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Abstract
The present study tests the hypothesis that emotions of fear and anger are associated with distinct psychophysiological and

neural circuitry according to discrete emotion model due to contrasting neurotransmitter activities, despite being included

in the same affective group in many studies due to similar arousal-valance scores of them in emotion models. EEG data is

downloaded from OpenNeuro platform with access number of ds002721. Brain connectivity estimations are obtained by

using both functional and effective connectivity estimators in analysis of short (2 sec) and long (6 sec) EEG segments

across the cortex. In tests, discrete emotions and resting-states are identified by frequency band specific brain network

measures and then contrasting emotional states are deep classified with 5-fold cross-validated Long Short Term Memory

Networks. Logistic regression modeling has also been examined to provide robust performance criteria. Commonly, the

best results are obtained by using Partial Directed Coherence in Gamma (31:5� 60:5 Hz) sub-bands of short EEG

segments. In particular, Fear and Anger have been classified with accuracy of 91.79%. Thus, our hypothesis is supported by

overall results. In conclusion, Anger is found to be characterized by increased transitivity and decreased local efficiency in

addition to lower modularity in Gamma-band in comparison to fear. Local efficiency refers functional brain segregation

originated from the ability of the brain to exchange information locally. Transitivity refer the overall probability for the

brain having adjacent neural populations interconnected, thus revealing the existence of tightly connected cortical regions.

Modularity quantifies how well the brain can be partitioned into functional cortical regions. In conclusion, PDC is proposed

to graph theoretical analysis of short EEG epochs in presenting robust emotional indicators sensitive to perception of

affective sounds.

Keywords Brain connectivity � EEG � Graph theory � Music perception � Emotion recognition

Introduction

Emotion recognition is common research topic in multi-

disciplinary fields from education to medicine. However,

many studies analyse emotional EEG data mediated by

large variety of stimulus where emotional states are rep-

resented by different manners. Emotional state is a

complex phenomena assumed as a collection of biological,

social, and cognitive components due to its modulation

effects on both physiological and behavioural activities. In

brain-computer-interface applications and cognitive neu-

roscience research, two separate models have been con-

sidered in defining the emotional state: Circumplex model

confirms that emotions can be represented by two affective

dimensions; the valence ranged from unpleasant to pleasant

and the arousal ranged from calm to excited. The emotional

states are categorized with largeness of two dimensions,

arousal and valance (high/low in arousal/valance). Discrete

emotion model confirms that emotions comprise limited

discrete states into basic and mixed emotions (Barrett

2007). Regarding discrete emotion model, the basic emo-

tions are anger, fear, sadness, happiness, disgust and sur-

prise (Panksepp 2010; Barrett 2011; Ekman 2011). These
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two emotion models are also combined in several studies

(Hamann 2012; Hu 2017; Liu 2017).

Musical sounds have been frequently used to investigate

neural correlates of aesthetic emotions defined as subjec-

tively perceived aesthetic liking or disliking (Koelsch

2006; Koelsch et al. 2008; Koelsch 2018). Although,

unpleasant and pleasant music stimuli have been intended

to induce negative and positive emotions, several discrete

emotions such as disgust and amusement are difficult to

induce by musical sounds (Koelsch 2006). Therefore, four

discrete emotions that can strongly be evoked by well-

scored music clips have been included in the present study.

In particular, it is hard to obtain reliable indicators that

differ fear and anger due to their similar dimensional scores

in emotion models (Fontaine 2007; Zhao 2018). In these

manners, novelty of the present study is to provide graph

theoretical encoder of music induced emotions for suc-

cessful classification of fear and anger.

In recent years, music is an important strategy in both

modulating and regulating emotions (Hereld 2019; Hilsdorf

and Bullerjahn 2021; Henry et al. 2021). The present study

aims to provide quantitative indicators as a bridge between

theoretical developments in emotion science and musical

perception. Music perception begins with receiving

acoustic information translated into neural activity in the

cochlea, and progressively transformed in the auditory

brainstem. Depending on musical parameters such as

rhythmicty/periodicity, consonance and sound intensity,

the inferior colliculi can initiate fight or flight response due

to projection of music into reticular formation by dorsal

cochlear nucleus (Sinex and Guzik 2003). Since the audi-

tory pathway includes both bottom-up and top-down pro-

jections, neural impulses are also possibly projected by

thalamus into both amygdala and medial orbitofrontal

cortex (LeDoux 2000). Therefore, musical perception has

been correlated with its emotional valance that can be

defined as an opposition between negative (sad) and posi-

tive (happy) emotions (Juslin and Vastfjall 2008). In

affective neuroscience, emotional valence has been con-

sidered as a score between unpleasant (0) and pleasant (9)

states in 2-dimensional emotion models. Several past

studies also show that musical perception is sensitive to

both interaural disparities and the duration of perceiving

music (Bigand 2005; Bueno and Ramos 2007; Droit-Volet

2010). In particular, music sounds scored by high valance

(extremely pleasant) were found to stimulate the reward

circuit of the brain (Blood 1999).

Mostly, neuroimaging modalities have been examined

to understand neural mechanism of music induced emo-

tions. Specific music rhythms associated with discrete

emotions have not yet been investigated through EEG

based brain network connectivity measures. Several studies

showed the capability of music of eliciting both positive

(pleasantness) (Juslin and Vastfjall 2008; Juslin and Slo-

boda 2010) and negative (unpleasantness) subjective rat-

ings (Koelsch 2006), however, neural mechanism of music

induced emotions have not been correlated with global

brain network measures yet. Therefore, the motivation of

the present study is to investigate the impact of short

duration musical sounds on fast neural interactions across

the cortex by using both statistical and spectral connec-

tivity estimators in combination with functional network

assumption of the brain.

In past studies, musical stimuli characterized by the

higher (positive) valance scores were found to elicit the

higher activity at left frontal regions, while the other

musical stimuli characterized by the lower (negative)

valence scores were found to elicit the higher activity at

right frontal regions (Schmidt and Trainor 2001; Alten-

müller and Schürmann 2002; Flores-Gutirréez and Dı́az

2007b). In particular studies, physiological effect of music

has been correlated with hemispheric asymmetry between

right (FC4) and left (FC3) fronto-central locations (Jackson

2003; Dennis and Solomon 2010). In more recent study,

frontal asymmetry (FC3/FC4) has been found to be cor-

related with pleasurable music (Arjmand 2017).

