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Abstract
Motor imagery (MI) is a high-level cognitive process that has been widely applied to brain-computer inference (BCI) and

motor recovery. In practical applications, however, huge individual differences and unclear neural mechanisms have

seriously hindered the application of MI and BCI systems. Thus, it is urgently needed to explore MI from a new

perspective. Here, we applied a hidden Markov model (HMM) to explore the dynamic organization patterns of left- and

right-hand MI tasks. Eleven distinct HMM states were identified based on MI-related EEG data. We found that these states

can be divided into three metastates by clustering analysis, showing a highly organized structure. We also assessed the

probability activation of each HMM state across time. The results showed that the state probability activation of task-

evoked have similar trends to that of event-related desynchronization/synchronization (ERD/ERS). By comparing the

differences in temporal features of HMM states between left- and right-hand MI, we found notable variations in fractional

occupancy, mean life time, mean interval time, and transition probability matrix across stages and states. Interestingly, we

found that HMM states activated in the left occipital lobe had higher occupancy during the left-hand MI task, and

conversely, during the right-hand MI task, HMM states activated in the right occipital lobe had higher occupancy.

Moreover, significant correlations were observed between BCI performance and features of HMM states. Taken together,

our findings explored dynamic networks underlying the MI-related process and provided a complementary understanding

of different MI tasks, which may contribute to improving the MI-BCI systems.
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Introduction

Motor imagery (MI) spans the action process and directly

reaches the mental goal and sensory experience (Pilgramm

et al. 2016). MI is a high-level cognitive process that has

been widely applied to brain-computer inference (BCI) and

motor recovery (Gao et al. 2021). Specially, MI-based BCI

systems can help not only disabled people recover their lost

physical functions (Khan et al. 2020) but also have inno-

vative applications in robotics (Khademi et al. 2023),

games (Yang et al. 2018), virtual reality (Kohli et al. 2022),

and so on. Understanding the neural mechanisms under-

lying MI is crucial for optimizing BCI systems and

enhancing our comprehension of motor-related cognitive

processes. While previous studies have emphasized the

conscious activation of specific brain regions during MI,

the dynamic organization of brain states over time and the
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distinctions in activity between different MI tasks (i.e., left-

and right-hand MI) remain unclear.

Numerous studies based on functional magnetic reso-

nance imaging (fMRI) and electroencephalogram (EEG)

neuroimaging techniques have investigated brain activation

and network connectivity patterns during various MI tasks

(Lebon et al. 2018; Li et al. 2019). For example, Hétu et al.

(2013) applied the ALE meta-analysis to review the con-

sistent activation of brain areas involved in MI, such as

large frontoparietal network regions. In our previous

studies (Zhang et al. 2016, 2019), we also found that

functional connectivity patterns in the attention network

and somatomotor network are associated with the context-

specific MI task and MI-BCI performance. Bencivenga

et al. (2021) evaluated the dynamic coupling of key regions

using dynamic causal modeling and parametrical empirical

Bayes analysis, revealing the interaction relationship

between different regions in MI. Liu et al. (2022) con-

structed the causal connectivity network for left- and right-

hand MI tasks using the Bayesian estimation, showing

better lateralization characteristics of the brain network.

Additionally, network properties of functional connectivity

(Yu et al. 2022), event-related potential analysis (Daeglau

et al. 2020), common spatial patterns (Zarubin et al. 2020),

and other methods are extensively used to decode MI tasks.

These techniques provide an activation or connectivity

representation of the overall time series of MI.

However, MI is a dynamic evolutionary process, how

the above features are organized in time and what kinds of

activation and connectivity characteristics are possessed by

different cognitive stages still need more dynamic research.

Recently, more and more research has focused on the

dynamics process of brain state under cognitive tasks

through some prevalent methods. Adaptive directed trans-

fer function-based (ADTF) algorithm and sliding window

are two commonly used methods. To be specific, Zhang

et al. (2018) explored the mechanism of the MI time-

varying network using the ADTF method, they found the

key role of some specific regions (such as the left anterior

insula and premotor cortex) in the organization of the

networks in MI. While, the sliding window method is

widely used in the dynamic decoding of biosignal data in

cognitive tasks due to its ability to dynamically extract a

variety of neural signal features such as common spatial

pattern (Talukdar et al. 2020), entropy (Parbat and Chak-

raborty 2021), and functional connectivity (Wu et al.

2021). However, the traditional ADTF method is easily

affected by outliers and leads to the deviation of the

established connection while Li et al. (2022) proposed a

novel ADTF method to improve this defect. The sliding

window approach also encounters the problem of decision

window length and step size (Li et al. 2018), what’s more,

the form of dynamic capture with a fixed window length is

incongruent with the nature of the neural oscillatory

activity (Quinn et al. 2018).

These studies based on biological imaging techniques

have confirmed that MI is a high-level cognitive process

involving multiple brain regions. Despite the variable

factors, such as the difference in specific tasks, the signal

acquisition methods, and the individual ability of the sub-

jects, the activation of brain areas in the group-level study

was still significant (Hétu et al. 2013). For more detail,

whether network hierarchies can be found in higher cog-

nitive tasks such as MI and how these networks are

recruited in time is not known. To implement the MI-BCI

system, it is also crucial to distinguish between left- and

right-hand imagery tasks. Searching for potential pattern

differences in MI of different hands in deeper temporal

features is one of the aims of this study.

Alternatively, the hidden Markov model (HMM) pro-

vides a better choice. It is a generative model widely used

in biological time series analysis which deduces the time

series into the occupancy of finite states at discrete time

points (Zhang et al. 2021). The inference of the model is

completed in a data-driven way, which ensures that it is

more flexible than the sliding window method to capture

the dynamic information in the task (Hindriks et al. 2016).

