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Abstract Instore operations in bricks-and-mortar grocery retailing account for the

highest share of operational logistics costs within the internal retail supply chain. The

order packaging quantity (OPQ) is regarded as one important driver of instore logistics

efficiency. We define the OPQ as the number of consumer units that are bundled into

one order and distribution unit for supplying the individual stores. Therefore, the OPQ

corresponds to the smallest possible order size and determines the possible granularity

of order sizes with an impact on instore operations costs. In this paper, we develop a

cost-minimization model including instore handling and inventory carrying costs to

determineOPQs. Themodel developed builds on inventorymanagement theory and is

based on discrete probability distributions of consumer demand. We apply the model

in an industry case study with real retail data for 39 stock keeping units and 1,180

stores of a European retail company. By applying theminimal-cost OPQ for all stores,

the costs considered can be reduced by 9.4 %. This paper can be considered as a first

in-depth analysis of the dormant instore efficiency potential in connection with

adjusted OPQs that seems to be largely untapped in retail research and practice.

Keywords Retail operations � Instore logistics � Case pack size

JEL Classification L810 � M110

1 Introduction

Instore operations in bricks-and-mortar grocery retailing account for the highest

share of operational logistics costs within the internal retail supply network, mainly
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due to the time-consuming manual handling processes of shelf stacking and

restocking activities from the backroom (Kuhn and Sternbeck 2013; Saghir and

Jönson 2001; van Zelst et al. 2009). Warehousing operations and the transportation

of loaded carriers from distribution centers (DCs) to the stores taken together are

about as expensive as instore operations. Instore handling includes the management

of the store’s backroom in which excess inventory is stored that has been delivered

but for which there is not enough free shelf space at the time of delivery arrival

(Eroglu et al. 2013). In the specific case of a major European grocery retailer, more

than 30 % of the operational instore logistics costs—tens of millions of euros per

annum—are due to the non-value-adding process of intermediately storing products

in the store’s backroom and its associated handling processes.

The order packaging quantity (OPQ) per stock keeping unit (SKU) is regarded as

one driver of instore logistics efficiency (Waller et al. 2008; Eroglu et al. 2013; Wen

et al. 2012). We define the OPQ as the number of consumer units (CUs) that are

combined into one order and distribution unit for supplying the individual stores

from retail-owned DCs. Therefore, the OPQ corresponds to the smallest possible

order size of a store (Kuhn and Sternbeck 2013). The OPQ has to be distinguished

from the case pack of a product, which corresponds to the shipping box offered by

the manufacturer. The OPQ selected for supplying the individual stores may equal

the case pack quantity, but it could also be different, since retailers unpack or

combine case packs in their DCs to create their own ship pack sizes (Kuhn and

Sternbeck 2013; Wen et al. 2012). We use the term ship pack size as a synonym for

OPQ. In several cases, manufacturers offer their products in different case pack

sizes or offer different pack units within the packaging hierarchy of the product

(pallet, layer, case pack, sub-packaging, sub-sub-packaging, single CU). Retailers

then face the problem of selecting the right size of OPQ for their stores.

On average, more than 30 % of items sold in 2010 in 19 European countries are

private label products (Private Label Manufacturer Association 2011). Retailers are

able to influence secondary packaging design for this considerable sales volume and

decide about case pack sizes that can be used as an OPQ without manipulating

packaging units in the DCs. Moreover, grocery retailers are increasingly creating

their own OPQs by unpacking (downsizing) and/or bundling supplier case packs

(upsizing) so that the resulting OPQ better suits their specific requirements.

Especially home and personal care retail chains generally do not use case packs for

store delivery that are predefined by manufacturers. They unpack more than 60 % of

SKUs listed in their DCs (Kuhn and Sternbeck 2013). This demonstrates that

contrary to the common assumption that case pack sizes are exogenous for retailers,

decision makers can largely influence the number of consumer units used as an OPQ

for supplying the stores (Kuhn and Sternbeck 2013; Wen et al. 2012).

As a result, companies are increasingly concerned with the question of how to

dimension OPQs on a tactical operations planning level. For example, German

retailers have set up a working group organized by the association Global Standards

One (GS1) Germany to explore procedures and solutions (GS1 Germany GmbH

2011). Some companies heavily invest in (semi-)automated unpacking lines in their

DCs and/or negotiate with suppliers to receive the products unpacked in reusable

boxes in order to have greater freedom in creating OPQs that fit retailers’ needs better.
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Currently, retail companies mostly solve the problem of how to dimension ship pack

sizes based on intuition (e.g., average days of inventory) (Sternbeck and Kuhn 2014).

Waller et al. (2008) note that larger OPQs ‘‘increase the probability that some

units will need to be stored in the backroom’’, which results in additional handling

costs. However, retail research lacks an approach to determine appropriate OPQs

taking into account limited shelf space and backroom handling efforts. Therefore,

the goal of this paper is to develop an approach to determine minimal-cost OPQs

from an instore perspective, which can be used by retail decision makers to support

their ship pack decisions. This paper is the first to focus on packaging sizes by

applying a consistent shelf-back perspective with a focus on instore shelf stacking

operations. Methodologically, the paper is based on inventory management theory.

The remainder of this paper is organized as follows. Section 2 first presents

relevant literature. After that, in Sect. 3, we describe the problem considered in this

article in more detail. We then discuss the research setting in Sect. 4, before

adressing our approach to solving the decision problem in Sect. 5. An empirical

example is presented in Sect. 6. Section 7 discusses the results, research

contributions and further research avenues.

2 Literature review

In this section we review relevant literature related to instore logistics processes

(Sect. 2.1), the problem of backroom usage (Sect. 2.2) and the role of packaging sizes

and their interrelations (Sect. 2.3). We show that although some publications deal

with the question of how packaging sizes affect instore operations, there is only very

little academic insight into how these could be dimensioned from an instore retail

perspective. This research gap serves as a starting point for our solution approach.

2.1 Instore logistics processes

In the recent past, authors have increasingly focused on instore logistics. Kotzab and

Teller (2005), Kotzab et al. (2007) and Reiner et al. (2012) shed light on the ‘‘black-

box’’ of instore operations by developing a generic explorative model of instore

logistics processes and testing it empirically with simulation approaches based on

data of the dairy assortment of an Austrian retail company. The model covers

material flows within stores from the inbound ramp to the shelf as well as disposal

and recycling. The authors state that the ultimate goal to achieve by configuring

instore logistics processes is efficiency (Kotzab and Teller 2005). This implies

offering the quantities of merchandise requested by customers at the lowest possible

cost (Kotzab and Teller 2005). This global process model can be used as a

framework to measure the efficiency of instore logistics systems or for intra- and

cross-company comparisons (Trautrims et al. 2010; Reiner et al. 2012).