The motivation of the study is to show the graph theo-

retical differences between anger and fear that trigger

‘‘fight or flight’’ response. The methods and group com-

parison scheme have been configured in accordance with a

bridge between neurobiology, i.e. origin of EEG series and

emotional states derived from the widely projected leading

neuromodulators, such as dopamine, serotonin, and nore-

pinephrine. In comparison to anger, different additional

hormones and neuromodulators are released in fear. In

other words, superimposed post-synaptic potentials

embedded in EEG segments can be either excitatory or

inhibitory depending on neurotransmitter release during

emotional perception. Accordingly, The novelty of the

present study is to provide new findings reveal the fol-

lowings: (1) Large-scale neuronal communication mecha-

nism is mostly managed by arousal scores of discrete

emotions indicated by brain network connectivity mea-

sures, (2) Fear is characterized by high modularity of the

brain, (3) Neural connections become dense within cortices

and sparse between these regions in fear represented by

discrete emotion model rather than circumplex model as

shown in Figure 1 where the quantitative scores (arousal

and valance) are determined through Self-Assesment-

Manikin (0 refers no activation, i.e. calmness, and

unpleasant state, 9 refers high activation, i.e. highly excited

and pleasant state). In literature, Fear and Anger are mostly

assumed as the identical states placed on the same quarter

defined by high arousal and low valance (Tao 2020; Cheng

2021), although they are clearly different emotions (Barrett

2012; Lindquist 2012). In the present study, four basic
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emotions (fear, anger, happiness, sadness) and baseline

(stimulus-free resting-state) have been indicated by both

functional and effective connectivity measures based on

statistical cross-correlations and multi-varied causality

correlations, respectively. In detail, Pearson Correlation

(PC) and Spearman Correlation (SC) have been examined

for estimation of functional connectivity levels, while

Directed Transfer Function (DTF) and Partial Directed

Coherence (PDC) have been used to compute effective

connectivity levels across the cortex in response to affec-

tive sounds, i.e. music clips. Connectivity levels have been

transferred to binary adjacency indices for estimation of

graph theoretical network measures by using Brain Con-

nectivity Toolbox as shown in Figure 2. Then, the con-

trasting groups (fear vs anger, happiness vs sadness) are

compared to each other with respect to both single network

index and combination of multiple network indices

according to one-way Anova tests and Long-Short Term

Memory Networks (LSTMNs). The effect of window size

has also been considered in obtaining classification

performance.

Both PDC and DTF provides causal inter-actions called

as Granger causality between neuronal populations mod-

eled by multi-variate Auto-regressive model (Gaxiola

2018). Therefore, DTF has been frequently examined in

EEG analysis to investigate the neural mechanism under-

lying cognitive skills influenced by emotion regulation

strategies (Ferdek 2016; Ligeza 2017). EEG signals can be

considered as brain’s immediate responses to affective

stimuli in real time (Bekkedal 2011). Depending on stim-

ulus parameters, discrete emotions such as happiness, joy,

anger, disgust, fear/anxiety and sadness were reportedly

characterized by particular amplitude-frequency charac-

teristics of evoked EEG series (Aftanas 2006). The other

emotional features have been reported as frontal asymme-

try and midline power for discrimination of two emotions

marked in the same quarter of valence-arousal space (Liu

2017). Apart from these papers, Graph Theory (GT) based

global connectivity approaches assume that the human

brain can be modelled by a dynamic complex network

comprising billions of interconnected neurons. GT based

EEG analysis has been used to detect particular neuro-

psychiatric diseases such as schizophrenia (Lynall 2010),

stroke recovery (Grefkes 2011), and Alzheimer’s disease

(Tijms 2013). In this sense, intrinsic functional connec-

tomes can be computationally estimated from EEG mea-

surements based on GT to understand the neural

transmission mechanism in the brain. To maintain the

relevance of cognitive theory in behaviour, there must be

an optimum balance between integration and segregation

Fig. 1 Both discrete emotion model (emotions are discrete states) and

circumplex model (the states are mapped into quarters of arousal-

valance space)

Fig. 2 Graphical abstract of the

study: This procedure has been

performed for both longer

(6 sec) and shorter (2 sec) EEG
segmentation
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of information flow in a well-established complex graph,

i.e. the healthy brain (Bullmore 2009). In modelling the

brain based on graph theory, EEG recordings or neuro-

imaging modalities can be analysed to compute either

functional or effective connectivity across the cortex. In

advanced EEG analysis, recording electrode placements

are considered as the nodes, while functional links between

the nodes are assigned as the edges of a spatially embedded

complex graph. In this sense, functional connectivity pro-

vides temporal correlations among the nodes, while

effective connectivity provides to causal interactions across

the graph in terms of quantitative dependencies for each

pair of the nodes.

In emotion recognition research, both dimensional and

discrete theories of emotions have been used in mostly

neuroimaging studies (Phan 2002; Murphy 2003; Vytal

2010). In line with them, the motivation of the present

study is to determine the extent to which basic emotions

(fear, anger, happiness, sadness) are associated with dis-

tinguishable global brain connectivity measures based on

GT driven by surface EEG recordings instead of fMRI or

PET slices. Regarding brain images, basic emotions are

found to be characterized by consistent and distinct neural

correlates providing discrimination of an emotional state

from the other in pairwise contrasts where the differences

are provided by statistical permutation tests (Murphy 2003;

Vytal 2010). So, statistical Anova tests have been used to

measure the differences between discrete emotions induced

by acoustic sounds in terms of functional brain connec-

tivity metrics assuming the brain can be modeled by a

complex network based on Graph Theory in the present

study. Besides, network based deep learning models have

also been used to classify emotional states in order to

promise for revealing how the brain functions can be rep-

resented by discrete emotion model. In particular, our main

motivation is to show the clear difference between anger

and fear with respect to specified brain connectivity mea-

sures and frequency band interval of surface EEG record-

ings. Therefore, four basic emotions and resting-state are

identified by large number of quantitative features in terms

of frequency band specific global network indices (Clus-

tering Coefficients, Local Efficiency, Global Efficiency,

Modularity, Transitivity, Assortativity) estimated by using

four different methods; PC, SC, PDC and DTF in accor-

dance with two different thresholds (the mean value and

60% of max. value in dependency matrix) into shorter

(2 sec) and longer (6 sec) EEG segments. Two-states (an

emotional state vs another emotional state, an emotional

state vs baseline, i.e. resting-state) are classified with

LSTMN in Matlab2020Rb. Brief description of the meth-

ods and data are given in following sections. The results

are discussed from both methodological and neuroscience

points of view in last section.