Based on these advantages, HMM is welcome in solving

practical problems in cognitive neuroscience fields. For

instance, HMM can provide information about the location

of some brain-related diseases (Seedat et al. 2023), reveal

the neural oscillation process of the human brain in cog-

nitive tasks such as problem-solving (Yu et al. 2023), and

extract the brain network features of the disease population

to do classification research (Maya-Piedrahita et al. 2022).

Specifically, the inherent advantages of HMM help to

understand the dynamic transition process of brain net-

works in tasks. Moreover, HMM states, one of the key-

stones of the model. In addition to providing statistics of

temporal features such as fractional occupancy and life

time of the network (HMM state), task-containing HMM

modeling can also discover those potential task-evoked

state responses (Quinn et al. 2018). This task-dependent

feature rises or falls is similar to event-related desynchro-

nization/synchronization studies (ERD/S) (Vidaurre et al.

2016). At the same time, HMM could reveal neural oscil-

latory activity under specific tasks based on temporal

organization and spatial topology. These simplify the

dynamic recruitment system of brain networks and allows

us to glimpse into the mysteries of human cognition. Thus,

the HMM method provides a new way to insight into the

neuromechanism of MI.

We followed a dual-task modeling strategy to search for

potential differences in the temporal organization of left-

and right-hand MI under large-scale network dynamics.

This modeling design allows us to discuss pattern
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differences under the same state assumptions. A state

transition system was revealed by modeling the HMM on

the concatenated MI-EEG data of left and right MI. In this

study, we first perform HMM modeling on EEG-MI data

concatenated from left- and right-hand tasks. Then, the

overall mode of hand MI task is discussed based on the

three temporal features of fractional occupancy, life time

and interval time, and the model feature of the transition

probability matrix. In addition, studies of task-evoked

responses revealed large-scale state recruitment patterns

for those that are strongly task-relevant. Furthermore, we

investigated the differences in the above features between

the left- and right-hand MI tasks by paired two-sample

t-tests. Finally, the correlations between these features and

BCI performance were examined by Pearson correlation

analysis. This comprehensive exploration, facilitated by the

Bayes Hidden Markov model, provides valuable insights

into the brain states and dynamic transitions underlying MI,

advancing our understanding of neural mechanisms during

motor tasks.

Materials and methods

Participants

This study utilized the freely available MI-EEG dataset

(Goldberger et al. 2000), which can be downloaded at

https://physionet.org. In this MI-BCI experiment, a total of

109 subjects performed various motor execution/MI tasks.

The EEG dataset was recorded by the BCI2000 system

(10–10 international system) with a 64-channel and a

sampling rate of 160 Hz. This paper aims to investigate the

dynamic changes in brain states under hand MI task. Only

data from the left hand and right hand when imagining

opening and closing the fist are used here. After EEG data

preprocessing, 43 subjects were finally selected for the

current study. Due to the use of a publicly accessible

database, no ethical approval was provided for our current

study on human participants.

MI-BCI experiment procedure

The MI-BCI experiment consisted of 14 runs, each corre-

sponding to a task or baseline run. Since this study focused

on single-hand MI tasks, only runs with left- or right-hand

performing MI tasks alone were extracted for subsequent

analysis. A total of three runs contains the tasks we focus

on and each run contains 15 trials. Each trial consisted of

4.1 s MI task time and a rest interval of 4 s. Here we

extract 1 s before task onset and 4 s after task onset total of

5 s as one epoch for further research. The composition of

an example trial is displayed in Fig. 1. The task

instructions were provided to the participants at 0 s, and a

cue target would appear on the screen’s left or right side.

The subjects were instructed to imagine their hands closing

and opening in the corresponding direction to the target’s

direction. Refer to (Schalk et al. 2004) for additional

information.

EEG data preprocessing

All EEG data were preprocessed using a traditional anal-

ysis procedure. The main analysis steps are as follows: (1)

8–30 Hz (including mu rhythms and beta rhythm) band-

pass filtering on the raw EEG datasets (Fadel et al., 2020).

(2) Eye movement artifacts removal by the ICA method.

(3) Artifact trail elimination (± 100 lV as the threshold).

(4) [- 200 ms, 0 ms] baseline correlation was done to

compare the effects of stimulating events on brain activity.

After that, there were 69 subjects left. (5) Subjects with less

than ten trials were removed to minimize the effect of

chance. Therefore, another 23 participants were excluded.

(6) Deleted superfluous eight channels (AF7, AF8, FT7,

FT8, T9, T10, Iz, Oz) according to a previous study (Kang

et al. 2018). (7) Three subjects without information on MI-

BCI performance based on Kang’s study (Kang et al. 2021)

were deleted. Finally, only 43 subjects were left after

preprocessing for further analysis. The workflow of MI-

EEG is shown in Fig. 2, including data preprocessing,

HMM inference, and statistical analysis. The specifics of

these steps are described in the following sections.

Gaussian-HMM inference

The HMM with Gaussian observation describes the

dynamic activity of the brain as the transition of limited

states, and states are defined by functional connectivity and

mean activation between regions (Javaheripour et al.

2023). HMM states can be thought as k multivariate

Gaussian distributions, and they can be described by the

following mathematical expression, which k stands for the

number of states.

PðXtjSt ¼ kÞ ¼ PðXtjlk;
X

k
Þ ð1Þ

While lk represents the mean activation,
P

k represents

the functional connectivity across regions of each state

(defined by the covariance matrix). The switching of states

over time defined by networks and activations provides a

dynamic perspective to understand the temporal organiza-

tion of brain activity.

