,
If the thresholds for g; are dependent ong;(a) :

Wi(a,c) > (b, c) if gj(a) > g;(b), for alla,b,c €A, j=1,...,m,
Wi(a,c) > (b, c) if gi(a) = g;(b), for alla,b,c €A, j=1,...,m,
Wi(a,b) > ;(a,c) if gi(b)<gj(c), for alla,b,c €A, j=1,...,m,
Vi(a,b) > y;(a,c) if gi(b) = gi(c), for all a,b,c €A, j=1,...,m.

Analogously to what has been done in Sect. 4.1, to verify the feasibility of this set of
constraints EA" by linear programming, one has to transform the strict inequality
constraints into weak inequalities involving a variable e. EA" has the form of 0-1
mixed integer program (MIP). If E*" is feasible and & > 0, where &* = max e,

subject to EA", then there exists at least one instance of the preference model
compatible with the preference information provided by the DM.
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Appendix 2: Computation of the relations SV and S”

Given a pair of alternatives (a,b) € A x A, and the following sets of constraints

B
Cla,b) =" Wi(a,b) +&< i+ Mo(a,b) and gi(b) — gi(a) >vi(a) — 5M;(a, b), £ (a.b)
i=1 a,
> Mi(a,b)<n, Mi(a,b) € {0,1}, i=0,...,n
i=0
and
EX"
" ES (a,b)

Cla,b) = W(a,b)>J and g(b) — gia) +£<vi(a), i=1,...,n
i=1

we have the following:

o aSVbiff ES" (a,b) is infeasible or & (a, b) <0, where &V (a, b) = max ¢ subject to
ES" (a,b),

o aSPbiff ES (a,b) is feasible and & (a, b) > 0, where & (a, b) = max & subject to
ES (a,b).
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