Method

In order to obtain brain network measures, four different

cortical dependency approaches were used. The perfor-

mances of them were compared to each other to observe

differences between two-states and to investigate sensitiv-

ity of the network measures to musical perception

depending on stimulus parameters. The algorithmic prin-

ciple of the study is summarized in Figure 2. Regarding

this graphical abstract of the method, elements of con-

nectivity matrix, C19x19 are estimated by using four metrics

as Pearson Correlations, Spearman Correlations, PDC and

DTF. The basic and common principle in obtaining the

elements in the connectivity matrix is to compute cross-

correlations and cross-coherence between electrode pairs

by using statistical and Granger causality based connec-

tivity estimators, respectively. Since the resulting estima-

tions are independent the order of electrode pairs, the

resulting connectivity matrix will be a symmetric matrix

with an identical elements in both lower and upper trian-

gles. Well defined threshold is applied to each individual

connectivity matrix originated from short segments in

between electrode pairs of interest. Then, connectivity

matrix is transformed into binary adjacency matrix with

respect to well defined threshold in order to compute global

connectivity measures from the resulting binary version of

connectivity matrix. The identical procedure has been

implemented for each electrode pair in terms of short

segments. In summary, global connectivity measures have

been computed six times in accordance with a trial of

12 sec when segmentation length is 2 sec ð12 ¼ 6x2Þ for
each individual.

EEG data with accession number of ds002721 was

downloaded from a free and open platform (open-

neuro.org). Data acquisition principles and the parameters

of acoustic stimuli as well as participants’ demographic

info are introduced in references Daly (2014, 2015). The

individuals are healthy adults each listened to acoustic

sounds selected from an auditory stimulus dataset intro-

duced in reference Eerola (2010). The number of acoustic

stimuli was 40. Each one was presented to the participants

for 12 sec. During presentation of acoustic stimuli, the

participants were instructed to look at the computer screen

and listen to the music without body movements.

Regarding each presentation, the participants scored the

stimulus along 8 axes with 5-point Likert scale in dataset

owners (Daly 2014, 2015). However, affective scores of

the music clips were considered as emotional scores of the

stimuli in the present study, since each acoustic stimulus

was correlated with an emotional state in accordance with

arousal-valance dimensions graded by 116 participants as

clearly presented in reference Eerola (2010). In particular,
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both moderate and high scores of stimuli were commonly

correlated with emotion of interest. Then, artifact-free EEG

recordings in response to short music clips were catego-

rized into four emotional states as Fear, Anger, Happiness

and Sadness. In addition, stimulus-free resting-state EEG

recordings were also analyzed where the number of trials

was identical to that of emotional recordings as listed in

Table 6 as appendix. The age range was between 18-63

years in participants (median=35) in dataset where 21st

subject was not included due to age above 65. In deciding

exclusion of the age is equal and higher than 65, we have

followed the international well-known principles published

by American Psychological Association (APA) in defining

age-groups such as 15–47 years old (young group), 48–63

years old (middle age group) and � 64 years old (elderly

group) (American Psychological Association 2001).

Emotional stimuli

EEG data and emotional stimuli were introduced in refer-

ence Daly (2020). Emotional stimuli were chosen from

music excerpts and computer-generated music clips. The

corresponding short music clips of 12 s presented to the

listeners during EEG recording were chosen among 110

films rated by 116 non-musicians as described in reference

Eerola (2010). The film clips used as emotional stimuli in

the present study are available on Open Neuro archive on

https://doi.org/10.18112/openneuro.ds002721.v1.0.1.

The film clips were labeled by specified emotional states

in accordance with the self-ratings of the listeners in Eerola

(2010), however, the new participants were also asked to

rate their emotions with respect to randomly-ordered Likert

questions that refer pleasantness, energy, sadness, anger,

tenderness, happiness, fear, and tension in Daly

(2014, 2015).

EEG data acquisition and preprocessing

Brain Products BrainAmp EEG amplifier (Brain Products,

Germany) was used to collect surface EEG series with 19

recording electrodes placed on scalp surface in accordance

with the international 10/20 electrode placement system

(Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,

Pz, P4, T6, O1, O2) (Daly 2014, 2015). The sampling

frequency was 1000 Hz. Raw data was analyzed into trials

of 12 sec. Each trial was divided into non-overlapped short

segments of 6 sec and 2 sec in order. In analysis, each

segment was firstly filtered by well arranged Finite Impulse

Response (FIR) filters in order to extract specified EEG

frequency components as follow: full-band:0:5� 60:5 Hz,

delta:0:5� 4 Hz, theta:4:5� 8 Hz, alpha:8:5� 12:5 Hz,

beta:13� 31 Hz, gamma:31:5� 60:5 Hz.

Regarding our hypothesis, we analysed EEG series

mediated by musical sounds. In literature, music process-

ing is assumed to be lateralized at mostly right hemisphere

owing to requirement of high cognitive musical functions

such as musical attention, and the tracking of harmonic

structure in time. In particular, it has been demonstrated

that listening pleasure music causes to produce certain

neurotransmitters in amygdala. The recent studies present

common results matched to the past findings in full-band

EEG frequency intervals in response to musical sound

(Levitin 2012). Apart from full-band frequency interval in

EEG recordings, EEG frequency sub-bands have also been

mentioned as EEG rhythms that increase or decrease

depending on both psycho-physiological and mental states

such as awake, sleep, coconsciousness, emotional arousal,

etc. Although slow rhythms (delta and theta) are mostly

observed in deep sleep and cerebral damage, these slow

rhythms align to the regularities of speech. The tracking of

naturalistic sounds has been associated with how acoustic

sounds are encoded in terms of neuro-electrical dynamics

in the brain (Bröhl and Kayser 2021). Besides, both alpha

and high beta as well as gamma sub-bands have been found

to be sensitive to emotional brain functions induced by

short music clips (Bo 2019). Therefore, GT based brain

network measures have been estimated in five distinct EEG

sub-bands in addition to full-band EEG frequency intervals

in the present study.

