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Abstract The problem of selecting a portfolio of research and development

projects from a set of proposed projects subject to resource constraints is formulated

as a multiobjective optimization problem. Three categories of objectives are iden-

tified, namely quantitative, qualitative and balance/distributional. The first two are

linear in the binary decision variables, but the third involves nonlinear measures of

discrepancy between desired and actual distributions of activity amongst defined

categories. The result is a nonlinear combinatorial multiobjective optimization

problem. A form of reference point approach is motivated and developed as a

solution method, and a special purpose genetic algorithm is implemented for

obtaining the solution numerically. Extensions to interactive approaches for

exploration of the efficient frontier are presented and discussed.
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1 Introduction

The problem described here arose within the Innovation and Research Centre of

ESKOM, the largest electricity generating company in Africa. Refer http://www.

eskom.co.za for details on the company and its operations. The problem arises as

part of the annual budgeting cycle, during which decisions have to be made

regarding which of a set of competing projects are to be selected for funding in

the next budget year. Budgetary and other resource constraints limit project

selection, while a number of diverse company objectives need to be taken into

consideration

An earlier approach to the same problem setting was described in Stewart (1991).

At that time, both the availability of sophisticated algorithms and computational

power limited solution methods to a very simple greedy heuristic, which still took a

considerable time to solve (10 min for a problem of 200 projects, with

computational times growing at least quadratically with number of projects). As a

result, the original model fell into disuse, but the need for a project prioritization

system (PPS) resurfaced more recently in the light of tightly constrained budgets.

We thus revisited the problem, leading to some adaptations to the formulation, and

perhaps more critically to algorithmic design based on a reference point approach

and a specifically designed genetic algorithm. It is this redesign which forms the

main body of the present paper. In Sect. 2 we describe the modelling structure and

formulation of the PPS problem, followed in Sect. 3 by the reference point approach

adopted and the design of a genetic algorithm for its solution. Section 4 discusses

how the approach may be used interactively to explore the Pareto optimal set, and

adaptations to the algorithm are proposed. Conclusions regarding future work are

presented in Sect. 5.

2 Problem formulation

We suppose that N projects have been proposed, and we define binary variables xi
for i ¼ 1; 2; . . .;N to indicate whether project i is included in the portfolio for the

planning period. Choice is constrained by the availability of scarce resources

(typically budgets, equipment availability, personnel required in certain categories).

Let aij be the amount of resource j required for execution of project i, and Aj the

total availability of resource j; this implies the constraints:

XN

i¼1

aijxi �Aj for j ¼ 1; . . .; J: ð1Þ

It is worth commenting here that in our context, cost was never an objective, but

was rather a budgetary constraint. (In fact at one stage it was even suggested that we

maximize costs in order to ensure maximum utilization of the available budget!).

The critical issue was that of identifying and capturing management objectives.

Extensive discussions with the client led to an appreciation that these objectives

could be grouped into three categories:
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• Directly quantifiable benefits These may include economic benefits, improve-

ments to capacity, etc., and are labelled by k ¼ 1; . . .;K. An estimate of the

benefit of type k accruing by execution of project i is given by bik, and we shall

shortly discuss aggregation across projects.

• Qualitative criteria These may include impacts on safety, consumer satisfaction,

etc. It is assumed that the assessment of the contributions of a particular project i

is provided on a 5-pt Likert scale, but extended to include a 0 option if the

project makes no contribution. Let ci‘ be the Likert scale assessment of the

contribution of project i to qualitative objective ‘, for ‘ ¼ 1; . . .; L.

• Balance or distributional criteria A corporate research and development

department needs to ensure also that ‘‘justice is being seen to be done’’, in the

sense, for example, that levels of activity do not unfairly favour one client group

over another, are balanced in terms of short, medium and long term objectives,

and are aligned with strategic high level management objectives such as security

of supply, environmental impact etc., which we shall expand in greater detail

below.