More specifically, Curşeu et al. (2009) investigated the initial shelf stacking

process with products from new deliveries. The authors demonstrate that reducing

the number of order lines is accompanied by lower handling costs in the store due to

fixed setup times and economies of scale. Larger case packs are identified as one
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possibility for increasing efficiency. Of course, the positive effect mentioned is only

feasible if enough shelf space is available, which was assumed to be the case in the

study conducted by Curşeu et al. (2009).

2.2 Problem of overflow inventory and backroom use

In retail practice, a frequent problem is that merchandise delivered to stores does not

fit onto the shelves at the time of initial shelf stocking from new DC pallets due to

capacity restrictions (Kuhn and Sternbeck 2013). In this case, excess inventory—

‘‘overflow inventory’’ (Eroglu et al. 2013)—has to be stored in the backroom as an

intermediate solution. In an empirical study, Kuhn and Sternbeck (2011) showed

that handling activities resulting from overflow inventory are a major problem for

retail logisticians. 54 % of retail experts interviewed claimed that leftovers and the

corresponding handling processes are a key aspect that has to be considered in

inventory planning and control.

Multiple authors consider temporary storage of products in the backroom of a

store the cause of several interrelated problems. First, there are additional

operational costs associated with manual handling of overflow inventory (Eroglu

et al. 2011, 2013; Wen et al. 2012; Kuhn and Sternbeck 2013). Eroglu et al. (2013)

incorporate the backroom effect into periodic review inventory systems with fixed

pack sizes applied by retailers. From a cost minimization perspective, higher costs

associated with handling efforts of temporarily storing products in the backroom can

result in lower reorder points depending on the ratio introduced by the authors

between backroom costs and backorder costs. Second, there is the problem that

backroom storage complicates the process, making it difficult to keep inventory

records accurate, with implications for the quality of automatically generated order

proposals and the retailer’s profit (Raman et al. 2001a, b; DeHoratius and Raman

2008; DeHoratius and Ton 2009; Ton and Raman 2010). Third, the usage of

backrooms impacts retail stockouts. The problems related to the movement of items

from the backroom to the correct space on the shelf are identified as a fundamental

cause of stockouts and phantom products, i.e., products that are physically in the

store in storage areas but not on the sales floor (Ton and Raman 2010; Gruen et al.

2002; Ehrenthal and Stölzle 2013; Taylor and Fawcett 2001).

2.3 The role of packaging in instore logistics

Saghir and Jönson (2001) conclude from their studies that there is a lack of methods

for evaluating packaging handling from a logistics viewpoint. In retail practice, the

concept of shelf-ready packaging is frequently discussed, including suggestions for

designing packaging units from a handling perspective. The concept recommends

using packaging units that are easy to identify and grab, easy to open, easy to place

on the shelf and easy to dispose of (Institute of Grocery Distribution 2005;

Thonemann et al. 2005). Packaging size is considered to be a particularly

fundamental instore efficiency driver as it influences the degree to which the

backroom is utilized (Ferguson and Ketzenberg 2006; Ketzenberg and Ferguson

2008; Eroglu et al. 2011, 2013; Kuhn and Sternbeck 2013). Eroglu et al. (2011) state
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that the amount of overflow inventory depends on the ratio between shelf space and

packaging size. For a given shelf space, they show that smaller packaging sizes lead

to a decrease in retail stockouts as more units fit on the shelf at the time of store

delivery rather than storing them in the backroom followed by unreliable refilling

processes (Eroglu et al. 2011). However, most authors treat the packaging sizes as

dictated exogenously rather than providing approaches for calculating appropriate

packaging sizes (e.g., Broekmeulen et al. 2007; Ferguson and Ketzenberg 2006;

Ketzenberg and Ferguson 2008).

Ketzenberg et al. (2002) examine the benefits of unpacking case packs in retail

DCs and supplying stores with individual CUs. However, the clear focus lies on the

possible implications for category management rather than focusing on instore

handling. The authors demonstrate that supplying stores with single CUs combined

with adapting the inventory replenishment method applied leads to less space

requirements. Case pack elimination therefore allows for two strategies in retail

space management: either more SKUs or categories can be listed or less space is

required for the current assortment—both of which impact profit and costs

(Ketzenberg et al. 2002). The authors conclude that the benefits identified have to be

weighed up with the additional costs.

To our knowledge, the only approach to determine optimal ship pack sizes from a

supply chain perspective for the internal retail supply network—consisting of DCs,

transportation and stores—is provided by Wen et al. (2012). The authors developed

a cost-minimization model for the discrete selection of packaging units within the

packaging hierarchy offered by suppliers, i.e., the selection between cases (supplier

shipping box), inners (sub-packaging, when applicable) or eaches (CU). Seven cost

components are included in the model derived: fixed store order costs, DC costs of

replenishing the picking area, DC picking costs, store receiving costs, store extra

handling costs of overflow inventory, and store and DC inventory costs. However,

instore operations are only reflected in very general terms. Shelf capacity per SKU

is set 25 % higher for all stores and products than the order-up-to level of the

periodic review inventory policy applied, without taking planograms into account.

Therefore, by far the biggest cost pool in bricks-and-mortar retailing is integrated

only approximately.

Summarizing the literature reviewed in this section, there is a clear deficit in

publications on how to dimension OPQs from a retail perspective. This realization

from the literature reviewed in this section is the starting point for our analyses. This

paper aims to contribute to existing literature by providing an approach to determine

order packaging quantities from a store perspective of grocery retailers, i.e.,

assessing instore logistics effects as a fundamental basis for comprehensive solution

approaches, including DC operations and transportation.

3 Problem description

This section focuses in greater detail on the midterm retail decision problem of

selecting minimal-cost OPQs from an instore perspective, taking limited shelf space

into account.
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We consider a replenishment cycle system that is used by the majority of

European grocery retailers for the dry grocery items including the home and

personal care categories, which are replenished via retail DCs (Kuhn and Sternbeck

2013). Normally, these assortments represent the majority of items listed in a

grocery store to which our approach is limited. A store may only order according to

a specific order and delivery schedule. Derived from this schedule the inventory

position IP is reviewed accordingly. If, at this time, it has dropped below the reorder

level s, an order is created. The order size q is chosen in such a way that the

inventory position reaches the reorder level or overshoots it as little as possible. The

order quantities per SKU have to be an integer multiple of the OPQ selected.

Retailers may choose supplier case packs as the OPQ. However, case packs may be

broken up in retail DCs and combined again to create own OPQs.