Pearson and spearman correlations

Pearson Correlation (PC) is a linear method that measures

the correlation between two nodes, i.e. two EEG electrodes

in form,

rXY ¼ EðXYÞ � EðXÞEðYÞ
rXrY

ð1Þ

where E(.) is the expected value operator and rX and rY are

the standard deviation values (Wang 2018). The series that

will be analyzed contains N data samples, and accordingly

the coefficient was computed as such,

rXY ¼ 1

N � 1

XN

i¼1

xi � �x

rX

� �
yi � �y

rY

� �
ð2Þ

Spearman Correlation (SC) is a linear method of estimation

that demonstrates

q ¼
P

i Rx;iRy;i � Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

iðRx;iÞ2 � C
h i P

iðSy;iÞ
2 � C

h in or
ð3Þ

where Rx and Ry refer to rank variables of x and y,

respectively (Sprent 1988). Since the present study is

motivated to un-directed and weighted network assumption
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in global connectivity analysis, absolute values of both PC

and SC are examined in tests.

Directed transfer function and partial directed
coherence

In the present study, both Direct Transfer Function (DTF)

and Partial Directed Coherence (PDC) were examined by

using an open source Electrophysiological Connectome (e-

Connectome-2-full) software toolbox described in refer-

ence (He 2011). Time series are represented by Multi-

Variate Adaptive Autoregressive Model (MVAAM) intro-

duced in reference Schllögl (2002) for implementation of

e-connectome toolbox that is supported by two additional

toolboxes such as the Regularization Tools introduced in

Hansen (2007) and ARfit software package introduced in

references Neumaier (2001); Schneider (2001). In appli-

cations, MVAAM coefficients of EEG segments denoted

by s) were estimated through a stepwise least squares

estimation algorithm where the model order (p) is opti-

mized by using Schwarz’s Bayesian Criterion according to

ARfit software package where the maximum order was set

to 6 in form,

sðnÞ ¼
Xp

j¼1

AðjÞsðn� jÞ þ wðnÞ ð4Þ

where w refers a white noise with zero mean. Regarding

Figure 2, EEG segments have been modeled by MVAAM

coefficients symbolized by A for each participants in every

EEG segment where the number of samples is equal to

sampling frequency (Hz) times the length of segments

(sec). In order to estimate interactions between EEG

recording sites across the cortex, a set of EEG segments

simultaneously measured is described in form,

S ¼ s1ðnÞ s2ðnÞ � � � sNðnÞ½ � ð5Þ

in accordance with N-channel EEG recordings (N ¼ 19)

characterized by MVAAM coefficients (Schllögl 2002).

Then, we can consider a matrix, A including model coef-

ficients of EEG segments simultaneously measured from

scalp surface as follow,

Ai;jðkÞ ¼1�
Xp

r¼1

aijðrÞ exp�j2pkr if i ¼ j ð6Þ

Ai;jðkÞ ¼ �
Xp

r¼1

aijðrÞ exp�j2pkr otherwise ð7Þ

In fact, A presents the linear relationship between record-

ing channels, i.e. short time series si and sj. In other words,

A includes the lagged effect of the model coefficients

belonging to jth recording channel on the ith recording

channel. The corresponding model coefficients can be

transformed in frequency domain to obtain a time-varying

transfer matrix denoted by c in form,

cijðkÞ ¼
HijðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hHi ðkÞhjðkÞ

q ð8Þ

where hj denote the entries of HðkÞ given by,

HðkÞ ¼ A�1ðkÞ ð9Þ

where HðkÞ denotes the inverse of the frequency domain

transformed model coefficients, H denotes the Hermitian

transpose. Actually, cross-spectral density matrix of S can

be represented by,

Sðf Þ ¼ HRHHÞ ð10Þ

where R is a covariance matrix including entries of rij; i ¼
1; :::; 19; j ¼ 1; :::; 19 where rij ¼ 0 for i 6¼ j. Then, gen-

eralized directed coherence is defined in form,

cijðf Þ ¼
rjjHijðf Þffiffiffiffiffiffiffiffiffi

Siiðf
p

Þ
ð11Þ

in accordance with fundamental knowledge in literature ?.

Regarding particular frequency of f in directed coherence,

jcijðf Þ2j refers the fraction of power contribution between

short EEG segments recorded from two locations, i and j

(Baccala 2001). Due to restriction about entries in matrix

R, DTF is defined by,

DTFijðf Þ ¼
Hijðf ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 jHijðf Þj2

q ð12Þ

The resulting effective connectivity means causal influence

of any EEG recording channel on another in specified

frequency range (Blinowska 2006). The PDC has been

defined as Fourier Transform of MVAAM coefficients

(Baccala 2001). Thus, frequency domain connectivity

matrix, describing both strength and direction of informa-

tion flow between EEG segments simultaneously measured

from scalp surface, is estimated in form,

PDCðf Þ ¼ Aijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajðf Þa�j ðf Þ

q ð13Þ

where � denotes the transpose and complex conjugate

operation. PDC takes values between 0 and 1 due to nor-

malization. PDC shows only direct flows between neural

populations, since it’s normalization shows a ratio between

the outflow from one electrode placement as source (j) to

the other as sink (i). Thus, PDC emphasizes rather the

sinks, not the sources unlike DTF.
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Graph theoretical brain network indices

For all emotional states, including the resting states that

were taken from the first trial of each run for each

participant, six brain network indices were calculated in

total. Later in the study, One-Way ANOVA and deep

leanring analyses were conducted for all of these indices,

in order to demonstrate which analysis method, fre-

quency band, and brain connectivity index was better at

differentiating the different emotional states, based on the

EEG data that was collected. The averaged clustering

coefficients (CC) is a connectivity index that is associ-

ated with the number of edges connected to a specific

node, which can in turn indicate the importance of that

specific node (Wang 2018)). It is representative of local

structure and is estimated to be a measure of resilience

to random error (Stam 2007). The clustering coefficients

denoted by Ci of a vertex i with degree ki is usually

defined as the ratio of the number of existing edges ei
between neighbours of i, and the maximum possible

number of edges between neighbours if i, in which a

vertex is called a neighbour of i when it is connected to

it by an edge. Both CC and local efficiency (LE) are

network segregation measures. Global efficiency (GE)

can measure the global transmission ability of networks

(Tian 2019). It is classified as an index that is related to

the integration of the brain connectivity network.