We now examine the means by which these different categories of objectives are

formulated for purposes of optimization. The first category is straightforward. If

there are no interdependencies between projects, then the aggregate level of

achievement for quantitative objective k is given by:

VQN
k ¼

XN

i¼1

bikxi: ð2Þ

We shall comment shortly on the issue of possible interdependencies. The second

category of objectives is similarly treated, except that the overall contribution of a

Likert scale score for a project will need to be related to the magnitude of the

project. The aggregate level of achievement for qualitative objective ‘ (again, for

now assuming no interdependencies) is defined as follows:

VQL
‘ ¼

PN
i¼1 ci‘wi‘xiPN
i¼1 ci‘wi‘

ð3Þ

being a weighted proportion of the available contributions which are realized. Here,

the weight wi‘ indicates the magnitude of the contribution of project i to the total. In

the system, we allowed the user for each objective ‘ to set all weights equal, or to

equate the weight to the usage of a specified resource j (i.e., wi‘ ¼ aij).

Optimization of the VQN
k and VQL

‘ subject to the resource constraints (1) is a

standard multiobjective project portfolio problem (in fact, a multiobjective

knapsack problem) as surveyed for example in Yu et al. (2012). In Yu et al.

(2012), interdependencies are also explicitly modelled, but it seemed that in our

context, management would have difficulties in providing the necessary parameter

estimates. For this reason, and recognizing that substantial interdependencies only

occurred in a small number of cases, we adopted a simpler modelling approach.

Suppose there exists a small subset of of projects, say I exhibiting substantial
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interdependencies. We then create a set of artificially constructed project definitions,

or ‘‘metaprojects’’, each of which is a feasible combination of projects from I . The

resource requirements and benefits from each metaproject can then separately be

assessed (where this is typically a judgmental issue). Call this set of metaaprojects

I�. The original projects in I are then replaced by the set of metaprojects I�. The

optimization then proceeds as for the real projects, except that for each such set I�

we would require the following mutual exclusivity constraint:
X

i2I�
xi � 1: ð4Þ

We note in passing that the same structure of artificially constructed projects subject

to mutual exclusivity constraints can also be applied to a single project but

potentially implemented at different levels of activity.

At this point, we also make the comment that we saw little reason formally to

include modelling of uncertainties either in parameter estimates or in the project

execution. If needed, the work here could perhaps be extended along the lines

presented in Hassanzadeh et al. (2014). For our purposes, sensitivity analysis

coupled to a provision for the user to fix certain projects in or out appeared to

suffice.

The seriously confounding factor in the formulation related to the third category

of objectives (balance and distributional criteria). The concept of balance in

portfolio construction is discussed for example in Karsu and Morton (2014). They

create a bicriterion model to combine efficiency with a measure of balance. Balance

in their model is defined by a categorization of projects, with a desired proportion of

inputs to be allocated to each category. An aggregate measure of imbalance may

then be defined by the sum or maximum of absolute deviations between actual and

desired amounts of inputs across all categories.

Our situation extends that of Karsu and Morton (2014), as many different

categorizations are simultaneously considered. As mentioned earlier, categoriza-

tions may relate to different client groups, different time horizons (short, medium

and long term benefits), and to alignment with various high level management

objectives. Different inputs (resources) may be relevant to different categorization

sets. For purposes of the multicriteria comparisons we thus made use of a

dimensionless statistical measure for representation of imbalance, namely a form of

chi-squared statistic which we now describe.

Each form of categorization thus defines a criterion for evaluating portfolios. Let

M be the number of such categorizations, and for categorization m (¼1; 2; . . .;M) let

nm be the number of categories defined.

For each project i, let qimm be the degree to which project i is associated with

category m from categorization m. We require that
Pnm

m¼1 qimm ¼ 1, but two distinct

cases can be distinguished as follows:

• Simple binary classification such that qimm ¼ 0 or 1 only; in this case we referred

to the criterion as a balance criterion.
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• Varying degrees of contribution such that qimm is a real number in the interval [0,

1]; in this case we referred to the criterion and a distributional criterion.

