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Abstract
Studies show that movement observation (MO), movement imagery (MI), or movement execution (ME) based brain–

computer interface systems are promising in promoting the rehabilitation and reorganization of damaged motor function.

This study was aimed to explore and compare the motor function rehabilitation mechanism among MO, MI, and ME.

64-channel electroencephalogram and 4-channel electromyogram data were collected from 39 healthy participants (25

males, 14 females; 18–23 years old) during MO, ME, and MI. We analyzed and compared the inter-cortical, inter-

muscular, cortico-muscular, and spatial coherence under MO, ME, and MI. Under MO, ME, and MI, cortico-muscular

coherence was strongest at the beta-lh band, which means the beta frequency band for cortical signals and the lh frequency

band for muscular signals. 56.25–96.88% of the coherence coefficients were significantly larger than 0.5 (ps\ 0.05) at the

beta-lh band. MO and ME had a contralateral advantage in the spatial coherence between cortex and muscle, while MI had

an ipsilateral advantage in the spatial coherence between cortex and muscle. Our results show that the cortico-muscular

beta-lh band plays a critical role in the synchronous coupling between cortex and muscle. Also, our findings suggest that

the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and premotor

cortex (PMC) are the specific regions of MO, ME, and MI. However, their pathways of regulating muscles are different

under MO, ME, and MI. This study is important for better understanding the motor function rehabilitation mechanism in

MO, MI, and ME.

Keywords Electroencephalography (EEG) � Movement observation (MO) � Movement execution (ME) � Movement

imagery (MI) � Cortico-muscular coherence

Introduction

Stroke is a major cause of disability in adults and the

second leading cause of death worldwide (Baccetto and

Lehmann 2019), causing 5.5 million death directly or from

stroke complications per year (Naghavi et al. 2017).

Statistics predict that by 2030, this number will reach 12

million per year (Feigin et al. 2014). For those stroke

survivors, about 85% suffer from severe motor dysfunc-

tion, disabling them from taking care of themselves and

living a quality life (Hatem et al. 2016). Rehabilitation

training is effective in restoring motor function to patients

(Hatem et al. 2016).

Traditional motor rehabilitation methods are mainly

through taking drugs (Luo et al. 2017), physical therapy

(Garcia-Cabo and Lopez-Cancio 2020), and occupational
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therapy (Andrews et al. 2021). These methods are not

effective in engaging subjective motor intention, resulting

in slow progress in motor recovery. With the development

of neuroimaging technology, researchers developed neural

feedback training based on electroencephalogram (EEG) as

an active intervention for motor function rehabilitation.

Numerous studies showed that a brain-computer interface

(BCI) system based on movement observation (MO),

movement imagery (MI), or movement execution (ME) can

effectively improve stroke patients’ motor abilities, cog-

nitive abilities, and the activation effect of their damaged

nerves (Foong et al. 2019; Sakurada et al. 2017; Signal

et al. 2020). Ono et al. found that MO, MI, and proprio-

ceptive feedback could effectively regulate brain sensori-

motor rhythm response (Ono et al. 2018). Ander et al. and

Kleim et al. found that MI-BCI-controlled mechanical

correction equipment can effectively improve the motor

function of stroke patients (Kleim and Jones 2008; Ramos-

Murguialday et al. 2013). Garrison et al. reported that MO

could activate specific motor cortices in damaged motor

circuits after stroke (Garrison et al. 2013). Neuroimaging

studies found that MI activates similar cortices as those

activated by ME (Guillot et al. 2008; Mizuguchi et al.

2017). The repetitive training based on MI or MO can

activate the specific cortex for regaining relevant motor

functions. However, this training cannot fully activate and

synergize various sensory pathways simultaneously.

The BCI system with multi-channel functional electrical

stimulation (FES) controlled by EEG can activate the

cortex-muscle synchronously, strengthen the activation of

the sensorimotor cortex, and promote the repair and reor-

ganization of damaged nerve function (Qiu et al. 2016;

Zhao et al. 2016; Zulauf-Czaja et al. 2021). Zhang et al.

found a strong EEG-EMG coherence at the beginning of

the ME (Zhang et al. 2021). Krauth et al. proposed that the

EEG-EMG coherence can be a biomarker for motor

recovery post-stroke (Krauth et al. 2019).

These studies showed that the BCI-FES system based on

MI or MO can realize synchronous coupling between

cortex and muscle, promoting the recovery of motor

function. However, the motor rehabilitation mechanisms

based on MI, MO, and ME are unclear. We projected scalp

potential to the cerebral cortex by EEG source imaging

(ESI) (Michel and Brunet 2019) and then calculated the

coherence between cortical potential and EMG instead of

directly calculating the coherence between scalp potential

and EMG. In addition, unlike other studies (Kim et al.

2017; Tun et al. 2021) which directly extract motion-re-

lated frequency bands through experience, we used power

spectral density (PSD) (Hsueh et al. 2015) to select the

most active EMG signal frequency band under these tasks.

We analyzed and compared the time–frequency and spatial

coherence among MI, MO, and ME, which is important for

a better understanding of the motor rehabilitation

mechanism.

Materials and methods

Subjects

A total of 39 subjects (25 males, 14 females) aged 18 to 23

participated in this study. All subjects were healthy, with

no history of neurological dysfunction, vision problems,

upper limb pathology, or abnormal gait. All subjects were

right-handed. All subjects gave written informed consent,

and the Institutional Ethics Committee of Hunan Cancer

Hospital, Hunan, China, approved the study.

Experiment protocol

The experiment included three movement conditions (MO,

ME, MI) and two modes (Task, Rest), as seen in Fig. 1. In

Task mode, six tasks, including the left fist task under MO

(T1), ME (T3), and MI (T5) conditions, and the right fist

task under MO (T2), ME (T4), and MI (T6) conditions,

were performed.