The HMM inference method used in this paper follows

the approach previously described by Vidaurre et al. (2017)

and the toolbox can be obtained through MATLAB toolbox

HMM-MAR (https://github.com/OHBA-analysis/HMM-
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MAR). This toolbox provides a variational Bayes frame-

work to infer the HMM which is also guaranteed to con-

verge as the popular expectation maximization (EM)

algorithm. The keystone of this method is to find the

approximate solution to the posterior distribution by min-

imizing the cost function. Here, Kullback–Leibler diver-

gence (KL divergence), as a commonly used metric to

measure the distance between two distributions, is adopted

as the cost function. For observation data

X ¼ X1;X2; :::;XTð Þ, HMM needs to infer the hidden state

parameter S ¼ ðS1; S2; :::; STÞ and model parameter

k ¼ ðp;A;BÞ, where the model parameters include three

parts: (1) initial state probability p, (2) state transition

probability A(A ¼ aij
� �

, where aij denotes the transition

probability from state i to state j), and (3) observation

probability B(which is also PðXtjStÞ). Therefore, the min-

imization function can be expressed as follows:

F ¼ KLðQðSÞQðkÞjjPðS; k;XÞÞ

¼
ZZ

QðSÞQðpÞQðAÞQðBÞ logQðSÞQðpÞQðAÞQðBÞ
PðS; p;A;B;XÞ dkdS

ð2Þ

Here, PðS; k;XÞ is the full true posterior distribution that

needs to be approximated. The optimization iteration is

performed by minimizing F with respect to QðSÞ, QðpÞ,
QðAÞ, and QðBÞ individually. Additionally, it is also

important to mention that all parameters are given a prior

distribution to start the optimization process. The Dirichlet

distribution is a common prior choice for QðpÞ and QðAÞ
while the conjugate priors to lk and independent inverse

Gamma prior to
P

k (Tao et al. 2021). The parameter

update process is repeated until the change in F is less than

a given threshold. At this time, it is considered that the KL

divergence no longer has a significant change, and the

estimated parameters can be output. All the basic param-

eters of HMM can be obtained based on the above infer-

ence process.

Fig. 1 The schematic diagram

of the experimental paradigm

Fig. 2 The workflow of brain state and dynamic transition patterns of

the left- and right-hand MI using the HMM method. a Data

preprocessing and trials concatenate. b HMM inference on MI-EEG

data. c Statistical analysis of HMM features across tasks and

correlation analysis of HMM features with BCI performance
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State selection and model parameters of HMM

Brain states play an extremely important role in HMM, and

all model features are discussed based on state. However,

the choice of the number of HMM states has always been a

controversial topic because there is no systematic method

to solve this problem. Common strategies such as using

free energy to quantitatively select the number of states

also face situations where there is no turning point (Lin

et al. 2022), a lower free energy represents a better fit of the

model to the data (Zarghami and Friston 2020). It should

be noted that HMM states do not fully represent biologi-

cally factual processes, different state number settings

reveal brain dynamics from different perspectives (Vidau-

rre et al. 2018b). In this study, the number of HMM states

and the number of Principal Component Analysis (PCA)

components are considered comprehensively, and the two

parameters are determined by a classification accuracy-

oriented strategy.

Principal component analysis (PCA)

Due to the multi-channel signal properties of EEG, more

signal channels mean more redundant information. To

alleviate this problem, PCA is a very general choice. The

PCA method can reduce the dimension of the multi-chan-

nel data so that the model inference can work in the PCA-

reduced space. The HMM inference toolbox used in this

paper contains the option of PCA analysis, which only

needs to be manually set for a given number of PCA

components.

A classification accuracy-oriented model parameter
selection strategy

We adopted a classification accuracy-oriented model

parameter selection strategy, and combining the outcomes

of PCA-explained variance allowed for a final determina-

tion of the number of HMM states and PCA components.

The entire parameter selection processes are as follows:

first, given a range of 3–12 for the number of states and

2–56 for the number of PCA components. The model is

then trained for all possible combinations. For each model,

the naı̈ve kernel of the state probability was extracted as

the feature vector (Ahrends and Vidaurre 2023). We first

estimate a state-space model of brain dynamics at the group

level. Then, dual estimation was used to calculate the

subject-specific model features. Finally, the dynamic fea-

tures of each subject are obtained by projecting the subject-

specific model parameters into the embedding space using

the naı̈ve kernel. After obtaining the dynamic characteris-

tics of the subjects through the above methods, the Support

vector machine (SVM) with a linear kernel was used for

classification. A leave-one-out cross-validation strategy

was adopted to evaluate the performance of the classifier.

The top 10 combinations of classification accuracy are

shown in Supplementary Table S1.

Although the combination of K11 and PCA2 had the

highest accuracy, we adopted the combination with the

second highest accuracy as the final parameter for the

explained variance of PCA number 2 was too low. The

classification accuracy corresponding to different parame-

ter combinations and the corresponding explained vari-

ances for different PCA components are shown in Fig. 3.

Therefore, we finally determined an HMM with 11 states

and a PCA component parameter set to 4 for subsequent

analysis.