Modularity is a complex network index correlated with

how well a network can be partitioned into communities

(or clusters) (Supriya 2016). Transitivity (T) is a brain

connectivity measure that is constructed according to the

number of triangles in the network. It is calculated as the

fraction of the node’s neighbors that are also neighbors

of each other (Miraglia 2018). The assortativity provides

the correlation between the degrees of all electrodes on

two opposite ends of a link. Several binarization methods

have been applied to functional connectivity matrices to

remove the weak or spurious connections in graph the-

oretical network. In former studies, several thresholding

approaches have been proposed for comparison of the

groups represented by graphs with the identical number

of connections per node (Sporns 2004; Stam 2007).

Besides, both pre-defined absolute thresholds and the

maintenance of a specific ratio of the max value have

also been used in applications (Stam 2007; Rubinov

2009). In some latter studies, the significant connections

are chosen by using binarization approaches such as

Cluster Span Threshold (Smith 2015), Minimum Span-

ning Tree (Rai 2015) and Efficiency Cost Optimization

threshold (Fallani 2017). Another binarization method is

to built a range of threshold by criteria assuring a graph

having shorter characteristic path length and a larger

average CC compared to random network with the same

degree distribution (Yin 2017). The choice of threshold

directly effects the range of network measures that rep-

resent different graphs, where the existing connections

are transformed into binary numbers (van Wijk 2010).

Due to unstable and incompatible results originated from

coupling methods and binarization approaches in com-

paring healthy individuals with the patients with major

depression disorder based on graph theoretical EEG

analysis (Sun and Li 2019b), the proportional thresh-

olding has been applied to connectivity estimations with

respect to the mean value and 60% of the max value in

them as proposed by the contributors of BCT in refer-

ences Stam (2007); Rubinov (2009). Regarding BCT

introduced by Rubinov and Sporns (2010), the Matlab

function, ‘thresholdproportional:m’ was examined in

order to transform connectivity estimations into binary

numbers. Once obtaining binary adjacency matrix, scalar

network measures are computed by using BCT in Mat-

labR2021b. Among these measures, mathematical

expressions of LE and CC are given by,

LE ¼ 1

N

XN

i¼1

GE Gið Þ ð14Þ

CC ¼ 1

N

XN

i¼1

2ti
kiki�1

dmi;mj ð15Þ

Here, Gi refers the subgraph formed by small number of

connected nodes where i refers the node and ti refers the

number of triangles around the node. ki is used to indicate

the network degree meaning of the number of links con-

nected to a node, i. When two nodes (i and j) are neighbors,

the corresponding connection status will be assigned as

aij ¼ 1 meaning existence of a link between i and j. Con-

versely, lack of link is presented with aij ¼ 0. Therefore,

the number of triangles around a node (i) is defined as

follows,

ti ¼
1

2

XN

j;h¼1

aijaihajh
� �

ð16Þ

Regarding functional modules of brain network in terms of

cortical regions, the strength of their division is quantified

by modularity index (Q) in from,

Q ¼ 1

l

XN

;ji¼1

Aij �
kikj
l

� �
ð17Þ

Here, l ¼
PN

i;j¼1 Aij is the number of edges, mi refers the

module where dmi;mj ¼ 1 if mi ¼ mj and dmi;mj ¼ 0 other-

wise. Then, assortativity (r) is defined by,
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r ¼
l�1

P
i;j kikj � l�1

P
i;j

1
2
ki þ kj
� �h i2

l�1
P

i;j
1
2

k2i þ k2j

� �
� l�1

P
i;j

1
2
ki þ kj
� �h i2 ð18Þ

The weighted path transitivity provides the density of local

triangles along the shortest-paths between all pairs of EEG

electrodes in form,

T ¼
P

i2N 2twiP
i2N ki ki � 1ð Þ ð19Þ

where twi denotes the weighted geometric mean of triangles

around node i (Rubinov and Sporns 2010).

Statistical tests and deep learning classification
of brain network measures

In applications, frequency band specific graph theoretic

indices (CC, GE, LE, Q, r, T) were defined as the emotional

features. In estimating an index, shorter (2 sec) and longer

(6 sec) EEG segments were analyzed by using functional

and effective connectivity approaches and then, the

resulting connectivity matrices were transformed into bin-

ary adjacency matrices with respect to specified thresholds

(1st: %60 of the max value, 2nd: the mean value) that were

used in EEG research, finally Brain Connectivity Toolbox

(BCT) functions were applied to binary connectivity esti-

mations as graphically summarized in Figure 2. Statistical

one-way Anova tests and Long-Short-Term Memory Net-

works (LSTMNs) were used to compare two-states listed as

follow: F-A: fear vs anger, R-F: resting-state vs fear, R-A:

resting-state vs anger, H-S: happiness vs sadness, R-H:

resting-state vs happiness, R-S: resting-state vs sadness.

Then, computational and algorithmic steps of the study

are as follow: (1) EEG series were analyzed into larger

segments of 6 sec in order to compare the performances of

four functional dependency approaches (PC, SC, PDC,

DTF) for estimation of graph theoretic brain network

indices in full-band intervals with respect to 1st and 2nd

thresholds. Both PC and PDC provided the meaningful

(p\0:05) and significant (p\\0:05) statistical differ-

ences between groups in accordance with the 1st threshold.

The statistical p-values were listed in Table 1. (2)

Regarding larger segments of 6 sec, the performances of

PC and PDC were applied to five frequency band intervals

(delta, theta, alpha, beta, gamma) in discriminating the

groups from each other by means of graph theoretic brain

network indices with respect to 1st threshold. The corre-

sponding p-values were listed in Table 2. (3) EEG series

were analyzed into shorter segments of 2 sec in order to

compare the performances of PC and PDC, for estimation

of graph theoretic brain network indices (CC, GE, LE, Q, r,

T) in full-band intervals with respect to 1st and 2nd

thresholds. PDC provided significant (p\\0:05) statisti-

cal differences between more emotional groups with

respect to more network indices in comparison to the

results obtained for larger segments. In particular, rela-

tively better results were observed when the 1st threshold

was considered in estimations. The corresponding p-values

were listed in Table 3. (4) The former (3rd) step was per-

formed into frequency band intervals in accordance with

the 1st threshold. The corresponding p-values were listed in

Table 4. (5) The groups were classified by using well

structured deep learning model, LSTMN with respect to

graph feature sets estimated by using PC and PDC into

shorter segments of 2 sec in accordance with the 1st

threshold. The corresponding classification accuracy

results were listed in Table 5. (6) Statistical box-plots of

six network indices, estimated by using PC and PDC with

the 1st threshold into five distinct frequency band intervals,

were all shown in figures.