There were 14 trials in each session under each move-

ment condition, including seven left fist tasks and seven

right fist tasks. Each subject underwent three repeated

sessions under each movement condition. The order in

which the MI, MO, and ME trials appeared was MO, ME,

and MI.

After all trials of a movement condition were completed,

the subjects rested for half an hour, trying to avoid any

effect on the results of the next movement condition. The

time intervals for different motor condition tasks have not

been standardized in the MO, MI, and ME studies. The

experimental paradigm used by Zhang et al. (2019) had

time intervals of 30 s and 90 s between MO and ME and

between ME and MI, respectively. The experimental

paradigm Di Nota et al. (2017) used had a time interval of

15 s between MO and MI. Our time interval is longer than

these time intervals, we believe the effect of MI, MO, and

ME order on our results may not be insignificant. In total,

4914 trials were carried out. Each trial starts with an

instruction showing which condition to perform. Next, in

the Rest mode, subjects rest for 5 s before the next task.

Under MO condition, a 5 s video clip of holding a left fist

or right fist was displayed, and the subject was asked to

observe the fist movement without actually holding fists.

The hand starts from an open palm position. Then the hand

folds into a fist. This movement is repeated three times

during the 5 s video clip. Under the ME and MI conditions,

a white dot was displayed on the monitor’s left or right side

for 5 s. Subjects were asked to make a left or right fist or
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imagine making a left or right fist correspondingly at their

own pace. The left or right fist trials appeared in a pseudo-

random order.

Data acquisition

An eegoTMmylab (ANT Neuro, Berlin, Germany) was

utilized to simultaneously collect 64-channel EEG signals

and 4-channel EMG signals throughout the experiment.

The EEG electrodes were placed according to the 10–20

international system. EMG signals of both forearms’ flexor

carpi ulnaris (FCU) and extensor digitorum (ED) muscles

were recorded on the skin surface. A pair of electrodes

were placed on the subject’s left (B3, B4) and right fore-

arms (B1, B2) in a standard belly-tendon montage. The

sampling rates of EEG and EMG were set to 1000 Hz.

Data analysis

EEG and EMG pre-processing

Custom programs in MATLAB (MathWorks, Natick, MA,

USA) incorporating functions of Brainstorm were applied

to conduct data analysis offline (Tadel et al. 2011). The

EEG and EMG data were notch filtered using a Butter-

worth infinite impulse response (IIR) filter to remove

50 Hz and corresponding harmonics electrical noise. They

were then band-pass filtered using a finite impulse response

(FIR) filter to band-pass 1–50 Hz components.

After filtering, an independent component analysis

(ICA) was employed to remove eye movement, eye blink,

and custom event artifacts (Gao et al. 2010). Data with

abnormality or large noise were excluded based on visual

inspection. The exclusion criteria were: (1), signals with

large motor defect, (2), loss of signals on certain channels.

In total, data of five subjects were excluded accordingly.

Finally, the pre-processed EEG and EMG signals were

down-sampled to 250 Hz and segmented into 5 s-trials.

The signals for segmentation were collected during the MI/

MO/ME tasks, in which 5-s stimulation followed by 5-s

rest was repeated 14 times, making each session last 140 s.

This session was then segmented into 5-s trials, containing

14 motor task-related trials and 14 rest trials.

EEG source estimation

To better analyze the real motor intention of the subjects,

ESI was applied to project the scalp potential (L, recorded

EEG data) to the cerebral cortex (H, current densities of

sources):

L ¼ TH þ N ð1Þ

where T is a matrix of lead field and N is a matrix of noise

covariance. In our experiment, we used the identity matrix

Fig. 1 Schematic representation of the experiments for the left fist

(T1, T3, T5) and right fist (T2, T4, T6) tasks under different

movement conditions (MO, ME, MI). Each session contains seven

left and seven right fist tasks under the same motion condition. Before

the start of each session, the display shows an instruction window

informing the subject of the motor condition (MO, ME, MI) for the

tasks to be performed in that session. There was a 5-s rest period

before each task and a 5-s rest period between tasks
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as the noise matrix, as done in many studies (Dale and

Sereno 1993; Liu et al. 1998), and applied weighted min-

imum norm estimation (WMNE) to compute the matrix of

lead field (T).

We used the head model template instead of creating the

personalized head model from individual anatomical data.

To reduce the error introduced by the head model, we

chose the Colin 27 average brain (Collins et al. 1998) with

high signal-to-noise ratio and structure definition, and

warped the Colin 27 average brain according to the elec-

trode montage worn by the subjects. First, the boundary

element method (BEM) was used to compute the shape and

conductivity of the warped head, solving the forward

problem (von Ellenrieder et al. 2005). Then, we used the

dipoles model and the minimum norm imaging method to

solve the inverse problem. Minimum norm imaging esti-

mates the amplitude of brain sources at each grid location

determined by the forward head model. The number of

dipoles (5000) is much larger than the number of electrodes

(64), which leads to the EEG inverse problem ill-posed. To

solve this problem, we introduced a regularization term X:

min
H k TH � L k2 þX k ZH k2 ð2Þ

where Z is a weighted matrix.

Ĥ ¼ T
TðTTT þ XZÞ�1L ð3Þ

The Brainstorm software is used to realize the source

estimation from EEG.

Regions of interests (ROIs) creation

In this paper, we were interested in the current activities of

task-related brain regions, including the primary motor

cortex (M1) of the left hemisphere (R1), the M1 of the right

hemisphere (R2), the dorsolateral prefrontal cortex

(DLPFC) of the left hemisphere (R3), the DLPFC of the

right hemisphere (R4), the supplementary motor area

(SMA) of the left hemisphere (R5), the SMA of the right

hemisphere (R6), the premotor cortex (PMC) of the left

hemisphere (R7), and the PMC of the right hemisphere

(R8) (Hanakawa et al. 2003). These eight areas in the

cerebral cortex were defined as the regions of interest

(ROIs) in this study. We selected the ROIs based on the

Desikan-Killiany cortical atlas. The ROI selection is

achieved with Brainstorm software. The source estimation

of ROIs was used for coherence calculation.