In either case we can define the proportion of project activity associated with

category m (for categorization m) by:

pmm ¼
PN

i¼1 wimqimmxiPN
i¼1 wimxi

ð5Þ

where again we require some weighting wim as indicator of project magnitude,

which as in the case of qualitative criteria we set to be either equal or to equate the

weight to the usage of a specified resource j (i.e., wim ¼ aij).

Let the desired proportion in this case be specified by management to be pmm. For

each categorization, a measure of discrepancy between the actual and desired

proportions is provided by the relevant chi-squared statistic for deviation between

the two distributions, namely:

Dm ¼
Xnm

m¼1

ðpmm � pmmÞ2

pmm
: ð6Þ

The Dm represents the performance measure to be minimized for each m.

We thus have a non-linear combinatorial multiobjective problem involving P ¼
K þ LþM objectives (where in practice this total number of objectives may add to

10 or more), solution methods for which are discussed in the next section.

3 Reference point genetic algorithm approach

A wide variety of approaches have been suggested for the solution of multiobjective

optimization problems. A useful survey is provided by the pair of papers (Miettinen

2008; Miettinen et al. 2008). Approaches are sometimes classified by the timing of

elicitation of preference information. At two extremes are (a) approaches that first

characterize all Pareto optimal solutions from which the decision maker selects a

final choice, and (b) those in which a complete preference model is first elicited and

then applied to define a scalarized optimization problem maximizing preferences. In

between the two extremes are interactive methods in which efficient solutions are

explored progressively guided by local preference information.

In the present context, direct display of the Pareto frontier for evaluation appeared

to be impracticable because of the large number of objectives and the availability of

management time. At the outset, it was also not evident that decision makers would

always be available for lengthy interactive processes, although it was possible that at

a later stage some interaction may be included. For this reason, we chose to

implement a reference point approach [see Miettinen et al. (2008) for a fuller

description], as the reference point (a set of aspiration levels for each objective) is a

simple representation of preferences, but can be extended to multiple reference

points applied sequentially in an interactive method. In this section we discuss the
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implementation of a reference point approach with a well-defined set of aspiration

levels, while in the next section we extend the discussion to interactive options.

In order to present our reference point approach, we define fpðxÞ as the value for

objective function i, for p ¼ 1; 2; . . .;P given the vector x of binary decision

variables. As seen previously, the first K þ L functions need to be maximized, while

the rest are to be minimized, but we shall largely be able to express the structure

without differentiating between minimization and maximization. For each objective

function, define Ip as the ideal (best value) achievable amongst feasible solutions.

For purposes of the algorithm, an exact value of Ip is not really needed, as it serves

primarily in scaling the objectives and a good approximation serves our needs. In

this project selection problem:

• For the quantitative and qualitative objectives, the ideal is easily estimated by

the simple heuristic of rank ordering projects by the corresponding values, and

taking from the top, observing mutual exclusivity constraints, until resources are

exceeded.

• For the balance and distribution objectives, a value of 0 can never be improved

upon, and even though not quite achievable, serves as a good estimate for the

algorithm.

The aspiration levels, say gp, needed to define the reference point is required. In the

system provided to the users:

• For quantitative and qualitative objectives, the user specified a proportion of the

ideal to act as a target, say cp (0\cp\1), so that the aspiration level becomes

gp ¼ cpIp. A default of cp ¼ 0:8 was suggested, but users were free to

experiment with other levels (described to them as ‘‘importance levels’’).

• For the non-parametric chi-squared measures, the aspiration level was to be

specified directly. A default of gp ¼ 0:1 was suggested, but users were again free

to experiment with other levels.

We chose a smoother scalarizing function than the conventional augmented

Chebychev measure, as this seemed to simplifiy computations. We thus sought to

minimize the function SðxÞ defined by:

SðxÞ ¼
XP

p¼1

Ip � fpðxÞ
Ip � gp

� �4
: ð7Þ

Note that the terms in brackets are expressed in the same form for all objectives,

whether minimization or maximization, as fpðxÞ\Ip and gp\Ip for maximizing

objectives and vice versa for minimizing objectives. Notice also that the bracketed

terms are dimensionless, so that no rescaling of objectives is required. Users

sometimes expect to see a weighting term included in (7), but the introduction of

weights is redundant; the function is in fact already a weighted sum, with weights

proportional to ½Ip � gp��4
, i.e. determined by choice of reference level. In fact the
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scalarizing function can be viewed as weighted distance from the ideal, with dis-

tance measured by an L4 metric (which more strongly penalizes large deviations).