Within such an inventory replenishment system, the OPQ selected has direct

implications for instore performance measures. Firstly, the OPQ has a clear impact

on instore inventory levels and therefore influences the amount of total inventory

holding costs as with smaller OPQs, the average overshoot above the reorder level

is reduced. For example, in the extreme case of applying an OPQ of one, the order

size can generally be dimensioned such that IP is raised exactly to the reorder

level. Secondly, related to instore inventory levels, the OPQ can have a direct

impact on the degree to which new deliveries can be stacked directly onto the

shelves without the need for temporarily storing products in the backroom. As

noted above, instore handling processes associated with backroom operations are

very costly. In contrast to inventory carrying costs, studies show that backroom

handling activities are a major cost driver within the retail logistics chain (Eroglu

et al. 2013; Kuhn and Sternbeck 2013). In this study we limit our analyses to an

instore perspective.

Academic literature does not so far provide a store-oriented solution approach.

This research therefore aims to provide first insights into this decision problem of

bricks-and-mortar grocery retailers. The goal of this paper is to develop an approach

to determine appropriate OPQs per SKU based on an instore operations perspective

and capacitated shelf space. Against the backdrop of instore logistics processes and

related cost structures, retailers need to assess instore effects of different pack sizes.

This tactical model quantifies these effects and can thus be used by retailers to

support their decisions (Hübner et al. 2013), defining their internal ship pack sizes,

for example, and negotiating with manufacturers or allocating products to

capacitated unpacking operations in their DCs.

4 Research setting

In this section we elaborate on the research setting, i.e., instore cost structures of

grocery retailers (Sect. 4.1), the store inventory replenishment system applied

(Sect. 4.2) with correspondent calculations of order levels and order sizes (Sect.

4.3), the total shelf capacity per SKU (Sect. 4.4), and the assumptions of our

approach (Sect. 4.5).
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4.1 Instore cost structures

Instore logistics cost structures are a decisive factor for designing processes and

planning approaches. Cost structures applied in this research originate from

interviews conducted with retailers, joint instore projects with grocery retailers and

from literature (Curşeu et al. 2009; van Zelst et al. 2009). The cost components

regarded in this study are listed in Table 1. We differentiate between costs for initial

shelf stocking with products supplied directly from the retail DCs and restocking

costs from the backroom where products were stored temporarily due to insufficient

shelf space at the time of initial stocking.

The initial shelf stocking costs represent labor costs for stacking items from DC

deliveries onto the shelves. These are characterized by fixed costs per stocking

activity per ship pack delivered cFillfix (i.e., picking up the ship pack, identifying the

SKU, walking to the shelf, looking for the slot on the shelf) and variable costs cFillvar

per CU (i.e., stacking the individual CUs on the shelf), resulting in non-linear cost

structures (van Zelst et al. 2009). We assume the fixed costs to occur per OPQ

delivered rather than per order line because it is likely that in the case of several ship

packs per SKU per delivery, the ship packs may not be grouped together on the DC

pallet. Moreover, shelf stocking is mostly performed by several store employees,

which supports the assumption that fixed initial shelf stocking costs occur per ship

pack.

The process of restocking the shelf from the backroom is reflected in variable

restocking costs cRefillvar per single CU that are derived from the time needed to

perform this operation (labor costs). These variable costs per CU contain activity

costs that arise in the initial shelf stocking process per entire ship pack. This is

because there are only neglegible bundling effects within the most companies’

restocking processes. The unpacked CUs that are temporarily stored instore are

often at different locations on roll-cages or on a top-tier shelf. Morerover, the

process of restocking the shelf has to be carried out at high-frequent intervals as

there is no IT-supported information about the fill level of the shelves.

Consequently, it is likely that at the time of restocking, only single CUs fit onto

the shelf while others stay on the roll cage or the top-tier shelf. The circumstances of

Table 1 Overview of cost components regarded

Cost component Processes/costs reflected

Fixed initial shelf stocking costs per

OPQ ðcFillfix Þ
Picking up the ship pack, identifying the SKU, opening the box,

walking to the shelf, looking for the slot on the shelf (labor

costs)

Variable initial shelf stocking costs

per CU cFillvar

� � Stacking the individual CU on the shelf (labor costs)

Variable restocking costs per

CU cRefillvar

� � Picking up a CU, identifying the SKU, walking to the shelf,

looking for the slot, stacking the individual CU on the shelf

(labor costs)

Inventory carrying costs in % on tied

capital per year cInvCð Þ
Cost of capital tied in products or opportunity costs in the case of

long due dates for payments (capital costs)
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this concurrent restocking process imply representing the restocking processes by

variable costs per CU (van den Berg et al. 1998).

Generally, our cost analyses show that variable restocking costs are higher than

variable initial shelf stocking costs plus fixed costs per ship pack as restocking

activities are principally carried out by highly-qualified store personnel in

comparison to initial shelf stocking, which is often executed by low-cost workers.

For example, a retail company reported in a joint project that compared with the

current rate of stocking the shelf directly from new DC deliveries, handling

operations to restock a CU from the backroom are roughly three times more

expensive.

Moreover, we take inventory carrying costs into consideration as these are

dependent on the OPQ selected (cInvC). The inventory carrying costs integrated into

our model comprise only the cost of the capital that is tied up in instore inventories,

which represents frequently the largest component of inventory carrying costs

(Coyle et al. 2003). We exclude further components as space costs as these are not

dependent on the OPQ in this setting (Coyle et al. 2003). Inventory carrying costs

can be interpreted as opportunity costs as the capital tied in inventory cannot be

used for other projects (Silver et al. 1998; Coyle et al. 2003). We calculate inventory

carrying costs by integrating the retail purchasing prices per SKU and the internal

hurdle rate of return (Coyle et al. 2003).

4.2 Inventory replenishment system applied

The specific inventory replenishment system considered is a ðR; s; nQÞ policy in

discrete time, following the notation of Silver et al. (1998). This policy is applied by

the majority of retailers for the dry assortment. For example, this policy has been

described by Hax and Candea (1984), Axsäter (2006), Broekmeulen and van

Donselaar (2009), van Donselaar and Broekmeulen (2008), Tempelmeier (2011)

and Tempelmeier and Fischer (2010). In general, periodic review systems are

commonly used when items are ordered from the same (internal) supplier as is the

case in grocery retailing since large parts of the assortment are supplied via retail

DCs (Silver et al. 1998; Kuhn and Sternbeck 2013).