Time frequency analysis of EEG and EMG

For each subject, the time–frequency distribution of EEG

sources extracted from eight ROIs and EMG signals

recorded from the FCU and ED muscles were calculated

using a Morlet wavelet-based time–frequency analysis. The

temporal resolution of the wavelet is defined by the full-

width at half-maximum (FWHM) of its Gaussian kernel.

Originally, the center frequency of the wavelet (fc) was set

to 1 Hz, the time resolution was 3 s, and the wavelength

was:

rt;fc ¼
FWHMfc
ffiffiffiffiffiffiffiffiffiffiffiffiffi

8ln 2ð Þ
p ð4Þ

The length of the wavelet (rt;f c ) is scaled for the

remaining frequency (f) by:

rt;f ¼
rt;fc fc
f

ð5Þ

Wavelet coefficients were calculated at 0.5 Hz intervals

and convolved with the selected waveform by:

wf ¼ rt;f
ffiffiffi

p
p� ��1

2e
t2

2r2
t;f e2pifct; ð6Þ

where i is an imaginary number.

For the remaining 34 subjects, time–frequency analysis

in each of the theta (4–8 Hz), alpha (8–13 Hz), and beta

(13–29 Hz) frequency bands was carried out on EEG data

of the 126 trials from the six tasks. In the time–frequency

analysis of EMG signals, usually the theta, alpha, and beta

frequency bands were used, just like those of EEG in lit-

erature (Tun et al. 2021). However, these frequency bands

in EMG signals do not have the same physiological

meaning as those in EEG signals. Cortical muscle coher-

ence studies usually use the same frequencies (Gao et al.

2018; Tuncel et al. 2010). However, the frequency bands

associated with meaningful muscle activation in EMG

signals may differ from those in EEG signals under the

same task. Usually, the task-relevant frequency band in the

EMG signal is selected by band analysis (e.g., power

spectral density applied in this paper) (Politti et al. 2016)

rather than a specific frequency band (e.g., alpha, beta

bands commonly used for EEG).

Here, in this study, we defined a new frequency band,

called lh band, which is a leading (l) frequency band for

muscles under the six tasks in this study and is a high

(h) frequency band. This lh band is related to activation

status of the motor tasks, which is related to the high-power

spectral density in the EMG signals. The lh frequency band

is selected based on the power spectral density (PSD) of the

4-channel EMG signals.

First, the power spectral density (PSD) of the 4-channel

EMG signals was calculated and averaged across subjects.

Then, based on the results of PSD, the frequency corre-

sponding to the maximum energy density (fMax) and the

frequency corresponding to half of the maximum energy

density (fHi, could have multiple values) were found. The

two frequencies fHi closest to fMax {defined as (fHl, fHh)}
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were chosen and consists of a target frequency band (fHl–

fHh), in which the muscle activities were relatively more

active. For each task, a target frequency band were defined

this way. For the six tasks, in total we defined six target

frequency bands, the overlap among which was defined as

our lh band.

According to the results of PSD, the lh frequency band

of interest was defined as 30–100 Hz. Time–frequency

analysis at theta, alpha, beta, and lh frequency bands were

carried out on EMG data. We calculated the average

energy density across time to evaluate EEG and EMG

wave activity in different frequency bands under each task.

We used the average energy (AE) of neuron activity in the

cortex and the AE of electrical activity on the muscle

surface to measure the level of activation in the cerebral

cortex and quantify the degree of muscle activation,

respectively.

Coherence analysis

The synchronous changes between EEG of ROIs, EMG of

interested muscles, and EEG and EMG under the same task

were analyzed through coherence analysis over the 5-s

trials. Neuronal electrical signals of eight cortical regions

and four muscle surface electrical signals were used for

coherence analysis. For a given two signals (x1, x2), the

coherence was calculated using magnitude-squared coher-

ence as:

Cx1;x2 fð Þ ¼
Px1;x2 fð Þ
�

�

�

�

2

Px1 fð Þj j � Px2 fð Þj j ð7Þ

where Px1 fð Þ, Px2 fð Þ are the power spectra of x1 and x2,

and Px1;x2 fð Þ the cross-power spectra of of x1 and x2, at

frequency f .

The inter-cortical (EEG-EEG) coherence analysis was

carried out on the time–frequency spectrum of three fre-

quency bands (theta, alpha, beta) of eight ROIs to select the

brain regions with significant coherence under each task.

There were 28 coherence coefficients among eight ROIs

for each task and each frequency band.

For inter-muscular (EMG-EMG) coherence analysis, the

muscles with higher coherence under the same task were

obtained by computing coherence between the time–fre-

quency spectrum of EMG signals on four muscles (left

FCU, right FCU, left ED, right ED). Most studies in the

literature usually used theta, beta, and alpha waves in EMG

signals (Maso et al. 2017; Tun et al. 2021), but we did not

use these frequency bands directly. Instead, we selected the

active lh band. In order to verify the effectiveness of the lh

band, we also calculated the coherence among muscles at

theta, alpha, and beta frequency bands. Then we compared

the coherence among muscles at the four frequency bands.

There were six coherence coefficients among four muscles

for each task and each frequency band.

In cortico-muscular (EEG-EMG) coherence analysis, we

calculated the coherence between the EEG time–frequency

spectrum at each frequency band (theta, alpha, beta) and

the EMG time–frequency spectrum at each frequency band

(lh, theta, alpha, beta). The cortico-muscular coherence

was calculated for each of the eight ROIs and four muscles,

respectively, to analyze the time–frequency coherence and

spatial coherence between EEG and EMG.