Such weighted distances from ideal are in fact used in other methods to generate

Pareto optimal solutions.

Minimization of SðxÞ is now a uni-dimensional non-linear combinatorial

optimization problem. The structure of the problem lends itself to a very simple

special purpose form of genetic algorithm, which can rapidly be solved. General

principles of genetic algorithms may for example be found in Chapter 4 of Deb

(2001), and are taken here as familiar to the reader. The special purpose algorithm

can then be described as follows:

Initial population generation For each solution to be randomly generated,

projects are placed in random order, and then taken from the top, respecting

mutual exclusivities, and excluding projects whose addition to the portfolio

would violate a resource constraint.

Fitness Fitness is defined simply by the scalarizing function (7), as all constructed

solutions are feasible so that no penalty terms are required.

Parent selection and crossover Each of the two parents is selected as best in a

tournament of four randomly selected selected solutions in the population. To

construct the child solution, any common assignments are retained, and the

remaining assignments selected in the same way as for the initial population

generation, subject to the constraints implied by the common assignments.

Mutation Projects are selected randomly for mutation. Assignments for the

selected projects in the child solution are undone, and the initial population

generation is repeated, with the constraint that the assignments for the unselected

projects are retained.

Retention of population members Elitist selection.

After some experimentation, the parameters defining the algorithm were chosen as

population size: 200; number of children per generation: 200; and probability of

selecting a project for ‘‘mutation’’: 0.05. Results were, however, quite robust to

choice of these parameters. As an indication of computation properties, we display

in Fig. 1 the rate of convergence of the algorithm for a problem involving 250

projects, three quantitative objectives, three qualitative objectives and three balance

and distribution objectives.

The algorithm was coded in Pascal, and running time [on a Toshiba Portege

computer with an Intel(R) Core(TM) i7-3540M CPU @ 3.00 GHz processor] for the

above problem was approximately 60 ms per generation.

4 Effective exploration of the Pareto front

As has been mentioned previously, the user is free to modify the reference point at

will, and thus to explore alternative Pareto optimal solutions. This may be rather ‘hit

and miss’, and it may be desirable to provide more systematic guidance to the

decision maker. One approach may be to employ a standard interactive procedure.
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The NIMBUS method described in Miettinen et al. (2008) should easily be adapted

to our problem setting. In this approach, a solution for a given reference point is

obtained as described in the previous section. The decision maker then classifies

performances on the criteria into five classes in terms of level of satisfaction, on the

basis of which the reference point and the scalarizing function are modified, after

which a new solution is obtained.

There was some concern that decision makers may not be available for frequent

interactions of this nature, however. As an alternative, we were looking for a means

of presenting a ‘‘snapshot’’ representation of the Pareto front, from which decision

makers could obtain a more global perscpective and subsequently to narrow the

search to more desirable regions of the front. Evolutionary multiple objective

(EMO) methods have been suggested for the ‘‘many objectives’’ problem, e.g.

Wang et al. (2013), in which some preference information can restrict regions of the

Pareto front, but the demands on management still to examine multidimensional

regions was deemed in our case too excessive.

As an alternative approach we propose the following approach:

1. Select a small set of reference points, say R, bearing in mind the old maxim that

subjects should not be exposed to more than ‘‘7 � 2’’ simultaneous stimuli

(Miller 1956), for each of which the solution minimizing (7) is obtained. We

acknowledge in passing that the concept of multiple reference points has

appeared in the EMO literature (e.g. Figueira et al. 2010), but this has been in

the context of selecting sub-regions of the Pareto set, and not that of the creating

a small number of discrete representative solutions.