In the ðR; s; nQÞ policy, the inventory position IP of a SKU is reviewed

periodically according to the delivery schedule applied. The underlying demand

model is also periodic. Thus, demand arrivals during the period are aggregated to

one single-period demand (Tempelmeier and Fischer 2010, p. 6275). Data are

gathered in each case at the beginning of a period. A replenishment order is only

created if the inventory position IPt of a SKU is below the reorder level s at review

moment t. Given this situation, an OPQ or an integer multiple n of the OPQ is

ordered to bring the inventory position back to or just above the reorder level s. That

implies that just after an ordering decision, the inventory position is in the interval

½s; sþ OPQ½. We assume that store ordering is based on a static reorder level s,

which is calculated such that weekly seasonality is taken into account to reach a

target service level. Certainly, this approach can only be applied for SKUs exposed

to stationary demand.
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4.3 Calculating the reorder level and order quantity

Applying a ðR; s; nQÞ inventory replenishment system implies that an order is only

created if at review moment t the inventory position IPt is strictly below the reorder

level s (Broekmeulen and van Donselaar 2009). As we assume lost sales in case of

excess demand, the inventory position can be defined as the sum of the physical

inventory in stock and the inventory on order resulting from orders placed earlier

(Wensing 2011). As we further assume that new orders are only placed after

delivery of the previous order, IPt at the time of ordering is equivalent to the

physical inventory in stock. This assumption reflects the situation of many retailers

that offer short lead times in order to give store emplyees the chance to place orders

without having to account for outstanding deliveries (Kuhn and Sternbeck 2011).

We calculate the reorder level s in the same way as commercial automated store

ordering (ASO) systems (see Broekmeulen and van Donselaar 2009):

s ¼ DSþ SSþ x̂LþR ð1Þ

with DS being the display stock, SS the safety stock and x̂LþR the expected demand

during lead time L and review period R (Broekmeulen and van Donselaar 2009). DS

is regularly set for presentation purposes without being included in safety stock

calculations, with the aim of selling more products by always displaying enough

‘‘product pressure’’. However, from a service level perspective, DS naturally serves

as additional safety stock resulting in higher service levels than calculated.

Whenever the inventory position at a review moment is below the reorder level,

an order quantity has to be calculated. As the ðR; s; nQÞ inventory replenishment

system equates to a stock minimization strategy, the order size corresponds to the

possible minimum quantity to raise the inventory position up to the reorder level.

However, this amount is dependent on the OPQ selected. This implies that the order

size q corresponds to the minimum positive integer multiple of the OPQ to raise the

inventory position IPt at least to the reorder level s or above it. Therefore, the

overshoot of the inventory position above the reorder level just after placing an

order is strictly less than one OPQ with a maximum of OPQ� 1, otherwise an order

would not have been necessary at this review moment. Therefore the order size qt at

review moment t can be calculated according to the following decision rule (van

Donselaar and Broekmeulen 2008, p. 5):

qt ¼ Max
s� IPt

OPQ

� �
� OPQ; 0

� �
ð2Þ

with s�IPt

OPQ

l m
being the integer number nt of OPQs ordered at the review moment t.

4.4 Total shelf capacity

In our approach, shelf space allocated to a SKU plays a central role in calculating

the OPQ. Shelf space is a scarce resource. For example, in 2009 German

hypermarkets listed more than 50,000 SKUs on average—up 30 % compared to
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2000 (EHI Retail Institute GmbH 2009). We assume that assortment decisions and

shelf space allocation are a result of marketing planning and therefore given

exogenously.

Total shelf capacity (gross shelf space) for SKU i in store j is denoted as Sij. This

results from the depth of the shelf in store j ðDepthShelfj Þ, the depth of the single

consumer unit ðDepthSKUi Þ, and the shelf space assigned to SKU i in store j

(measured by the number of product facings PFij including product layers on the

shelf when applied).

Sij ¼
DepthShelfj

DepthSKUi

$ %

� PFij ð3Þ

Shelf capacity data can be obtained from commercial shelf planogram software

incorporating physical shelf structures and product master data, e.g., Nielsens’s

Spaceman Suite. Such software is widely used by retailers, mainly for visualization

purposes (Hübner and Kuhn 2012).

4.5 Assumptions

The description of the research setting results in the following assumptions on

which our approach is based:

1. Assumptions concerning assortment and display on shelf

– The assortment in the stores is determined by exogenous marketing

considerations

– Shelf space allocation is exclusively based on marketing considerations and

therefore treated as given

– Individual CUs are displayed on the shelf

– Products considered belong to the dry grocery assortment, demand is

assumed to be stationary

– It is assumed that the retailer sells products in his own name and for his own

account

2. Basic conditions of store supply and operations

– Store delivery patterns from retail DCs are fixed exogenously

– Store delivery is assumed to be uncapacitated

– The backroom of a store is assumed to be uncapacitated and shelf supplies

from the backroom are carried out on an ongoing basis.

3. Assumptions concerning inventory management

– Inventory replenishment is based on an ðR; s; nQÞ inventory policy

– Product demand is integrated by discrete empirical distributions that are

estimated by sales data.
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– Store delivery lead times from DCs are assumed to be deterministic

– Display stock DS for optical purposes only is static and given exongenously

per SKU

– Safety stock SS is static and derived exogenously per SKU, usually from an

automatic store ordering system

– There are no outstanding orders when an order is placed

– We assume that consumer demand that cannot be satisfied is lost

5 Approach to determine order packaging quantities

In this section we describe the cost-minimization model to evaluate and determine

OPQs from an instore perspective. We use the notation as listed in Table 2.

The goal from an instore perspective is to minimize the three cost components

considered over all stores j of a retail company. The calculation can be carried out

for each SKU i independently as no interdependencies between SKUs are integrated

into the model.

MinCTotal ¼
X

j2J
CFill
j þ C

Refill
j þ CInvC

j

� 	
ð4Þ

For each SKU, we derive this cost minimum by enumerating the costs for each store

j occurring per year associated with possible OPQs that may be selected. These

costs are summed up for all stores. Finally, the OPQ (one size for all stores) with the

lowest overall costs is chosen. In the following we describe the cost calculations for

one SKU-store combination and leave out the indices i for the different SKUs and j

for the specific stores for readability reasons.

5.1 Initial shelf stocking costs

Initial shelf stocking costs comprise fixed stocking costs per shelf stocking acitivity

per OPQ delivered and variable costs per CU if it fits onto the shelf when initially

stocking the shelf just after delivery. When an order is actually released at a review

moment (i.e., IP\s), initial shelf stocking costs can be calculated by multiplying

the expected number of OPQs per order E nf gð Þ with the fixed cost rate per OPQ

ðcFillfix Þ plus the variable stocking costs that correspond to the expected number of

products that directly fit onto the shelf E #CUdirect

 �� �

multiplied by the variable

cost rate for initially stocking one CU cFillvar

� �
.