This study has six cortico-muscular bands, including

three different cortico-muscular bands and three same

cortico-muscular bands. In different cortico-muscular

bands, the frequency band of the cortex is different from

that of muscle, including cortico-muscular theta-lh, alpha-

lh, and beta-lh bands. In the same cortico-muscular bands,

the frequency band of the cortex is the same as that of

muscle, including cortico-muscular theta-theta, alpha-al-

pha, and beta-beta bands. There were 32 coherence coef-

ficients among eight ROIs and four muscles in each

cortico-muscular band for each task. The coherence value

significance level (Cs) at a particular frequency (Halliday

et al. 1995) was determined by:

Cs ¼ 1 � 1 � að Þ
1

M�1 ð8Þ

where a is a confidence interval and set to 0.99 (Muthu-

raman et al. 2018), M is the number of data segments used

in the coherence calculation. The coherence coefficient

larger than Cs was defined as that there is synchronous

coupling. In this paper, Cs was 0.5.

Statistical analysis

All statistical analyses were performed in IBM SPSS

Statistics (Version 26.0.0.0). Paired t-tests were used to

investigate whether significant changes in AE values exist

in different brain regions/muscles/frequency bands,

respectively. The differences in AE values among different

brain regions were calculated separately. Similar opera-

tions were performed for significant changes in AE values

across muscles/frequency bands.

A non-parametric Kolmogorov–Smirnov test was used

to test the inter-cortical, inter-muscular, cortico-muscular

coherence coefficients for normal distribution. A Levene’s

test was used for equality of variances. A three-way anal-

ysis of variance (ANOVA) was used to verify the signifi-

cance of the differences in the inter-cortical, inter-

muscular, cortico-muscular coherence coefficients at dif-

ferent modes. For inter-cortical coherence statistical anal-

ysis, 7 9 3 9 28 ANOVA with the factors Mode (T1, T2,

T3, T4, T5, T6, Rest), Frequency (theta, alpha, beta), and

Cortical pair (R1–R2, R1–R3, R1–R4, R1–R5, R1–R6, R1–
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R7, R1–R8, R2–R3, R2–R4, R2–R5, R2–R6, R2–R7, R2–

R8, R3–R4, R3–R5, R3–R6, R3–R7, R3–R8, R4–R5, R4–

R6, R4–R7, R4–R8, R5–R6, R5–R7, R5–R8, R6–R7, R6–

R8, R7–R8) was used. For inter-muscular coherence sta-

tistical analysis, 7 9 4 9 6 ANOVA with the factors

Mode (T1, T2, T3, T4, T5, T6, Rest), Frequency (lh, theta,

alpha, beta), and Muscle pair (B1-B2, B1-B3, B1-B4, B2-

B3, B2-B4, B3-B4) was used. For cortico-muscular

coherence statistical analysis, 7 9 6 9 32 ANOVA with

the factors Mode (T1, T2, T3, T4, T5, T6, Rest), Frequency

(cortico-muscular theta-lh, alpha-lh, beta-lh, theta-theta,

alpha-alpha, beta-beta bands), and Cortical muscle pair

(R1-B1, R1-B2, R1-B3, R1-B4, R2-B1, R2-B2, R2-B3,

R2-B4, R3-B1, R3-B2, R3-B3, R3-B4, R4-B1, R4-B2, R4-

B3, R4-B4, R5-B1, R5-B2, R5-B3, R5-B4, R6-B1, R6-B2,

R6-B3, R6-B4, R7-B1, R7-B2, R7-B3, R7-B4, R8-B1, R8-

B2, R8-B3, R8-B4) was used. The violation of sphericity

was tested by Mauchly’s test (a = 0.05). If the probability

of the spherical test is smaller than a, the degree of free-

dom needs to be corrected by Greenhouse–Geisser cor-

rection. A Bonferroni correction was applied for all the

post hoc tests that involves multiple comparisons and

considered significant at p\ 0.05.

Results

Time–frequency analysis

The time–frequency spectrum of the ROI source estima-

tions averaged from the data of 34 subjects is shown in

Fig. 2.

The results showed that during the six tasks (T1, T2, T3,

T4, T5, T6), the AE of three frequency bands (theta, alpha,

beta) in ROIs of the left hemisphere (R3, R7, R5, R1) were

significantly larger (ps\ 0.05) than those of the right

hemisphere (R4, R8, R6, R2). R3 was the active cortex

with the largest AE value in the left hemisphere, and R2 in

the right hemisphere. For each task, the AE of the alpha

band for each cortex was significantly larger (ps\ 0.05)

than that of the theta/beta band. Under T1, the alpha was

active in R1, R3, and R7 (AEalpha[ 10 9 10–19). Under

T2, theta and alpha waves were more significantly active

(ps\ 0.05), with larger AE in R3 and R7 than in other

ROIs. Under T3, the theta wave was significantly active in

R7. Under T4, alpha was significantly active in R3 and R1.

Under T5 and T6, the AE of each cortex at three bands was

less than 10 9 10-19.

For each EMG channel (B1, B2, B3, B4), the time–

frequency characteristics of EMG signals at each frequency

band (theta, alpha, beta, lh) under each task (T1, T2, T3,

T4, T5, T6) were averaged. The averaged time–frequency

analysis of EMG is shown in Fig. 3.

When observing or executing left fist tasks (T1, T3), the

electrical activities on the surface of FCU and ED muscles

in the left forearm were strongest, with maximum AE at the

lh band. Under T5, the electrical activities on the surface of

FCU and ED muscles in the left forearm were strongest

with maximum AE at the beta band, while in the right

forearm, they were strongest at the lh band. Under the

right-fist related tasks (T2, T4, T6), the FCU and ED

muscles of the right forearm were strongly activated at the

lh band (AElh[ 5 9 10-15), while the FCU and ED

muscles of the left forearm were strongly activated at the

beta band (AEbeta[ 5 9 10-15).

Coherence analysis

The synchronous coupling of cortices at three frequency

bands (theta, alpha, beta) under different tasks (T1, T2, T3,

T4, T5, T6) is shown in Fig. 4.