Statistic overview of HMM

To comprehensively understand the time and transition

features of the MI task, we used the Viterbi path (Lember

et al. 2019) and Gamma (Van Schependom et al. 2019)

inferred by HMM to conduct subsequent feature calcula-

tions. Viterbi path is a hidden state time series sequence

estimated by the Balm-Welch algorithm (Rezek and

Roberts 2005). Its state assignment at each time point is

completely exclusive (Bishop and Nasrabadi 2006). The

opposite of the Viterbi path is Gamma, which is the pos-

terior distribution of the time series presented in proba-

bilistic form. Its state assignment at each time point is not

exclusive and more susceptible to dynamic change (Quinn

et al. 2018).

In this paper, we mainly consider the following features:

fractional occupancy, maximum fractional occupancy,

transition probability matrix, mean life time, and mean

interval time. Notably, St ¼¼ k represents the logical

judgment (returns 1 if correct or 0 if wrong).

(1) Fractional occupancy (FO):

FO of state represents the proportion of time that a

state is active to the total time.

FOðkÞ ¼ 1

T

X
t
ðSt ¼¼ kÞ � 100% ð3Þ

(2) Maximum fractional occupancy (Max FO):

Max FO represents the highest visit ratio among

all states of a subject.

MaxFO ¼ MaxðFOðkÞÞ ðk
¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11Þ ð4Þ

(3) Transition probability matrix (TPM):

The TPM represents the transition probability

from one state to another.
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TPM ¼ aij
� �

ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11 i 6
¼ jÞ

ð5Þ

(4) Mean life time (LT):

The mean LT represents the mean duration of a

state’s continuous persistence.

mean LTðkÞ ¼ averageð
X

k
ðSt ¼¼ kÞÞ ðk

¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11Þ ð6Þ

(5) Mean interval time (IT):

The mean IT is the average number of time points

between two state occurrences.

mean ITðkÞ ¼ averageð
X

t
ðððSt ¼¼ kÞ � ðSt�1 ¼¼ kÞÞ

¼¼ 1Þ ðk ¼ 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11Þ
ð7Þ

ERD/S analysis

ERD/S patterns reveal the time-locked neural activity

responses evoked by specific task stimuli (Pfurtscheller and

Neuper 2006). As it has been widely used for pattern

decoding of MI-EEG data in the past, ERD/S responses

were also calculated to compare with task-evoked respon-

ses revealed by hidden Markov models. The calculation of

ERD/S time course was performed in the 8–30 Hz fre-

quency band which is consistent with the data frequency

band in HMM inference. The whole calculation procedure

included: (1) The Hilbert transform was applied to the

signals of C3, Cz, and C4 during left- and right-hand MI

tasks across all trials and subjects. (2) Then, the absolute

values were taken for each complex value of all trials. (3)

Following the formula ERD% ¼ U�R
R � 100% to calculate

the relative power refers to previous research (Cho et al.,

2017). Here, U represents the time series of each trial

period (-1 to 4 s) while R representing the mean power of

the baseline period (-1 to 0 s).

BCI performance

BCI performance can be used as a potential behavioral

indicator, and we can investigate which dynamic features

are related to the BCI performance value. To find those

underlying dynamic features that are easier to distinguish

the left- and right-hand MI tasks. Thanks to the results of

Kang’s BCI illiteracy-related study (Kang et al. 2021), the

BCI performance values of subjects in the BCI2000 dataset

were provided (taking the classification accuracy as the

BCI performance value of the subjects). Here, we adopted

the average of the classification accuracy under three deep

learning methods as BCI performance. All the BCI per-

formance values are shown in Supplementary Table S2.

And all the HMM temporal features used for BCI corre-

lation analysis were averaged over the left- and right-hand

tasks.

Statistical analysis

To compare the state activation probabilities evoked by the

MI task with those in the idle period, we performed paired

t-tests on each task-evoked time point, where the signifi-

cant difference level was set at p\ 0.05 (FDR corrected,

p\ 0.05). To compare the temporal feature differences

between the left- and right-hand MI tasks, we also per-

formed paired t-tests, where the significant difference level

was set at p\ 0.05 (uncorrected) for FO, LT and IT. For

Fig. 3 Selection of k value and PCA components. a Accuracy corresponds to different parameter combinations. b Explained variance for

different numbers of PCA components
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TPM, the significant difference level was set at p\ 0.01

(uncorrected). We used Pearson’s correlation analysis to

evaluate the relationships between the MI-related HMM

state temporal features and BCI performance, where the

significant correlation was set at p\ 0.05. It is worth

noting that the BCI performance represents the individual

overall ability to identify left- and right-hand MI, so the

sum of MI-related HMM state temporal features (FO, LT,

and IT) of left- and right-hand MI was used to calculate the

correlation.

Results

HMM state patterns of MI tasks

The HMM states were estimated at the group level that

concatenated all MI (left- and right-hand) trials and all

subjects. Here, eleven HMM brain states were inferred

based on the MI-relevant task EEG data. Figure 4a shows

an example of the MI task state time series in a 1-s section

for one subject. These HMM states describe the unique

brain activity and functional connectivity patterns across

time, where the activation maps of four states and corre-

sponding functional connectivity matrixes were displayed.

Moreover, four basic overviews of the brain HMM

states during the MI task are shown in Fig. 4b–e. First, the

maxFO measures whether an HMM is able to describe the

dynamics of the data well. In the present model, we found

that the distribution of maxFO of the subjects is mainly

concentrated between 10 and 26% (see Fig. 4b). This

indicates that the HMM successfully describes the

dynamics of the MI-related data. We also assessed the state

transition probability matrix, which represents the transi-

tion probability from one state to another state. According

to Fig. 4c, we observed that some transitions (i.e., S8–S11,

S2–S9, and S5–S8) are more probable than others. Fig-

ure 4d shows the LT and FO for each HMM state. The FO

of the eleven states ranges from 6.84 to 14.02% while the

LT ranges from 29.3 to 52.1 ms. We found that S11

exhibited a relatively higher occupancy, whereas S10 was

less frequent. Figure 4e shows the interval time for each

state, varying from 199.3 to 591.5 ms. Interestingly, the

S10 occurs infrequently, but once it occurs it persists for a

long time. On the contrary, S11 has the shortest interval,

revealing more frequent access to that state.