CFill ¼ E #Ordersyearf g � E nf g � cFillfix þ E #CUdirect

 �

� cFillvar

� 	
ð5Þ

In order to determine the value of initial shelf stocking costs per year, we need to

consider the frequency of ordering which is dependent on the OPQ selected. By

assuming stationary demand, we approximate the expected number of orders per

year E #Ordersyearf gð Þ by dividing the demand per year Dyearð Þ by the expected
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order size per order Efqgð Þ. We restrict the calculations to OPQs that do not exceed

the annual demand of the store with the lowest sales volume.

E #Ordersyearf g ¼ Dyear

Efqg ð6Þ

Table 2 Notation

Notation

IP Inventory position

IPO Inventory position at the time of ordering

s Reorder level

q Order size consisting of one or several OPQs

DS Display stock

SS Safety stock

L Lead time

R Review period

x̂L Expected demand during lead time

x̂R Expected demand during review period

Sij Shelf capacity for SKU i in store j

DepthShelfj
Depth of the shelf in store j

DepthSKUi
Depth of the CU of SKU i

PFij Number of product facings of SKU i in store j

CTotal Total instore costs of the company per annum

CFill
j

Stocking costs in store j per annum

C
Refill
j

Restocking costs in store j per annum

CInvC
j

Inventory carrying costs in store j per annum

cFillfix
Fixed initial shelf stocking costs per OPQ

cFillvar
Variable initial shelf stocking costs per CU

cRefillvar
Variable restocking costs per CU

cInvC Inventory carrying costs in % on tied capital per year

E nf g Expected number of OPQs per order

E #CUdirect

 �

Expected number of CUs that fit directly onto the shelf at the time of delivery arrival

E #Ordersyearf g Expected number of orders per year

E qf g Expected order size in CUs

Dyear Demand per annum in CUs

DRP Demand in the review period in CUs

DLT Demand during lead time in CUs

U Undershoot of the IP under s

PID Physical inventory on hand instore at the time of delivery arrival

FSS Free shelf space at the time of delivery arrival

PV Product value of one CU
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As a prerequsite for these calculations, the specific product volumes must be

determined and charged with the relevant costs. First, we need the expected number

of OPQs ordered when an order is actually released at a review moment E nf gð Þ.
The number of OPQs ordered is dependent on the undershoot of the inventory

position below the reorder level s at the time of ordering. That is why we first

approximate the distribution of the undershoot U�. From this distribution the

probabilities of the inventory position at the time of ordering PðIPO ¼ ipOÞ can be

derived (see Appendix A1) that are needed to calculate the expected number of

OPQs ordered when an order is placed:

E nf g ¼
Xs�1

ipO¼0

PfIPO ¼ ipOg �
s� ipO
OPQ

� �
ð7Þ

This value can be used to calculate the fixed stocking costs as well as –by multi-

plying with the OPQ– the expected order size E qf gð Þ, i.e., the number of CUs

ordered. However, in order to calculate the expected number of CUs that can be put

directly onto the shelf during initial shelf stocking immediately after arrival of the

store delivery E #CUdirect

 �� �

we have to calculate free shelf space at the time of

delivery ðFSSÞ:

FSS ¼ Max S� IPO þ DLT
� �

; 0
� �

ð8Þ

At the time of delivery we can fill up the free shelf space available with CUs

delivered up to the level until either the shelf is filled completely or the order size q

is completely put onto the shelf. We therefore formulate:

E #CUdirect

 �

¼ E Min FSS; qð Þf g ð9Þ

As the order size q is stochastically dependent on the inventory position for OPQs

smaller than s we convolve the probability distribution of the inventory position

including its corresponding order sizes with the probability distribution of demand

during lead time in order to derive the probability distribution of the amount of CUs

delivered that fit onto the shelf. In other words, we calculate the order size q for

every possible event based on IPO. By adding every possible demand event during

the lead time we calculate Min FSS; qð Þ per event allowing us to generate the dis-

tribution of the number of CUs that can be stacked directly onto the shelf

P #CUdirect ¼ cud

 �

that serves as basis to calculate the expected number of CUs

that can be put directly onto the shelf during initial shelf stocking (E #CUdirect

 �

)

(see Appendix A2).

5.2 Restocking costs from the backroom

Those CUs that cannot be put onto the shelf during the initial stocking activity

immediately after the delivery has arrived in the store have to be stored temporarily

in the backroom and restocked later when there is space available on the shelf due to

customer purchases. Restocking acitivites are mostly carried out during the day by
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high-qualified personnel at frequent intervals to guarantee customer service. As

explained in Sect. 4.1, the resulting restocking costs are reflected by a variable cost

rate per CU that has to be restocked cRefillvar

� �
. Consequently, the restocking costs per

order can be calculated by multiplying the expected number of CUs that have to be

restocked per order E #CURefill

 �� �

with the cost rate. Multiplied by the number of

orders per year we get the restock costs CRefill per annum:

CRefill ¼ E #Ordersyearf g � E #CURefill

 �

� cRefillvar ð10Þ

The expected number of CUs per order that do not fit onto the shelf and have to be

restocked E #CURefill

 �� �

can be calculated analogous to the number of CUs that

can be stacked directly. Having calculated one value, the corresponding value can

be easily derived by subtraction from the expected value of the order size Efqg:

E #CURefill

 �

¼ Efqg � E #CUdirect

 �

ð11Þ

5.3 Inventory carrying costs

The third cost component considered is inventory carrying costs that are dependent

on the OPQ selected. Inventory carrying costs in grocery retailing are comparatively

low compared to handling costs due to the assortment structure with low purchasing

prices for retailers that are reflected in low product values (PV). We approximate

the OPQ-dependent inventory carrying costs per year by means of a simple

calculation that is also applied in the basic EOQ model:

CInvC ¼ Efqg
2

� PV � cInvC ð12Þ

6 Empirical example

In this section, we describe the application of the cost model developed to a real

industry case with data we obtained from a European retail company. First, we

illustrate the setting of the case in Sect. 6.1 before we describe and analyse the

results in Sect. 6.2.

6.1 Case description

An empirical case study with real industry data serves to demonstrate the cost

calculations introduced in this paper. The case company referred to as DELTA in

the following is a leading European home and personal care retail company

operating roughly 3,000 company-owned stores in several European countries. All

stores belong to the same retail format and are largely similar with regard to their

assortments and the categories listed. However, store managers are able to decide

about product (de-)listings and the number of product facings on the shelf.