The 7 9 3 9 28 ANOVA with the factors Mode, Fre-

quency, and Cortical pair indicated a significant main

effect of Mode, the significant main effect of Frequency,

the significant main effect of Cortical pair, and significant

interaction between each two of the factors, Mode*Fre-

quency, Mode*Cortical pair, Frequency*Cortical pair, and

significant interaction between the three factors, shown in

Table 1.

Among all tasks, the number of the cortices with sig-

nificantly synchronous coupling was largest at the beta

band, followed by that at the alpha band, and it was

smallest at the theta band. For example, under T1, only the

R1–R2 cortical pair had coherence coefficients signifi-

cantly greater than 0.5 at the theta band (p\ 0.05). The

coherence coefficient between most cortices

(0.0070 ± 0.0058) was much smaller than 0.5. At alpha

and beta bands, more than 50% and 91% of the coherence

coefficients were significantly greater than 0.5 (ps\ 0.05).

Under T2, neuron activities were most significantly active

at the alpha band, and the number of cortical regions with

coherence coefficients significantly greater than 0.5 was the

largest among the six tasks, with 75% of the coherence

coefficients significantly greater than 0.5. Under T4, the

number of synchronously coupled cortices was signifi-

cantly highest at the beta band compared to those at the

theta and alpha bands.

The coherence of four muscles at four frequency bands

(lh, theta, alpha, beta) under the six tasks is shown in

Fig. 5.

The 7 9 4 9 6 ANOVA with the factors Mode, Fre-

quency, and Muscle pair indicated a significant main effect

of Mode, the significant main effect of Frequency, the

significant main effect of Muscle pair, and significant

interaction between each two of the factors, Mode*Fre-

quency, Mode*Muscle pair, Frequency*Muscle pair, and
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no significant interaction between the three factors, shown

in Table 2.

The number of muscle pairs with coherence coefficients

significantly higher than 0.5 (ps\ 0.05) was largest at the

lh band among the four frequency bands and smallest at the

beta band. The coherence coefficients of muscles at the lh

band are shown in Table 3. The degree of muscle syn-

chronous coupling at the lh band was higher than those at

the other three frequency bands (theta, alpha, beta). For

example, at the lh band, the coherence coefficients of the

four muscles under MO (T1, T2) and MI (T5, T6) were

significantly higher than 0.5 (ps\ 0.05). Four muscles

were synchronously coupled at the lh band under MO and

MI. Among these three movement conditions, the syn-

chronous coupling of muscles was highest under MO.

Under MI, only the left fist-related tasks had a pair of

muscles (B2-B3, right ED-left FCU) with a coherence

coefficient significantly higher than 0.5 at the theta band.

Under six tasks, the coherence coefficients between the

power spectra of EEG and EMG at six cortico-muscular

bands are shown in Fig. 6. The 7 9 6 9 32 ANOVA with

the factors Mode, Frequency, and Cortical muscle pair

indicated a significant main effect of Mode, the significant

main effect of Frequency, the significant main effect of

Cortical muscle pair, a significant interaction between the

two of the factors, Mode*Frequency, Frequency*Cortical

muscle pair, no significant interaction between the other

two of the factors Mode*Cortical muscle pair, and no

significant interaction between the three factors, shown in

Table 4.

At the cortico-muscular theta-lh and theta-theta bands,

there was no synchronous coupling (coherence

Fig. 2 The averaged time–frequency spectrum of the neurons of the

eight ROIs at theta, alpha, and beta frequency bands after source

estimations. Time series of the eight ROIs were extracted after EEG

source imaging, and time–frequency analysis was performed on the

time series of each of the eight ROIs. The time–frequency analyses

were averaged across subjects. The time scale of the time–frequency

analysis is 5 s. The averaged time–frequency plots of the brain

regions connected by arrows are shown in the rectangular boxes for

different tasks (T1, T2, T3, T4, T5, T6) and different frequency bands

(theta, alpha, beta). The brain regions connected by the matrices in the

first, second, third, and fourth panels on the left are R3, R7, R1, and

R5, respectively; the brain regions connected by the matrices in the

first, second, third, and fourth panels on the right are R4, R8, R2, and

R6, respectively. The averaged time–frequency maps represent the

dynamic changes of the energy of the three frequency bands of the

ROIs over time under different tasks. In this paper, the mean energy

value at the frequency band on the time scale is used to measure the

level of cortical activation at that frequency band
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coefficients\ 0.5) between the activities of neurons in

eight ROIs and the electrical activities on the four muscle

surfaces.

Although there was a synchronous coupling between

cortex and muscle at cortico-muscular alpha-theta and

beta-theta bands (coherence coefficients[ 0.5) under T2,

T3, and T4, there was no statistical significance compared

to the Rest condition (ps[ 0.05). The number of coher-

ence coefficients significantly higher than 0.5 (ps\ 0.05)

between cortices and muscles at the cortico-muscular beta-

lh band was the largest. In addition, the coupling degree

between cortex and muscle is significantly highest at the

cortico-muscular beta-lh band (p\ 0.01).

The muscles with significant coherence with cortical

ROIs under each task are shown in Fig. 7.

It could be seen that the synchronous coupling degree

between muscle and cortex was higher at cortico-muscular

alpha-lh and beta-lh bands than those at other bands.

(1) At cortico-muscular alpha-lh band. Under T1, T2,

T3, T4, 75%, 50%, 62.5%, and 83.3% of the muscles

with the significantly highest degree of synchronous

coupling in ROIs were on the contralateral forearm,

respectively. However, under T5 and T6, 82.5% and

62.5% of ROIs had the significantly highest coher-

ence coefficient with muscles on the ipsilateral

forearm, respectively.

(2) At cortico-muscular beta-lh band. Under MO tasks

(T1, T2), 75% of the muscles with the significantly

highest degree of synchronous coupling in ROIs

were on the contralateral forearm. For example,

under T1, the significantly highest coherence

between R1 of the left hemisphere was B1 on the

right forearm. Under ME tasks (T3, T4), 75% and

62.5% of the muscles with the significantly highest

synchronous coupling in ROIs were contralateral.