Metastate identification and MI-task evoked
response

Similar to resting-state brain activity, task-evoked brain

activity is also highly organized. Three metastates were

identified by performing ward clustering analysis on the

correlation matrix of FO. Figure 5a shows the correlation

matrix of FO and the graph of hierarchical clustering. The

colored boxes represent the correlation of state occupancy

showing a higher positive correlation within metastates and

lower correlations between metastates. Instead, we find low

transition probabilities within metastates and high transi-

tions between metastates (Fig. 5b).

Since the inference of the HMM does not leak infor-

mation about the task onset time, we can find the task-

evoked responses from the inferred state time series and its

features. Figure 5c shows the probability of activation of

eleven HMM states during MI across time. The value of

each point represents the proportion of state activation

across trials, subjects, and MI tasks. To compare the state

activation probabilities evoked by the MI task with those in

the idle period, we performed paired t-tests on each task-

evoked time point. We averaged the state activation

probabilities at all time points within 1 s before the MI-task

onset and took the average as the comparison baseline. We

found that the S1–3, S5, S7–8, and S10–11 have significant

differences (FDR correction, p\ 0.05) in activation

probability. In order to better observe the MI task-evoked

state activation response, we divided 4 stages according to

the interval of 1 s. We found that S1 and S5 were signifi-

cantly different from their corresponding idle period across

stages, S10 and S11 were significantly different from their

corresponding idle period in stages 1 and 2, and S2, S3, and

S7 were significantly different from their corresponding

idle period in stage 1. Moreover, we calculate the mean

ERD/S of electrodes C3, Cz, and C4 across all trials and

subjects. We found that the probability of activation for

some HMM states have a similar trend to that of the ERD

time course of MI. Figure 5d shows the map of state

activation. Different states correspond to different activa-

tion patterns or network connections.

Differences in temporal features of HMM states
between left- and right-hand MI

Since we concatenate the left- and the right-hand MI data

to identify the group HMM states, that allows us to com-

pare the temporal feature differences between the two MI

tasks based on the same state assumption. Given the MI

task-evoked response (see Fig. 5c), we compared the FO,

mean LT, mean IT, (p\ 0.05) and TPM (p\ 0.01) dif-

ferences between the two MI tasks across stages and states.

Figure 6a shows the difference in FO. In stage 1, we found

that the FO of S1 and S7 in left-hand MI were significantly

lower than right-hand MI, indicating S1 (right occipital

lobe) and S7 (right parietal-occipital lobe) have longer

access (dwell) time for right-hand MI. In stage 2, we found

that the FO of S4 in left-hand MI was significantly higher

than in right-hand MI. In stage 4, we found that the FO of
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S2 in left-hand MI was significantly higher than in right-

hand MI, while the opposite situation was observed for S6.

In all-stage, we found that the FO of S7 in left-hand MI

was significantly lower than in right-hand MI.

For the mean LT, we found significant differences in

some states except stage 4. We found the LT of S4 in left-

hand MI was significantly higher than right-hand MI in

stage1–3 and all. Compared to right-hand MI, the LT for

S1 in stage 1 and S6 in stage 3 were significantly lower in

the left-hand MI, while the opposite situation was found in

S10 during stage 2, S3 during stage 3, and S11 during all-

stage. For the mean IT, compared to right-hand MI, we

found that the IT of S5 in stage 1, S7 in stage 4, and S10 in

all-stage were significantly lower in the left-hand MI, while

the opposite situation was found in S8 during stage 3.

Moreover, there are also differences between left- and

right-hand MI in some transitions in stage 1, stage 4, and

all-stage as shown in Fig. 6d.

Fig. 4 Temporal features identified by Gaussian-HMM on MI-EEG

data. a State-dependent time series for one example subject where

each state represents a brain network with variant activation pattern.

b The maximum fractional occupancy distribution of the subjects.

c Transition probability matrix (represents the transition probability

from one state to another). d The distribution of fractional occupancy

(represents the proportion of time that a state is active to the total

time) and life time (defined as the duration of each state occurrence)

of each state. e The distribution of interval time (represents the

interval between two visits of each state)
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The correlations of HMM state temporal features
and BCI performance

Figure 7 shows the significant correlations between BCI

performance and temporal features of HMM states. Since

we only obtained the average classification accuracy of

left- and right-hand MI, we only focused on the relation-

ships between MI tasks and BCI performance here. For all

temporal metrics, the average of left- and right-hand MI

was used to represent the temporal features of the hand MI.

Fig. 5 State clustering results and task-evoked response. a FO

correlation matrix, exhibits positive correlation within metastate

across subjects. b TPM, the transition probability within a metastate is

lower than the transition probability between metastates. c Task-

evoked response, measured by the mean probability of state activation

across trials along with the thick red line which represents the mean

ERD/S in electrodes C3, Cz, and C4. d The spatial cortical

distribution corresponds to the eleven Hidden Markov states
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We found that the FO of S1, S3, and S4 were significantly

negatively correlated with BCI performance (r = - 0.344,

p = 0.024; r = - 0.320, p = 0.037; r = - 0.348,

p = 0.022), while the FO of S10 was significantly posi-

tively correlated with BCI performance (r = 0.352,

p = 0.021). Moreover, we found the LT of S10, the IT of

S1 and S4 were significantly positively correlated with BCI

performance (r = 0.403, p = 0.007; r = 0.303, p = 0.049;

r = 0.309, p = 0.044), while the IT of S11 was significantly

negatively correlated with BCI performance (r = - 0.339,

p = 0.026).