We focus on the German market for which the calculations are carried out.

DELTA operates 8 DCs in Germany. While the picking systems in the regional DCs
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are adjusted to supplier case picking, DELTA has implemented automated

unpacking processes in its central DC to manipulate industry case packs in order

to supply the stores with OPQs that fit their specific requirements. Therefore the

company has the infrastructure that is necessary to provide retail-designed ship pack

sizes for the stores.

We obtained data for one food subcategory consisting of 39 items that are

characterized as non-perishables due to expiration dates that imply very long shelf

lives. For each SKU-store combination, we received the relevant data to calculate

the OPQ as described in Sect. 5. The only modification we made in this case study

was to assume a lead time of one day to comply with the requirement that there are

no outstanding orders when an order is released.

As the company operates according to the everyday-low-price-principle without

price promotions, the time series are free of promotional effects. The inventory

replenishment calculus incorporated in the ASO system is based on an ðR; s; nQÞ
inventory policy. Generally, store managers are able to manually override the order

volumes suggested to guarantee high customer service if they have additional

information about relevant factors that are not included in the ASO system, e.g.,

weather conditions. However, analyses of DELTA show that less than 2 % of all

order lines are adjusted manually. Shelf filling and restocking is completely

executed by own personnel. The SKUs selected are known to have very high

restocking rates. The retailer’s operations managers are therefore interested in the

potential of consciously dimensioning the OPQ from an instore perspective. As the

company intends to choose one OPQ per SKU for all stores, we calculated the costs

in this case example for all 1,180 German stores. We calculated the costs for all

potential OPQs containing between 1 and 35 CUs for each SKU and store, resulting

in roughly 1.6 million data records.

6.2 Case results

Applying the cost model described allows us to calculate the costs for each potential

OPQ, for each store and each SKU, and to select the minimal-cost OPQs that can

subsequently be aggregated to company-wide cost curves per SKU to derive a

global instore cost minimum.

In Fig. 1, the discrete cost points for one SKU-store combination of the case

example have been connected to cost curves for illustration purposes. Raising the

OPQ leads to decreasing initial shelf stocking costs and increasing restocking and

inventory carrying costs. Due to the degressive shape of the number of orders per

year with an increasing OPQ, we also notice degressively decreasing initial shelf

stocking volumes accompanied by degressively increasing restocking volumes (see

Fig. 2). Charging these restocking volumes with the variable restocking costs results

in the restocking cost curve. However, calculating the costs for all stores of a

company may mean the resulting cost curves look different, with a cost minimum at

a different OPQ (see Fig. 3).

The overall results of the cost calculations exhibit significant potential (see Table

3). By comparing the minimal-cost OPQ calculated with the OPQ currently used by

the retailer, we can identify a cost reduction potential of 9.4 % of instore logistics
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costs, which is the biggest cost pool in bricks-and-mortar retailing. Assuming that

other categories are structurally identical, that would correspond to tens of millions

of euros per annum for the retailer investigated.

From the 39 SKUs included in this analysis, the minimal-cost solutions would

require 35 reductions in the ship pack size and 3 enlargements. Currently the ship

pack size of one SKU corresponds to the cost minimum. The aim of reducing the

OPQ is to be able to place more CUs on the shelf during initial shelf stocking and

reduce restocking expenses. However, the 3 enlargements are not a result of ample

shelf space. In these cases, shelf space is so scarce that most of the CUs have to be

3012 132 353323 319281 19 2721 25 26242016 8241 22 4351 32176 10841 3 5 7 9 11

Total costs

Inventory carrying costs

C
os

ts

Restocking costs

Ini�al stocking costs

OPQ

Fig. 1 Example of resulting cost curves for one SKU-store combination

OPQ

3534333231302928272625242322212019181716

V
ol

um
es

 (
in

 C
U

s)

151413121110987654321

Expected ini�al stocking volume per annum
Expected restocking volume per annum

Expected order volume per annum

Fig. 2 Example of expected volumes for the SKU-store combination considered in Fig. 1
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restocked anyway. In cases where a large number of CUs have to be restocked even

with small OPQs, larger OPQs save at least fixed initial stocking costs.

Applying the optimal solution would result in an increase in the volume that can

be placed on the shelf during initial stocking of 32 % per year. The volume that has

to be restocked would in turn be reduced by 20 %. As we calculate with variable

restocking costs, these would be reduced accordingly by 20 %. Due to the

considerable size reductions in the optimal solutions, the inventory carrying costs

are reduced by 45 % in average over all 39 SKUs. Smaller ship pack sizes imply

more OPQs being shipped to the store resulting in higher fixed stocking costs.

Additionally, with more CUs on average that can be stacked onto the shelf during

initial shelf stocking, the variable stocking costs increase as well. On average over

the subcategory investigated, initial shelf stocking costs increase in the optimal

solutions by slightly more than 60 %.

Hypothetically, if every store was supplied with its minimal-cost OPQ, total

instore costs could be reduced by 13.8 %. In 68.8 % of the SKU-store combinations,

a smaller OPQ than the ship pack currently used would be optimal; in 26.9 % of

cases the current size is smaller than the optimum and in 4.3 % of all combinations

regarded the current size corresponds to the instore cost minimum. Figure 4

compares the global optimal OPQ derived by cost analysis over all stores with the

distributions of the store-individual minimal-cost OPQs. Contrary to the commonly

used box whisker plots, the horizontal lines printed in bold represent in this case the

minimal-cost OPQ for all stores. The boxes indicate the central part of the data

distributions of store-individual minimal-cost OPQs from the lower to upper

quartile. The lines extending from the boxes show the range of the store-individual

minimal-cost OPQs per SKU. The chart demonstrates that in some cases the global

331 3528 3427 32313029262524232221201918171615141312111098765432

OPQ

Restocking costs

Ini�al stocking costs

Total costs
C

os
ts

Inventory carrying costs

Cost-optimal 
OPQ calculated

for all stores

Fig. 3 Cost curves of SKU from Fig. 1, now calculated for all stores of a company
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minimal-cost OPQ is smaller than the lower quartile of the optimal OPQs calculated

per individual store. This is due to the cost structure, according to which restocking

is significantly more expensive than initially stocking the shelf after delivery.

Although most of the stores would prefer larger OPQs to be able to realize greater

fixed cost degression, this cannot compensate for expensive restocking processes at

a limited number of stores.

Besides this focus on operational costs, further dependencies have to be taken

into account. With an increasing rate of direct stocking and decreasing restocking

activities from the backroom, there is a temporal shift of labor time required in the

store. This implies that employee scheduling has to be adjusted, and different store

workforce structures could even be beneficial. Store employees learned to store

excess stock in the backroom to be certain of being able to fulfil consumer demand.