Under MI tasks (T5, T6), 75% and 62.5% of the

muscles with the significantly highest degree of

Fig. 3 The averaged time–frequency analysis of EMG signals under

MO (T1, T2), ME (T3, T4), and MI tasks (T5, T6) at theta, alpha,

beta, and lh bands. The time scale of the time–frequency analyses is

5-s. The time–frequency analysis of EMG signals on different

muscles (FCU muscles, ED muscles) were performed and averaged

across different subjects. The averaged time–frequency plots repre-

sent the energy dynamics at the four frequency bands of the muscles

over time for different tasks. The mean energy value at the frequency

band on the time scale quantifies the level of muscle activation at that

frequency band

1086 Cognitive Neurodynamics (2024) 18:1079–1096

123



synchronous coupling in ROIs were ipsilateral. For

example, under T5, the highest coherence between

R2 of the right hemisphere was the B1 on the right

forearm.

Discussion

The main statistical method used in this paper was multi-

factor ANOVA. For post hoc tests, the probability of

making a Type I error increases considerably as the number

of tests increases. In the pairwise comparisons of inter-

cortical, intermuscular, and cortical-muscular coherences

at different frequencies, the Type I errors were 14.26%,

18.54%, and 26.49%, respectively. Bonferroni correction

was used to adjust significance for pairwise comparisons,

making Type I errors less than 0.05. The adjusted signifi-

cances were 0.0166, 0.0125, and 0.0083 for pairwise

comparisons of intercortical, intermuscular, and cortical-

muscular coherences.

Fig. 4 Time series, time–frequency maps, and coherence between

cortices. a Time series of ROIs. The time series were extracted from

each of the ROIs. b Time–frequency map of ROIs. Time–frequency

analysis of time series within the brain region of interest were

performed at three frequency bands (theta, alpha, beta). c Schematic

representation of the connections between any two of the eight ROIs.

d The averaged coherence of three frequency bands (theta, alpha,

beta) in the eight ROIs under MO (T1, T2), ME (T3, T4), and MI

tasks (T5, T6). The coherence of time–frequency features between

any two of the eight ROIs was calculated and averaged across

subjects

Table 1 The results of ANOVA with the factors Mode, Frequency, and Cortical pair

Source Assumed Degrees of Freedom Error Degrees of Freedom F p Partial g2

Mode 6 4 10.5 \ 0.001 0.54

Frequency 2 4 9.75 0.03 0.53

Cortical pair 27 4 2.22 0.01 0.33

Mode*frequency 12 4 5.72 0.01 0.42

Mode*cortical pair 162 4 5.08 0.02 0.41

Frequency*cortical pair 54 4 1.66 \ 0.001 0.32

Mode*frequency*cortical pair 323 4 1.57 \ 0.001 0.32
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The coherence of EEG-EEG

Under the same task, the interaction of frequency bands

and cortical pairs affects coherence. For the same cortical

pair, the coherence varies across frequency bands. The

coherence coefficient is most strongly correlated with the

beta frequency band, followed by the alpha frequency

band, and finally, the theta frequency band. Researches

have shown that alpha and beta frequency bands are

motion-related frequency bands (Chholak et al. 2019;

Jahangiri and Sepulveda 2019; Neuper and Pfurtscheller

2001; Pfurtscheller 1992). So, it is reasonable for the

Fig. 5 The averaged coherence of four frequency bands (lh, theta,

alpha, beta) in the four EMG channels under T1 (a), T2 (b), T3 (c), T4

(d), T5 (e), and T6 (f). The coherence of time–frequency features

between any two of the four EMG channels was calculated and

averaged across subjects. A larger coherence value between two

channels indicates a higher probability that both channels are

activated simultaneously under the same task

Table 2 The results of ANOVA with the factors Mode, Frequency, and Muscle pair

Source Assumed Degrees of Freedom Error Degrees of Freedom F p Partial g2

Mode 6 3 7.25 0.03 0.43

Frequency 3 3 8.22 \ 0.001 0.65

Muscle pair 5 3 7.33 \ 0.001 0.45

Mode*frequency 18 3 4.02 0.02 0.31

Mode*muscle pair 30 3 1.64 0.03 0.11

Frequency*muscle pair 15 3 4.64 \ 0.001 0.35

Mode*frequency*muscle pair 90 3 0.98 0.61 0.03
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higher degree of synchronous coupling of cortical pairs at

the alpha and beta bands than at theta band. Theta rhythm

has been associated with working memory load and

attention functions in cognitive-motor tasks (Gevins et al.

1997; Jensen and Tesche 2002). The intensity of the theta

band activities has been correlated with task difficulty

(Gevins et al. 1997). Our task (i.e., simple daily action)

difficulty level is low, requiring lower working memory

load and attention, resulting in a lower intensity of theta

band activities (Classen et al. 1998; Hummel and Gerloff

2005).

Our results show that the brain regions recruited by

right-fist-related tasks were similar among different sub-

jects, while those recruited by left-fist-related tasks were

quite different. Such difference may be caused by the

difference in proficiency between the dominant hand and

the non-dominant hand. Studies have found a strong cor-

relation between hand preference and asymmetries in

motor proficiency (Bishop 1989; Triggs et al. 2000). In our

study, as all our subjects are right-handed, we postulate that

their proficiency in right-hand-related tasks (T2/T4/T6)

may be higher than that in left-hand-related tasks (T1/T3/

T5), which may lead to the differences in the similarity of

brain regions recruited for the task among subjects. Studies

have shown that proficiency of actions dramatically influ-

ences the functional organization of task-related networks

during MO and ME (Amoruso et al. 2017; Weber and

Doppelmayr 2016). Under the action-related tasks with

high proficiency, the activated brain regions among dif-

ferent subjects were similar. However, there were signifi-

cant differences in the action-related tasks with low

proficiency in the activated brain regions among different

subjects. This may help explain why there were more

synchronously coupled brain regions in the average anal-

ysis under right-fist-related tasks than that under left-fist-

related tasks.