Discussion

MI, an extraordinary skill of the human brain to simulate

movement, has attracted much attention for its extensive

application prospects (Guillot et al., 2014). It is a classical

cognitive task involving multiple psychological concepts

such as attention, working memory, episodic memory, and

so on (Guillot et al., 2014; Munzert et al. 2009). The

brain’s network temporal organization during cognitive

tasks is as nonrandom as the resting state and the task-

evoked state activity responds on millisecond timescales

Fig. 6 Statistical overview of differences between left- and right-

hand MI tasks in different stages. a The differences in FO. b The

differences in mean LT. c The differences in mean IT. d The T-value

matrix of the difference between the left–right hand TPM. The

asterisks represent p-values less than 0.05, double asterisks represent

p-values less than 0.01 and triple asterisks represent p-values less than
0.005. LH-MI: left-hand MI; RH-MI: right-hand MI
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(Quinn et al. 2018). To understand the dynamic brain

process that can maintain the intrinsic temporal benefit of

EEG, HMM offers a high-temporal resolution state-

switching hypothesis. In other words, the HMM method

can reveal that the state-switching pattern does not lose the

time information of EEG data like the sliding window

method. Not only that, HMM also performs better in the

discrimination of functional connectivity (Duc and Lee

2020). The analysis of such repeated access patterns not

only uncovers the dynamic organization of the network for

MI tasks but also provides a comparison of the temporal

organization differences among different tasks. In the

current study, we identified 11 recurrent dynamic brain

states and revealed the MI process through the temporal

features of the transition between them and the dynamic

recruitment. Our findings uncovered dynamic patterns,

activation differences, and temporal features, shedding

light on the underlying neural dynamics.

The HMM provides a dynamic representation of the

state transition as shown in Fig. 4a. It exhibits the specu-

lative HMM state-switching process in the form of prob-

abilities, which characterizes the time series in terms of

transitions of finite states (Vidaurre et al. 2017). The state

defined by a specific spatial topology and its temporal

organization decodes the biological signal of the relevant

task. MaxFO is a metric that reflects the time distribution

of states. A lower MaxFO means that the time distribution

of the state tends to be more average than concentrated in a

particular state. In the model of this paper, the maxFO is

concentrated between 0.1 and 0.26, indicating that the

model captures the dynamics of the data well (a single state

does not highly dominate the entire time series) (Vidaurre

et al. 2018a). TPM provides a window into the interaction

of the brain network under task (Hunyadi et al. 2019). The

four pairs of transitions with the highest probability occur

between S8–S11, S2–S9, S5–S8, and S6–S3. We found that

these state transitions occur primarily from parietal to

temporal, parietal to parietal, and frontal to frontoparietal

regions. Notably, the frontoparietal regions along with the

prefrontal regions are responsible for information integra-

tion in MI (Ogawa et al. 2022). We suggest that the brain is

not entirely inclined to switch between two totally different

states, whereas those higher transition probabilities are also

found in similar states during MI. These state transitions

can be regarded as an interim between networks or the

partial maintenance of activation.

The temporal properties of each state are characterized

by its FO, LT, and IT. The statistics of these temporal

features can delineate the dynamic recruitment pattern of

each state (Lin et al. 2022). Specifically, we found that the

S10 (activation from frontoparietal to occipital) was the

least occupied state, which may represent its transient

involvement in the MI task. It is characterized by a high

life time and high interval time, which suggests that this

Fig. 7 Correlations between HMM states’ temporal features and BCI performance. a The correlation between BCI performance and FO. b The

correlation between BCI performance and LT. c The correlation between BCI performance and IT
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state is not recruited frequently but persists for a long time

once recruited (see Fig. 4d and 4e). This state has the

widest activation region of all the states. We speculate that

the appearance of this state may be a rapid brain response

to the task (S10 had the earliest increased task-evoked

response, which indicates it involved in the initial stages of

cognitive processes throughout the task), with multiple

regions are mobilized for efficient execution of MI. The

prefrontal cortex involves brain functions such as executive

control and working memory, while the parietal cortex is

involved in the selection of visual attention (Capotosto

et al. 2013; Scolari et al. 2015). The occipital lobe is

generally considered to be a region related to visual rep-

resentation (Slotnick et al. 2012). The fast response as well

as the activation of multiple regions may represent a rapid

emergency response of the brain. The state-11 is a state of

temporal lobe activation. Although the temporal lobe

functions primarily in the auditory system, the temporal

lobe may be involved in various ways in the MI. Several

studies have demonstrated that the temporal lobe contains

areas such as the superior temporal sulcus (STS) that

respond to visual stimuli (Beauchamp 2015; Petrides

2023). In addition, activation of state-11 may also be

involved in the overall MI process by encoding memories.

It has been shown that specific temporal lobe regions

(medial temporal lobes (MTL) which include the hip-

pocampus) have memory-encoding structures (Pearson

et al. 2015; Rolls et al. 2022). The recognition of MI task

cueing information can be viewed as a top-down perceptual

process, as the signals only cue the direction and start time

of the task but do not display imagery content. Specifically,

subjects must generate corresponding mental imagery by

searching for their prior motor experiences (Mulder et al.