In deep learning classifications, frequency band specific

emotional network measures were labeled by discrete

emotional states regardless the subjects for subject-inde-

pendent classification. In other words, the instants were

classified rather than the subjects with respect to discrete

emotional states where the groups, i.e. discrete emotions

were classified with respect to different feature sets from

FS-2 to FS-7 including six network indices estimated from

EEG full-bands and specified band intervals of Delta,

Theta, Alpha, Beta and Gamma, respectively where the 1st

threshold was applied to connectivity estimations across

shorter EEG segments of 2 sec. In particular, these sets

were all combined in the largest feature set, FS-1. The

dimension of the features was commonly 6 due to number

of measures (CC, GE, LE, Q, r, T) in feature sets. The

number of features varied in emotional states due to dif-

ferent number of artifact-free trials of 12 sec in experi-

ments as listed in Table 6. In detail, total number of trials

were 50, 34, 25, 55 and 60 in anger, fear, happiness, sad-

ness and res-ting-states. So, the number of features was

equal to the number of trials in frequency-band specific sets

from FS-2 to FS-7, while summation of them is valid in FS-

1 in accordance with the longer segments. In case of

shorter segments, the number features were increased to six

times of them.

In defining LSTM network architecture, MATLAB

functions provided for sequence classification were

implemented. The input size of sequences (feature arrays)

was assigned as the number of frequency specific (full-

band, Delta, Theta, Alpha, Beta and Gamma) network

indices. A bidirectional LSTM layer was specified with 30

hidden units. Finally, two classes were specified by a fully

connected layer of size 2, followed by a softmax layer and

a classification layer as explained in reference Kudo

(1999). In MATLAB, the core components of an LSTM
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network are a sequence input layer and an LSTM layer that

can learn long-term dependencies between instants sorted

in the feature array.

The groups were classified in two-class classification

manner by using LSTMNs driven by subject-independent

instants. 5-fold cross-validation was used to obtain aver-

aged classification performance results. In detail, the

instants, i.e. the features were divided into 5 equal sized

sub-sets (n/5) and then one sub-set was tested according to

training of the remaining features (4n/5) where the total

number of the features is denoted by n in every classifi-

cation step. LSTMNs were implemented by using Deep

Learning Toolbox in Matlab2019Ra. Adaptive Moment

Estimation Method (Adam) and categorical cross entropy

loss function were implemented to optimize the parameters

as follow: the learning rate drop period =14, gradient

threshold =0.5, the hidden layer size =30, the dimension of

features =6, verbose =1.0, the learning rate schedule was

’piecewise’.

Results

The main motivation of the present study is to provide

reliable connectivity measures in detecting fear and anger

despite their placement in the same arousal-valance quarter

in circumplex emotion model. Thus, statistical differences

between emotional states were computed with respect to all

possible parameters such as network index, EEG frequency

band interval, hemispheric correlation/dependency method,

binarization threshold. The corresponding statistical test

results were summarized in Table 1, in accordance with

connectivity approaches, segmentation and two different

thresholds considered in binarization. In tables, � denotes

p\\0:05.

Both PC and PDC provided more useful statistical

findings referred by meaningful differences ðp� 0:05Þ in

three comparisons as F � A, R� F, R� A in accordance

with the 1st threshold where full-band frequency intervals

of longer EEG segments were analysed. In particular, the

Table 1 One-way Anova test

results with respect to full-band

specific network measures

according to methods and

thresholds in longer segments

(6 sec) (* refers p � 0:05)

F-A R-F R-A H-S R-H R-S F-A R-F R-A H-S R-H R-S

Threshold-1 Pearson correlation Partial directed coherence

CC * 0.30 * * 0.95 * * 0.66 * * 0.06 *

LE * 0.30 * 0.08 0.56 * * 0.91 * * * *

GE 0.44 0.96 * 0.53 0.25 0.13 * 0.60 0.49 0.15 0.11 0.96

Q 0.14 0.35 0.58 0.72 0.90 0.42 0.21 0.16 * * * *

r 0.56 0.05 * * 0.27 * 0.84 0.12 * * * *

T 0.99 0.30 * * 0.28 * 0.92 0.94 0.05 * 0.40 0.33

Spearman Correlation Directed Transfer Function

CC * 0.59 * * 0.11 * 0.07 0.17 0.62 0.09 0.50 0.51

LE * 0.22 * 0.12 0.69 * 0.11 0.31 0.47 0.22 0.47 0.44

GE 0.48 0.70 0.05 0.45 0.43 0.48 0.08 0.11 0.13 0.46 0.17 0.35

Q 0.09 0.32 0.32 0.55 0.26 * 0.70 0.98 0.31 0.89 0.57 0.12

r 0.50 0.53 * * * * 0.15 0.50 0.21 0.68 0.73 0.53

T 0.87 0.89 * * * * * 0.10 0.35 0.13 0.94 0.83

Threshold-2 Pearson Correlation Partial Directed Coherence

CC 0.68 0.56 0.16 0.32 * * * 0.57 * 0.12 0.06 0.05

LE 0.80 0.47 0.30 0.40 0.05 * * 0.45 * 0.20 * *

GE 0.79 0.72 0.35 0.57 0.05 * 0.08 0.71 0.24 0.37 * *

Q 0.50 0.75 0.09 0.56 * * 0.07 0.17 * * * *

r 0.84 0.73 0.86 0.78 0.16 0.13 0.94 0.10 * * * *

T 0.36 0.73 * 0.05 * * 0.83 0.95 0.33 0.15 0.49 0.29

Spearman Correlation Directed Transfer Function

CC 0.46 0.98 * 0.05 * * 0.59 0.67 0.06 0.21 0.07 *

LE 0.47 0.94 * * * * 0.37 0.53 * 0.11 * *

GE 0.42 0.95 * 0.07 * * 0.25 0.19 * 0.10 0.15 0.05

Q 0.62 0.92 * 0.20 * * 0.73 0.76 * * 0.08 0.10

r 0.83 0.91 0.48 0.94 0.06 * 0.07 0.66 0.15 0.48 0.79 0.90

T 0.61 0.89 * 0.12 * * 0.55 0.97 0.41 0.07 0.10 *
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clear functional differences between Fear and Anger were

captured by using both PC and PDC in terms of CC and LE,

while neither SC nor DTF provided clear differences

between these two states. Therefore, both PC and PDC

have also been applied to well-known EEG sub-bands as

listed in Table 2.