2. Present the decision maker with the resulting set of solutions, requesting that

they be classified as good, moderate or poor. This classification could perhaps

be supported by use of a discrete choice multiple criteria decision analysis

(MCDA). The reason for a three way classification is to aim at having a few

(perhaps 3 or 4) in a better category, which can be assembled, depending on the

user’s nature from either the good or the good þ moderate categories.

Fig. 1 Change in scalarizing function with numbers of generations
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3. Use this information to eliminate portions of the reference point space, after

which a new set of reference points may be generated within the remaining

space. The process is then repeated until the user is satisfied that a ‘‘good

enough’’ solution has been found.

In many ways, this process is allied to that introduced in Steuer and Choo (1983).

Their approach is based directly on randomly generating weights for the objectives.

We have noted in the previous section that there is a close relationship between the

reference points and equivalent weights, but the impacts of weighting vectors can be

surprisingly non-intuitive. For this reason we prefer interaction with decision

makers to be expressed in terms of the more intuitive concept of reference

(aspiration) levels.

Our initial approach to generating reference points randomly (but this will be

subject to further research studies) is based on the ideals Ip and some assessment of

worst case performance which we shall term ‘‘nadirs’’, say Np. We simply derive

these from the payoff table for quantitative and qualitative objectives, and by a more

or less arbitary worst case (set for the moment at 0.2) for the chi-squared statistics

indicating performance on balance and distributional criteria. With the aim of

obtaining a balance spread of reference points across the small number

R (‘‘�7 � 2’’) chosen, our proposed method of randomly generating reference

points may be described as follows. Randomly sort the objectives, and divide them

into three groups, which we shall designate as H, M and L. Then assign reference

levels to each objective in the form gp ¼ ð1 � aÞNp þ aIp, where a ¼ aH for

objectives in group H, aM for objectivess in group M and aL for objectivess in group

L. Here aH ; aM; aL are model parameters chosen such that 1[ aH [ aM [ aL [ 0.

Let the solutions obtained be indexed by r ¼ 1; . . .;R, and the corresponding

objective function values denoted by frp. The decision maker then classifies each

solution r as good moderate or poor. In the light of this classification, the ideal and

nadir points are replaced by Îp and N̂p defined as follows:

• Îp ¼ bI maxr:good frp þ ð1 � bIÞIp,

• N̂p ¼ bN minr:moderate frp þ ð1 � bNÞNp,

where the bI and bN are also model parameters.

The process is repeated with the modified ‘‘ideal’’ and ‘‘nadir’’ until the decision

maker is statisfied.

An issue still to be examined is whether the speed of computation for multiple

reference points can be enhanced by simultaneous computations inspired by EMO

approaches. The tentative procedure would be along the following lines:

• For each member of the population compute the scalarizing function for each of

the R reference points. Rank order population members for each of these

R cases, to create R separate lists.

• Cycling sequentially through the R lists, specify the fitness of the next solution

in the list by corresponding scalarizing function value for that reference point,
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provided that that the solution has not already had fitness allocated from another

list, and provided that the number of fitness allocations from this list does not

exceed 1/R of the total population. The second proviso ensures that solutions do

not ‘‘crowd’’ round a small number of reference point cases.

The behaviour of such simultaneous generation will be investigated numerically in

follow-up research.

5 Conclusions and future work

The software implementing the project prioritization system has been handed over

to the client, and finally accepted, even though most of the features described in

Sect. 4 were not included. Nevertheless, especially these last mentioned features do

raise a number of interesting research questions which we will still want to address.

These are the following:

• Exploration of alternative means of generating random sets of reference points

that may lead to better characterization of the Pareto front.

• Exploration of alternative means of pruning the space of reference points for

future iterations in the light of the classification of solutions provided by the

decision maker.

• A simulation study of the quality of the solution obtained by the interactive

process in comparison with hypothetically assumed ‘‘true’’ utility functions,

rather along the lines of the research presented in Stewart (1999).

• Extension and implementation of the methods for simultaneous generation of

solutions corresponding to each reference point.
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