2004; Olsson and Nyberg 2010; Pearson 2019). Thus, these

eleven distinct brain HMM states during MI tasks could

offer a comprehensive view of the dynamic nature of MI

brain activity.

Using the clustering analysis, we could further divide

the eleven distinct brain states into three metastates. We

observed the states within these three metastates had a

strong FO correlation (Fig. 5a) (Vidaurre et al. 2017), and

the transition probability within metastates was not as high

as between metastates in terms of the TPM (Fig. 5b). This

trend is particularly evident in metastate 1 and 2. More-

over, the spatial topology of the states in the two metastates

is very similar. This may suggest that metastate 1 and 2 are

functionally similar, and the cross-network interactions are

frequent in the MI task. Additionally, it is equally feasible

to analyze state reflections of task dependence at the group

level (Quinn et al. 2018), although HMM is presented in

mutually exclusive state recruitment patterns, and different

subjects are not assumed to perform cognitive tasks

simultaneously. We found contrasting state responses using

cross-trial statistics of states at each time point, that is, state

activation probabilities represented by the proportion of

trials in that state at each time point (Quinn et al. 2018).

These changes are found in some states in all three

metastates. Here, we only focus on those states with

increasing occupancy because they may be associated with

the performance of MI tasks. Meanwhile, the states that

maintain a higher activation probability than the idle period

over multiple phases are also of interest. First, stage 1 can

be regarded as a rapid response stage, which may include

various functions such as receiving task stimuli and

information integration. This phenomenon can be found

not only in the task-evoked response of the HMM states but

also in the ERD/S pattern of C3, Cz, and C4. Specifically,

the ERD/S time series shows the magnitude oscillation at

stage 1 and the oscillation trend is similar to the activation

probability of some states (e.g. S1, S7, and S10). ERD/S is

a method that quantifies event-related changes and is used

to detect patterns of cortical activity in MI (Neuper et al.,

2010). By contrast, the fluctuations in state occupancy over

time provided by HMM are more informative, because

such fluctuations are based not only on a single electrode

but on an identified brain network. These two have similar

trends in the form of fluctuations, indicating that the HMM

brain state activation probability function can also well

reflect the brain activation pattern of MI. Second, S10 is a

key state showing a significant occupancy increase and

both FO and LT of temporal features are positively cor-

related with individual’s BCI performance (see Fig. 7).

The rapid response in this state reflects the large-scale and

multiregional brain activation that may be evoked by the

MI-task stimulus. Among them, the frontal cortex (in-

cluding the motor cortex and premotor cortex, etc.) is

related to behavioral organization (Decety 1996), and the

increased activation of the frontal lobe may be related to

attention or effort (Van der Lubbe et al. 2021). A previous

MI study in elderly subjects has suggested that the occipital

lobe may participate in MI tasks through visual imagery

(Zapparoli et al. 2013), which is a mental technique for MI

tasks. Similar results were also found in patients with

parietal lesions when they performed the MI (Madan and

Singhal 2012). Visual imagery has been used as an alter-

native strategy in MI tasks. At the same time, higher

occupancy in S10 seems to predict a better individual’s

BCI performance, which may be explained by the fact that

the three BCI classification methods are more sensitive to

the temporal characteristics of large-scale activation states.

The following states with rising probabilities are S3 and

S11. S3, with dominant activation in the prefrontal lobe,

and S11 with primary activation in the temporal lobe, may

represent different cognitive strategies representations.

Compared to S10, their activation areas are concentrated

and may represent specialized organizational functions.
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Imagining specific body movement processes can be seen

as recalling episodic memory. Although S3 and S11 have

different activation areas, they may have similar functions.

The prefrontal lobe was found to be activated during the

episodic task experiment (Nolde et al. 1998) and support

the organization function of cognitive behavior (Wei and

Luo 2010). In addition to auditory functions, the temporal

lobe contains specific neural structures such as MTL and

hippocampus (Kiernan 2012) that play a role in functions

other than hearing. The hippocampus guides forward

actions based on past experiences in an agile way (Vernon

et al. 2015). In fact, these two states are not exclusive in

their function. On the contrary, the functions of the Pre-

frontal–hippocampal cortex (PFC) and hippocampus in

memory processing are complementary, with the former

responsible for retrieving suitable memory content and the

latter for organizing memory (Eichenbaum 2017). Finally,

the higher activation probability of S1 from stage 2 to stage

4 may be related to different cognitive strategies in the pure

imagination stage. It must be admitted that there are dif-

ferences in the performance of imagination tasks, and

consistent mental representations are almost non-existent

(Milton et al. 2008). For example, previous study indicated

that the older adults have more difficulty performing

kinesthetic imagery tasks (Zapparoli et al. 2013), and

instead, they need to recruit visual imagery related regions

(which activates more occipital areas) (Fallgatter et al.

1997). Another observation is that S11 holds a higher

activation probability at stage 2 compared to the corre-

sponding idle period. At this stage, it may indicate some

functions of planning and preparation (Burianová et al.

2013). This trend disappeared over time because successful

memory encoding is often negatively correlated with

activation in some temporal regions (hippocampus) (Con-

falonieri et al., 2012; Milton et al. 2008).

According to the preceding task activation results, the

large-scale recruitment of states is revealed variously at

different time stages. The differences in temporal features

between left- and right-hand MI also differed within the

time segments described above. It is worth noting that

stage 1, as a stimulation-induced fast reaction period,

shows the features of the most difference. Besides, the

right-hand task showed a higher occupancy rate for the

activation state (S1, S7) of the right occipital lobe in

multiple stages, while the left-hand task had a higher

occupancy rate for the activation state (S4) of the left

occipital lobe, there was an ipsilateral preference in the

occupancy of states dominated by occipital activation.