Our results also show that the numbers of brain regions

recruited by the left-fist and right-fist related tasks were

similar in MI. It has been reported that MI’s neural

mechanisms may differ from those of MO and ME

(Hardwick et al. 2018). Our results on this similarity of

results in the MI tasks may be because the brain regions

recruited by MI may not be affected by motion proficiency.

The coherence of EMG-EMG

From the results of EMG-EMG coherence, the synchronous

coupling degree between muscles was the highest at the lh

band. In this paper, the lh band was chosen at the frequency

band with task-related maximum energy density. The

components of muscle activity in healthy individuals are

more concentrated on the frequencies with maximum

activity energy (Politti et al. 2016), which may explain the

higher degree of synchronous coupling at the lh band than

at others for muscle activities. The components in the EMG

signal below 20 Hz contain noise and do not contain reli-

able information (De Luca et al. 2010). Studies have shown

that the components of EMG signals below 100 Hz can

reflect modulation of the motor neuron pool, which mod-

ifies the voluntary effort (Christou & Neto 2010; Neto et al.

2010). Moreover, most power in the interference EMG

signal occurs at higher frequencies (above 100 Hz)

(Christou and Neto 2010). The EMG signal components at

the lh band (30–100 Hz) can provide reliable information

related to motion. In the future, we will use other methods

(Andrade et al. 2006) to further validate the effectiveness

of our bands.

The coherence of EEG-EMG

The time–frequency coherence of EEG-EMG

Both the frequency band and the interaction of the fre-

quency bands and muscle pairs have an effect on the

coherence. The strongest cortico-muscular coherence is

found at the beta-lh band. Consistent with other studies,

frequency is an important factor affecting cortico-muscular

coherence (Liu et al. 2019). Studies on cortico-muscular

coherence suggested that cortical and electrical muscle

activity are co-frequent (i.e., beta, gamma bands) under

motor tasks (Gwin and Ferris 2012; Riddle and Baker

2005). However, our findings differ from those in that

cortico-muscular coherence is strongest at the different

frequency bands where their respective electrical activities

are most active. The electrical activity of cortices (beta)

and muscles (lh) may be at different frequencies under

motor tasks. The frequency of cortical activity was the

same as in the previous study, while the frequency of

electrical muscle activity was different from the previous

study (Gwin and Ferris 2012; Riddle and Baker 2005). As

discussed above regarding lh band selection, the higher and

lower ends of this band agree well with the results of the

current studies based on EMG signals (De Luca et al. 2010;

Christou and Neto 2010). In addition, the lh band is where

Table 3 The coherence coefficients of muscles at the lh band

Task Muscle pair Coherence

T1/T2/T3/T4/T5/T6 B1–B2 0.82/0.75/0.81/0.68/0.75/0.86

T1/T2/T3/T4/T5/T6 B1–B3 0.81/0.72/0.51/0.33/0.73/0.78

T1/T2/T3/T4/T5/T6 B1–B4 0.80/0.70/0.59/0.46/0.72/0.83

T1/T2/T3/T4/T5/T6 B2–B3 0.77/0.74/0.47/0.33/0.82/0.82

T1/T2/T3/T4/T5/T6 B2–B4 0.73/0.77/0.52/0.5/0.64/0.84

T1/T2/T3/T4/T5/T6 B3–B4 0.84/0.82/0.73/0.72/0.72/0.70
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the active energy is concentrated and is most relevant to the

components of muscle activity (Politti et al. 2016). These

may account for the highest degree of synchronous cou-

pling of muscle activity components at the lh band with

cortical activity components at the beta band.

As mentioned before, unlike previous studies (Dal Maso

et al. 2017; Nijhuis et al. 2021), we did not use scalp

potentials directly but projected scalp potentials to the

cerebral cortex by traceability technique (Michel and

Brunet 2019). We explored the spatial coherence between

cortex and muscle, requiring higher precision for the cor-

tex’s location. Therefore, we projected scalp potentials to

the cerebral cortex to obtain a more precise location, rather

than inferring the location of the cortex corresponding to

the electrode directly from the location of the electrode

where the scalp potential was recorded.

We then calculated the coherence between brain source

activity in the cerebral cortex and electrical activity on the

Fig. 6 The averaged coherence between EEG of 8 ROIs (R1, R2, R3,

R4, R5, R6, R7, R8) and EMG of 4 channels (B1, B2, B3, B4) under

T1 (a), T2 (b), T3 (c), T4 (d), T5 (e), and T6 (f). The coherence of

time–frequency features between each region of the eight ROIs and

each channel of the four EMG channels was calculated and averaged

across subjects. A larger coherence value between cortex and muscle

indicates a stronger functional connection between that cortex and

that muscle, and that pathway may exist between that cortex and

muscle for information exchange. Coherence coefficients less than 0.5

are not marked with numbers. * p\ 0.05
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muscle surface. The electrodes of EMG in this study were

placed on the forearm muscles (Hedt et al. 2020), different

from those in previous studies in which the electrodes were

put on the hand. These differences between our studies and

previous studies may help explain why our results are

different from theirs.

The spatial coherence of EEG-EMG

To the best of our knowledge, there is no research to

investigate the similarities and differences in time–fre-

quency and spatial coherence between cortex and muscle

under these three motor conditions (MO, ME, MI). We

analyzed the spatial characteristics under three movement

conditions based on the coherence between electrical

activities in the cortex and those on the muscle surface

using source imaging techniques. Then, we calculated the

source estimations of the M1, DLPEC, SMA, and PMC.