From this perspective it is important that operational benefits resulting from smaller

OPQs are not hindered by differing ordering behavior.

This empirical example conducted with real retail data demonstrates that

selecting the OPQ from an instore logistics point of view offers significant potential

to free up time currently spent on shelf stocking and restocking. Even if the cost

reductions identified in this empirical case study cannot be realized to this extent

due to upstream processes, packaging-related aspects and others, the potential seems

to be comparatively high in a very competitive and labor-intensive environment that

is far from being automated.
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Fig. 4 Modified box whisker plot to compare the minimal-cost OPQ calculated for all stores per SKU
(horizontal lines printed in bold) with the distributions of the minimal-cost OPQs calculated individually
per store and SKU
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7 Discussion and conclusions

In this ultimate section we discuss the cost model developed in this paper and its

first application in an empirical case study. We highlight the findings and its

implications for both theory and retail practice (Sect. 7.1), and discuss the

limitations and further research opportunities (Sect. 7.2).

7.1 Findings and implications

Motivated by a clear lack of research on the question of how to size OPQs from an

instore perspective, this article is a first in-depth analysis of the dormant efficiency

potential in connection with correctly dimensioned OPQs that seems to be largely

untapped in retail research and practice. However, companies and industry

associations increasingly care about ship pack sizes, and are heavily investing in

highly automated DCs to unpack and repack products with the aim of achieving

sizes that suit their needs. This requires solution methods to determine minimal-cost

OPQs. We developed a model to derive minimal-cost OPQs from an instore

operations perspective. By applying the model to an industry case with real retail

data, we showed that instore costs could be reduced by 9.4 % with an appropriate

OPQ that is used for all stores of the company investigated. This result indicates that

adapting OPQs to company-specific situations can unleash instore cost potential up

to the high single-digit percentage range.

This article contributes to existing literature by firstly providing decision support

for this highly relevant question for retailers operating in such an environment. It

becomes evident that the OPQ is a crucial lever to use the limited resources in the

store, especially shelf space allocated, as efficiently as possible. The model provided

is based on a highly differentiated instore cost structure to determine OPQs from an

instore perspective, integrating shelf space restrictions. We provide evidence that

dimensioning the OPQ is a substantial efficiency driver in instore logistics.

Of course, the resulting cost curves are heavily dependent on the cost parameters

included. With the variable restocking costs being higher than the fixed initial

stocking costs per OPQ plus the variable stocking costs for one CU, the model

strives for higher initial stocking rates, maximizing the usage of shelf space

allocated as long as it is not restricted by the underlying basic economic order

quantity model without consideration of restocking (EOQ). With the minimal shelf

space available at the time of order arrival in the store MaxðS� ðsþ 1Þ; 0Þ, a lower
bound (LB) can be derived for the miminal-cost OPQ at the store level:

LB ¼ Min MaxðS� ðsþ 1Þ; 1Þ; ½EOQ�ð Þ. There are two factors that prevent OPQs

from getting too large: restricted shelf space with the corresponding restocking

costs, and inventory carrying costs. Assuming unlimited shelf space, the OPQ

calculated in the model is only restricted by inventory carrying costs. According to

the basic EOQ model, the minimal-cost OPQ is then determined by fixed initial

stocking costs and inventory carrying costs (see Fig. 5). The OPQ that corresponds

to the ½EOQ� without considering restocking therefore serves as upper bound (UB)

for the minimal-cost solution at the store level (UB ¼ ½EOQ�). The restriction of

inventory carrying costs is also relevant in the case of severe underfacing
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accompanied by very high probabilities that all products delivered have to be

restocked. In this case, the model aims for large OPQs as well in order to avoid fixed

initial stocking costs, restricted only by inventory-carrying costs.

Figure 6 demonstrates the effects of both shelf space restriction and inventory

carrying costs for different levels of total shelf capacity assigned to one SKU-store

combination that is used as an example throughout this article. On the left side of

the chart, where shelf space assigned corresponds to only 1 or 2 CUs, the probability

that all CUs have to be restocked is very high resulting in the situation described

above with the minimal-cost OPQ corresponding to the result of the basic economic

order quantity model. When the assigned shelf space is 16 CUs or more, shelf

capacity is no longer the restriction applied by the model due to inventory carrying

costs being higher than fixed initial shelf stocking costs. An additional order is

cheaper than the cost of capital that is tied due to larger OPQs. However, with shelf

space of between 3 and 16 CUs, the minimal-cost OPQ and the resulting total costs

are highly dependent on the assigned shelf space. With the cost rates applied and

with increasing shelf space, the minimal-cost OPQ first gets smaller until a certain

point accompanied by decreasing restocking volumes. The costs associated with

fewer CUs that have to be restocked compensate for more orders with higher fixed

initial stocking costs. From a certain point onwards, in this example at total shelf

capacity of 9 units, the shelf space assigned is sufficient to carry out the inventory

policy without having to restock any CUs at any time. Of course, in this situation as

shelf space increases, the minimal-cost OPQ also raises until inventory costs restrict

a further enlargement. From that point on, total costs will of course remain constant.

The decrease in total instore costs with increasing shelf space is naturally dependent
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Fig. 5 Example of cost curves under the assumption of unlimited shelf space
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on the distributions of undershoot and demand during lead time. However, this

example demonstrates the value of shelf space for bricks-and-mortar retailers. In

practice, category managers are often not aware of the logistics implications of

planograms, which mainly incorporate marketing aspects. Therefore, this research

also provides vital input for category management as the adaption of shelf space is

one potential approach besides dimensioning OPQs.

Against the backdrop of these analyses, it is of particular relevance for retailers to

assess the robustness of the minimal-cost OPQs calculated. The robustness of the

minimal-cost solution is dependent on the shape of the total cost curve around the

minimum. These shapes are very different for the SKUs considered in the case

example. We identify rather flatter curves and greater robustness of the minimal-

cost OPQ for products with ample and very scarce shelf space, i.e., where the

difference between S and s� 1 is high or negative. In these cases, the minimal-cost

OPQ tends to be higher and covers more sales than where the difference between S

and s� 1 is a small positive value, generally resulting in smaller minimal-cost

OPQs. A deviation from minimal-cost OPQs that are large in comparison has minor

effects around the cost minimum as an even larger ship pack will increase

restocking costs for a comparatively small percentage of items delivered, and a

reduction in the ship pack quantity would result in an increase in orders at a

comparatively low rate. However, the effects are vice versa for SKUs with

comparatively small minimal-cost OPQs. An enlargement quickly leads to a

significant proportion of items that have to be restocked, and a further reduction in

the ship pack size results in significant increases in the number of orders required.