However, the ipsilateral preference of left and right hands

for occipital states did not appear simultaneously. Right-

hand right occipital preference was significant in stage 1,

while the left occipital preference in the left-hand task was

significant in stage 2 (this occupancy preference exists both

globally and on a single access). This difference may stem

from the fact that the task processes of the left- and right-

hand MI tasks are not synchronized. This is unsurprising

because movement imagination is relatively slower in the

non-dominant hand, and the difference is more pronounced

than in motor execution (Maruff et al. 1999). These results

indicated that the laterality of neural recruitment was evi-

dent, with left-hand MI showing distinct activation patterns

in the occipital lobe, while right-hand MI exhibited a

preference for the right hemisphere.

Another notable difference comes from S10 and S11.

These two states were discussed earlier because of their

unique temporal features, and they were also found in the

difference between the left- and right-hand MI tasks. In

stage 2, the S10’s LT of left-hand MI was longer. However,

in all-stage, left-hand MI had shorter access intervals in the

S10. One assumption for the difference in S10 at stage 2 is

that, as we discussed earlier, S10 is the brain state that

responds rapidly to simulation. This response will be

longer for the non-dominant hand task because that kind of

task usually takes up more mental resources (Tacchino

et al. 2018). In addition, shorter intervals for S10 in left-

hand MI also indicate more frequent visits in terms of all-

stage. S11 was found to have higher single access times for

left-hand MI tasks in both stage 3 and all-stage. Globally,

the left-hand task showed longer single visits to temporal

states (S11) and shorter intervals between visits to multi-

activation states (S10) which represent a particular pattern

of this task. Finally, some differences in left- and right-

hand MI were found in the transition probability matrix. A

notable characteristic of these differences is that the tran-

sitions with the activation state of the left central parietal

region (S5, S8) as the transition endpoint during the period

in which the differences emerged all had higher values in

the right-hand MI. The transition to the state with the right

central area activated seems more relevant to the right-hand

MI. Past studies also support the conclusion that the left

motor area is vital for the right-hand MI task (Gao et al.

2011). Overall, our findings provide valuable insights into

the neural mechanisms underlying left- and right-MI tasks.

Regarding the limitations of this study, as with all

imaging studies, inferring the internal processes of the

brain from exogenous physiological measurements carries

its own risks. Relying on temporal statistics as well as

backward reasoning about the electrophysiological signals

of the brain provided by the hypothetical model can only be

considered as a conjecture. More evidence is still needed

on the real activity of the brain under cognitive tasks in

future studies. At the same time, it is limited by the low

spatial resolution of EEG. The fuzzy localization of acti-

vation in specific states leads to an imprecise discussion of

specific cortical functions. In the future, multimodal studies

combining functional magnetic resonance imaging (fMRI)
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data would be a better choice. In addition, the single HMM

brain state temporal features are associated with MI acti-

vation patterns, and future studies can explore integrating

multiple temporal characteristics of these HMM brain

states to further improve the accuracy of MI-BCI

classification.

Conclusion

In this study, we delved into the dynamic organization of

brain states during MI tasks using an HMM approach.

Through the analysis of left- and right-hand MI-EEG sig-

nals, we identified eleven distinct states at the group level,

revealing a highly organized structure in MI-related brain

activity. The dynamic transitions between these states

emphasized the fluid nature of task-evoked brain responses.

Our findings highlighted specific states with unique acti-

vation patterns across different stages of MI tasks, shed-

ding light on the temporal dynamics of MI-related neural

activity. Notably, the comparison between left- and right-

hand MI tasks unveiled significant temporal differences in

FO, mean LT, mean IT, and transition probability matrix

across stages and states. The left-hand MI task exhibited

higher recruitment in the occipital activation state skewed

to the left hemisphere, while the right-hand MI task showed

a preference for the right hemisphere. Furthermore, the

correlation analysis between HMM state temporal features

and BCI performance provided valuable insights. Specific

states, such as S1, S3, S4, and S10, exhibited significant

correlations with BCI performance, with FO, LT, and IT

playing distinct roles in predicting performance outcomes.

In general, our findings support the idea that MI may be

performed with different cognitive strategies and that these

strategies are all feasible.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s11571-

024-10099-9.

Acknowledgements This work was supported by the National Natural

Science Foundation of China (#62006197, #42305067), the project of

Southern Marine Science and Engineering Guangdong Laboratory

(Zhuhai) (#SML2023SP203), Medical Science and Technology

Research Fund of Guangdong Province (B2023186).

Author contributions YL: methodology, formal analysis, visualiza-

tion, and writing. SY: data preprocessing and formal analysis. JL, JM,

FW, and SS: data curation. DY and PX: Writing—review & editing.

TZ: Funding acquisition, idea, Writing—review & editing.

Data availability The data that support the findings of this study are

openly available on the PhysioNet website (https://physionet.org).

Declarations

Conflict of interest The authors declare no conflicts of interest.

References

Ahrends, C., Vidaurre, D. (2023) Predicting individual traits from

models of brain dynamics accurately and reliably using the

Fisher kernel. bioRxiv:530638.

Beauchamp MS (2015) The social mysteries of the superior temporal

sulcus. Trends Cogn Sci 19:489–490

Bencivenga F, Sulpizio V, Tullo MG, Galati G (2021) Assessing the

effective connectivity of premotor areas during real vs imagined

grasping: a DCM-PEB approach. Neuroimage 230:117806

Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine

learning. Springer
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