In more detailed analysis, the performance of PC and

PDC has been compared to each other with respect to

emotional states into EEG sub-bands regarding Table 2.

Thus, PDC provided clear statistical differences between

Fear and Anger in Alpha and Beta frequency band intervals

in accordance with the 1st threshold in longer EEG seg-

ments, while no any difference was shown between Hap-

piness and Sadness. Except GE, each network index

provided meaningful statistical differences between resting

and emotional states in Theta-band specific estimations.

Modularity index, Q provided statistical differences

between resting and emotional states in Gamma sub-band

specific estimations through PC with the 1st threshold.

Meaningful statistical differences were obtained in Delta-

band specific estimations through PC with the 1st threshold

in all two-state comparisons such that CC and LE were

capable of discriminate emotional states from resting-state,

while Q and T were capable of discriminate two emotional

states from each other. In summary, no superior results

were observed in sub-band specific estimations in com-

parison to full-band specific estimations on longer EEG

segments (listed in Table 1).

Regarding Table 3, both PC and PDC provided statis-

tical differences between resting and emotional states with

respect to each brain network index estimated from full-

band shorter EEG segments in accordance with the 1st

threshold. PDC provided statistical differences between

two different emotional states were also observed in three

Table 2 One-way Anova test

results with respect to

frequency-band specific

network measures according to

PC, PDC with 1st threshold in

longer segments (6 sec) (*
refers p � 0:05)

Pearson correlation Partial directed coherence

F-A R-F R-A H-S R-H R-S F-A R-F R-A H-S R-H R-S

Delta-band CC 0.08 * 0.08 0.13 * * 0.39 * * 0.46 * *

LE * * 0.79 * * 0.13 0.60 0.20 0.08 0.85 0.34 *

GE 0.90 0.18 0.42 * 0.25 0.17 0.43 0.44 0.71 0.12 0.83 0.21

Q 0.21 0.48 * 0.14 0.67 0.08 0.13 0.42 0.07 * 0.24 *

r 0.89 0.98 0.27 0.39 0.49 0.81 0.19 * * 0.23 * *

T 0.87 * * 0.52 0.12 * 0.07 0.06 0.36 0.24 * *

Theta-band CC 0.19 * 0.14 0.57 * 0.42 * * * 0.65 * *

LE 0.19 * 0.49 0.24 * 0.25 0.11 * 0.59 0.70 * *

GE 0.25 0.07 0.92 0.22 0.60 0.87 0.99 0.50 0.12 0.80 0.77 0.53

Q 0.91 0.07 * 0.59 0.60 0.07 0.91 * 0.33 0.54 * *

r 0.65 0.78 0.52 0.22 0.43 0.18 0.89 * * 0.63 * *

T 0.43 * 0.16 0.93 0.55 0.73 0.07 * * 0.67 * *

Alpha-band CC 0.92 0.07 0.12 0.95 0.55 0.76 * * 0.16 0.45 0.34 *

LE 0.89 0.13 0.26 0.58 0.05 0.07 0.20 0.29 0.92 0.31 0.08 *

GE 0.41 * 0.89 0.51 0.57 0.93 0.93 0.83 0.31 0.31 0.18 0.33

Q 0.87 0.45 0.18 0.87 0.96 0.30 0.09 0.71 0.18 0.77 0.43 0.24

r 0.74 0.40 0.54 * 0.37 0.06 * * * 0.99 * *

T 0.86 0.45 0.23 0.93 0.42 0.13 * * 0.08 0.84 * *

Beta-band CC 0.72 0.22 0.30 0.38 0.18 0.80 0.84 0.16 * 0.38 * *

LE 0.75 0.83 0.97 0.94 0.20 0.23 * 0.22 0.23 0.74 0.05 0.92

GE 0.85 * 0.37 0.73 0.51 0.89 * 0.36 0.70 0.43 0.46 0.74

Q 0.73 * * 0.35 0.06 * 0.33 0.97 0.52 0.50 * 0.33

r 0.32 0.26 0.74 * 0.50 * 0.29 * 0.24 0.73 0.08 *

T 0.64 0.24 0.16 0.17 0.51 0.30 * * 0.18 0.38 * *

Gamma-band CC 0.71 0.05 * 0.44 0.39 0.38 0.11 * 0.58 0.31 * *

LE 0.87 0.78 0.86 0.05 0.66 0.61 0.15 * 0.69 0.50 * 0.51

GE 0.71 * 0.38 0.47 0.62 0.16 0.07 0.94 0.82 0.37 0.18 0.89

Q 0.86 * * 0.75 0.05 * 0.80 * 0.13 0.55 * *

r 0.74 0.83 0.47 0.27 0.26 0.09 0.71 * 0.13 0.90 * *

T 0.71 * * 0.49 0.30 0.17 0.08 * 0.37 0.33 * *
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indices of LE, Q, T estimated from full-band shorter EEG

segments in accordance with the 1st threshold. However,

the methods did not produced statistical difference between

resting state and Fear in full-band shorter EEG segments.

Regarding Table 4, meaningful statistical differences

were obtained in both Delta and Alpha as well as Gamma

sub-band specific estimations through PDC with the 1st

threshold on shorter EEG segments in all two-state com-

parisons with respect to all brain network indices.

Since the most useful results were obtained in analysis

of shorter EEG segments by using PC and PDC with the 1st

threshold, all two-state statistical comparisons were per-

formed by using deep learning model so called LSTM

driven by seven graph theoretic feature sets described in

the beginning part of this section. The corresponding

results, listed in Table 5 were compatible with statistical p-

values listed in Table 4. In both training and testing steps,

the most successful classification performances were

obtained by combining all network indices estimated from

both full-band and sub-band frequency intervals of shorter

EEG segments through PDC with the 1st threshold where

CA higher than and about 80% was considered as suc-

cessful. In particular, FS1 provided the highest perfor-

mance for classification of secondary

uncomfortable emotions as Fear and Anger that are char-

acterized by physiological reactions called as ’fight or

flight response’, while F7 provided the highest perfor-

mances for classification of opposite basic emotional states

as Happiness and Sadness.