This means the smaller the minimal-cost OPQ calculated, the lower the robustness

of the solution, which again emphasizes the relevance of shelf space as a very

valuable resource in the retail trade. With this differentiation in mind, Fig. 7 shows

the mean percentage change in total costs per SKU, including the effects in all stores

from the case example.
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7.2 Limitations and areas for further research

The model developed and applied in this paper is definitely not exhaustive, resulting

in the need for more research on the topic in future. Potential issues for further

improvement are the instore cost structures included and the very important aspect

of incorporating this research into a supply chain model. The significant cost

reduction potential identified in the case study in this paper serves as a promising

starting point for both researchers and practitioners to further address the question of

how to dimension OPQs.

The instore costs integrated in the cost model reflect the processes as these are

frequently configured in grocery retailing (Kuhn and Sternbeck 2013; van Zelst

et al. 2009). However, as the volumes charged with the cost rates are calculated, the

approach can easily be adopted to different instore cost structures. The determi-

nation of the specific cost rates is a difficult task in practice. Time and motion

studies can help to identify the times that are needed to perfom the relevant handling

processes. The internal hurdle rate as a basis for calculating inventory carrying costs

can potentially be determined by calculating the weighted average cost of capital.

The variable restocking costs used in this paper are justified by high restocking

frequencies and an overwhelming majority of slow-moving SKUs. However, this

might be different for discount and small convenience stores with high selling rates

per SKU, and may be subject to adaptation and further research. Restocking could

also be interpreted as a periodic review inventory system within the delivery system

from retail DCs with periods smaller than the corresponding periods derived from

store deliveries. This could be one prospective approach for also integrating fixed

restocking costs distributed over the number of CUs that fit onto the shelf at the time

of restocking.
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Perhaps the most important need for further research is the integration of instore

logistics cost effects investigated in this paper into supply chain models comprising

transportation and warehousing and possibly even packing operations at the

supplier. Clearly, instore operations are mirrored in the retail DCs. When smaller

OPQs are supplied to the stores, this naturally results in higher unpacking and

picking costs in the DCs, or different cost structures at the manufacturers. Applying

a supply chain perspective is inevitable in order to find an appropriate solution for

the whole company or even for the supply chain segment, including the supplier.

Instore logistics effects investigated in this paper play an important role in such a

model due to the high proportion of instore costs, which could justify a shelf-back

approach. In this context, further research could also address the question under

what circumstances it would be favorable for retailers to offer more than one ship

pack size per SKU, and allocate stores to the specific pack sizes on a fixed or

dynamic basis. This would also be dependent on the divergence of store-specific

requirements. As instore logistics costs represent the largest operational cost pool of

bricks-and-mortar retailers, the store operations model developed is a fundamental

basis for further approaches.
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Appendix

A1: Calculation of the undershoot and corresponding inventory position

at the time of ordering

By assuming that the undershoot and the relevant demand in the review period

DRPð Þ are stochastically independent (Tempelmeier 2011), we derive the discrete

probability distribution of the undershoot with the help of the following

approximate calculation with resulting probabilities that represent a non-increasing

function of u (Tempelmeier 2011):

PfU ¼ uþ 1g ¼ 1� PfDRP � ug
EfDRPg

ð13Þ

with u in the interval ½0; 1; :::; dRP;max � 1� resulting in probabilities of an undershoot

when an order is released in the interval ½1; 2; :::; dRP;max�. As we assume lost sales

when customer demand faces empty shelves, the undershoot cannot be larger than

the order level s. However, the probabilities of larger undershoots should not be

ignored. That is why we modify the resulting undershoot distributions by placing the

mass, which is larger than s, right on s. We denote the resulting distribution as U�
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with u� in the interval ½1; 2; :::; s�, which is now characterized by the following

expression:

Xs

u¼1

P fU� ¼ u�g ¼ 1 ð14Þ

With this probability distribution of the undershoot we can easiliy calculate the

probabilities of the inventory position PðIPO ¼ ipOÞ at the time of ordering:

IPO ¼ s� U� ð15Þ

P fIPO ¼ s� u�g ¼ P fU� ¼ u�g; u� ¼ ½1; 2; :::; s� ð16Þ

A2: Calculation of the distribution of the number of CUs that can be stacked

directly onto the shelf

The distribution of the number of CUs that can be stacked directly onto the shelf

P #CUdirect ¼ cud

 �

is calculated as follows:

P #CUdirect ¼ cud

 �

¼
X

MinðMaxðS� ðipO þ dLTÞ; 0Þ;
qðipOÞÞ ¼ cud

P Min Max S� ipO þ dLT
� �

; 0
� �

; qðipOÞ
� �
 �

ð17Þ

with cud in the interval ½MinðMaxðS� ðs� 1Þ; 0Þ;OPQÞ; :::;Minðd s
OPQ

e � OPQ; SÞ�.
This distribution serves as a basis to calculate the expected number of CUs that can

be put directly onto the shelf during initial shelf stocking (E #CUdirect

 �

).

For the cost calculations of OPQs that are greater than or equal to the order level

s, calculation (17) –which continues to be valid– can be simplified as the order size

q is independent of the undershoot because in every possible case only one OPQ

will be ordered ðq ¼ OPQÞ. For these instances, we can simply convolve the

probability distributions of U and DLT and base all further calculations on the

resulting distribution of physical inventory in stock instore ðPIDÞ at the time when

the order consisting of one OPQ arrives in the store (Tempelmeier 2011):

P PID ¼ s� piDf g ¼
X

u�þdLT¼piD

P U� ¼ u�;DLT ¼ dLT

 �

ð18Þ

Again, the resulting probability distribution of PID has to be modified analogous to

the undershoot distribution by cutting the distribution for values greater than s and

placing the correspondent mass right on s. This is necessary, because the physical

inventory cannot be further reduced. We denote the resulting distribution as PI�D
with pi�D in the interval ½0; 1; :::; s� 1�, which is characterized by the following

expression:
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Xs�1

piD¼0

P fPI�D ¼ pi�Dg ¼ 1 ð19Þ

In the case of OPQ� s, the probability distribution of the CUs that can be stacked

directly after delivery can be calculated as follows:

P #CUdirect ¼ cud

 �

¼
X

MinðMaxðS� pi�D; 0Þ;
OPQÞ ¼ cud

P Min MaxðS� pi�D; 0Þ;OPQ
� �
 �

for OPQ� s ð20Þ
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