The M1, DLPEC, SMA, and PMC of the contralateral

and ipsilateral hemispheres are selectively involved in MO,

ME, and MI. Our results show that these cortices can be

responsible for the tasks of the contralateral and ipsilateral

fist tasks, and that the contralateral and ipsilateral cortices

are recruited for each unilateral hand task. These results

agree with results in literature that the SMA, M1, PMC,

and DLPFC cortex control contralateral and ipsilateral

hand movements (Nakayama et al. 2015) (Porro et al.

2000) (Gallivan et al. 2013).

Our results show that synchronous coupling between

cortex and muscle has a contralateral advantage under MO

and ME, which is in accordance with previous studies.

Studies have reported that the activation of the contralateral

motor areas can be observed when performing the promi-

nent-handed movement (Baker and Baker 2003; Tun et al.

2021). Clinical studies observed that the contralateral hand

of the damaged hemisphere show paralysis symptoms in

stroke patients (Farmer et al. 1993). It has been demon-

strated that ME and MO are functionally intertwined and

share common underlying neural networks (Montagna

et al. 2005; Mukamel et al. 2010). MO forms an interaction

between ME and visual perception, which provides a solid

foundation for imitation, action understanding, and motor

learning (Heiser et al. 2003; Stefan et al. 2005). MO usu-

ally induces selective regulation of corticospinal projec-

tions, which increases contralateral cortical motor evoked

potentials (Gueugneau et al. 2016). Also, it has been

proved that during ME of unilateral hand movement,

involuntary mirror movements may occur in the con-

tralateral resting homologous muscles. In order to prevent

mirror movements, the contralateral PMC of the active

hand will have an inhibitory effect on the ipsilateral PMC

(Morishita et al. 2012; Talelli et al. 2008). Our results

suggest that the PMC, SMA, M1, and DLPFC may also be

involved in inhibiting mirror movements. These reasons

may lead to the contralateral advantage of the coherence

between cortex and muscle in the MO and ME tasks related

to fists.

Our results suggest that the cortico-muscular syn-

chronous coupling has the ipsilateralization advantage

during MI. At present, there is no unified conclusion on the

function of the bilateral cortex during MI. During MI, the

event-related desynchronization (ERD), which reflects

motor cortical excitability, was observed in the contralat-

eral M1 and SMA (Takemi et al. 2015, 2013). These

studies did not directly explore the coherence between

cortex and muscle but explored the relationship between

cortex and muscle by analyzing the changes of ERD and

motor-related potentials under transcranial magnetic stim-

ulation (TMS). EEGs of most of these subjects were

recorded from a few channels over the contralateral SMA

due to the inconvenience of using TMS, thus, results from

these few EEG channels may not be able to show the whole

information in the brain during the experiments. Our results

showed that MI stimulated greater ipsilateral cortical

activation, such as PMC and SMA, which is in consonance

with previous fMRI studies (Porro et al. 2000; Ueno et al.

2010). The process of MI includes the generation, main-

tenance, and operation of motion-related images (Bello

et al. 2020). In these psychological processes, the

Table 4 The results of ANOVA with the factors Mode, Frequency, and Cortical muscle pair

Source Assumed Degrees of Freedom Error Degrees of Freedom F p Partial g2

Mode 6 3 9.7 0.001 0.69

Frequency 5 3 7.73 \ 0.001 0.55

Cortical muscle Pair 31 3 5.09 \ 0.001 0.45

Mode*frequency 30 3 3.43 0.03 0.33

Mode*cortical Muscle Pair 186 3 3.72 0.15 0.17

Frequency*cortical Muscle Pair 155 3 1.97 0.02 0.11

Mode*frequency*cortical Muscle Pair 930 3 1.65 0.38 0.08
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Fig. 7 The spatial coherence of EEG-EMG under MO (T1, T2), ME

(T3, T4), and MI tasks (T5, T6). The left and right views show the

cortical-muscle pairs with the highest coherence under each task at

the cortico-muscular alpha-lh band and the cortico-muscular beta-lh

band, respectively. The presence of lines connecting the cortex to the

muscle suggests that there may be pathways for information exchange

between the cortex and the muscle. Different line patterns were used

to differentiate connections from different brain regions to muscles
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activation of ipsilateral cortices may be related to move-

ment, cognition, and perception.

Our findings suggest that PMC, DLPEC, SMA, and M1

of bilateral hemispheres are the specific regions of MO,

ME, and MI. Bilateral cortices are involved in the three

motor conditions, but their pathways of regulating muscles

are different. Under MO and ME, the synchronous cou-

pling between muscle and cortex presents a contralateral

advantage, but under the condition of MI, the synchronous

coupling between muscle and cortex presents an ipsilateral

advantage.

There are some limitations to this study. First, this study

created areas according to the brain atlas commonly used in

literature. However, the size of areas is not small enough,

so the positioning resolution of brain regions responsible

for regulating muscles may be limited. Future studies may

divide brain regions into smaller areas to improve the

spatial resolution of coherence between EEG and EMG.

Secondly, the number of EMG electrodes is small, cover-

ing a few muscle groups. This may result in some task-

related muscles not being found. In the future, we will use

tiny EMG electrode arrays to cover more muscles. Third,

all our subjects were right-handed, thus our results yielded

from these experiments may not representative for the left-

handed population. Whether these results are similar to the

left-hand population is not known yet due to unavailability.

More studies will be needed in the future.

Conclusion

In this study, we analyzed and compared the cortico-

muscular coherence of time–frequency and spatial char-

acteristics among MO, ME, and MI. For time–frequency

characteristics, the cortico-muscular coherence was stron-

gest at the beta-lh band. MO and ME had a contralateral

advantage while MI had an ipsilateral advantage for spatial

characteristics. Our results suggest that the cortico-mus-

cular beta-lh band is critical for the synchronous coupling

of cortex and muscle. Furthermore, our findings show that

M1, DLPFC, SMA and PMC are involved in MO, ME and

MI, but these cortices regulate muscles in different path-

ways under different motor conditions. These findings

provide novel insights into the mechanisms of motor

function rehabilitation and stroke treatment.
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