Figure 3 showed that, statistical distributions of

Gamma-band specific modularity and transitivity estima-

tions were clearly sensitive to emotional states. In partic-

ular, the highest modularity estimations were observed in

resting-state, while the lowest modularity levels were

observed in Anger. In particular, Fear produced the higher

modularity in comparison to other discrete emotions. The

lowest levels in both CC and transitivity estimations were

observed in Happiness. The lowest levels in CC, LE and

assortativity estimations were commonly observed in

Happiness. There were many outliers in each state in GE

estimations. Statistical distribution intervals of each state

were clearly distinct in both modularity and transitivity

estimations.

Discussion

Due to functional integration of different cortical areas

during emotional perception of musical sounds, the

researchers have studied on brain connectivity approaches

(Flores-Gutirréez and Dı́az 2007b; Karmonik and Brandt

2013) in order to understand the neural mechanism of

musical perception at system level. In addition to aspect of

determining the most useful domain and the method in

estimating brain connectivity, another aspect is the sensi-

tivity of frequency sub-bands superimposed in EEG

mediated by musical sounds. In the present study, statisti-

cal cross-correlation has been estimated to measure statis-

tical, linear and undirected time-domain correlations

between EEG segments in accordance with both PC and

SC. In fact, both PC and SC are statistical measures that

show the degree to temporal variations in an EEG segment

in relation to simultaneous variations in another EEG

segment. In other words, statistical correlation coefficients

express the level to which short-duration neuro-electrical

activities are linearly dependent to each other. In compar-

ison to these statistical similarity measures, we have also

examined two multivariate estimators, DTF and PDC based

on the Granger causality principle in estimating effective

Table 3 One-way Anova test results with respect to full-band specific

network measures according to thresholds in shorter segments 2 sec
(* refers p � 0:05)

Pearson correlation with th-1

F-A H-S R-F R-A R-H R-S

CC * 0.80 * * * *

LE * 0.24 * * * *

GE 0.33 0.19 * 0.66 0.12 0.17

Q * 0.87 * 0.58 * *

r 0.92 0.29 * * * *

T * 0.38 0.33 * 0.12 0.39

Partial Directed Coherence with th-1

CC 0.10 0.43 * * * *

LE * 0.47 * * * *

GE * 0.56 * 0.13 0.11 *

Q * 0.60 * * * *

r 0.40 0.13 * * * *

T 0.05 0.17 * * * *

Pearson Correlation with th-2

CC 0.45 0.65 0.22 0.08 0.58 0.39

LE 0.43 0.67 0.77 0.35 0.75 0.75

GE 0.35 0.96 0.26 * 0.41 0.83

Q 0.66 0.94 * * * *

r * 0.50 * * * *

T 0.63 0.92 * * * *

Partial Directed Coherence with th-2

CC 0.21 0.13 * * * *

LE * 0.14 * * * *

GE * 0.44 0.26 * 0.45 0.09

Q * 0.64 * * * *

r * 0.53 * * * *

T 0.15 0.17 0.79 * * *
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connectivity, i.e. directed functional connectivity between

EEG segments modeled by MVAAM coefficients.

In the present study, secondary, performances of func-

tional and effective connectivity methods are compared to

each other with respect to statistical logistic regression

modeling to obtain robust features, i.e. frequency specific

graph theoretic brain network measures sensitive to both

uncomfortable and basic emotions, triggered by short-du-

ration acoustic sounds. Rather than the methods, a deep

learning model, LSTMN is also used to investigate the

impact of frequency interval in estimating network indices

according to threshold design in transforming adjacency

matrices for classification of the states (listed in Sect. 2.6).

Among four connectivity approaches, PDC provided the

best results frequency band specific network measures

estimated from short segments of 2 sec with respect to first

threshold (60% of max value in connectivity matrix) for

classification of contrasting emotional states where Fear

and Anger can be classified with useful CA between

82:25% and 88:48% in Theta, Alpha and Beta sub-bands.

When the features extracted from each EEG sub-band were

combined in an extended feature set, the highest CA of

91:79% was obtained for classification of two uncomfort-

able emotions, Fear and Anger. PDC also provides the best

results for classification of Happiness and Sadness in faster

EEG rhythms so called Alpha, Beta, Gamma sub-bands,

while the better performance results are observed in Theta,

Alpha and beta sub-bands for classification of Anger and

Fear. Regarding emotion model shown in Fig 1, it is clear

that Happiness and Sadness are placed in contrasting

quarters of arousal/valance dimensions, while Fear and

Anger are both placed in an identical quarter of that.

Meanwhile, the highest CA of 96:67% was obtained

Table 4 One-way Anova test

results with respect to frequency

band specific network measures

according to 1st threshold in

shorter segments 2 sec (* refers

p � 0:05)

Pearson Correlation Partial Directed Coherence

F-A R-F R-A H-S R-H R-S F-A R-F R-A H-S R-H R-S

Delta-band CC 0.26 * * * * * 0.36 0.30 * * * *

LE 0.28 * * 0.10 * * 0.26 0.38 0.32 0.08 0.19 *

GE 0.94 * 0.05 0.50 0.92 0.13 0.20 * 0.05 * * *

Q 0.31 0.56 0.09 * 0.12 * * * 0.61 0.94 0.52 0.51

r 0.97 * 0.12 * * 0.19 0.55 0.43 * * * *

T 0.82 0.69 * * * * * * * * * *

Theta-band CC 0.33 * * * * * * 0.25 * * * *

LE 0.53 * * 0.07 * 0.05 0.50 0.90 * 0.05 * *

GE 0.24 0.09 * 0.12 0.84 0.45 0.22 0.16 * * * *

Q 0.81 0.85 * * * * 0.47 0.75 * 0.76 * *

r 0.80 * 0.08 * * 0.59 0.11 0.32 * * * *

T 0.52 0.38 * * * 0.24 * 0.14 * * * *

Alpha-band CC 0.24 0.06 * * * * * 0.97 * * * *

LE 0.35 * * 0.05 * * 0.63 0.08 0.12 0.54 0.27 *

GE 0.37 0.23 * 0.34 0.52 0.35 0.96 * * * * *

Q 0.72 0.86 0.10 * 0.06 * 0.07 0.82 0.47 0.85 0.06 0.26

r 0.53 * 0.35 * * 0.58 * * * * * *

T 0.82 0.37 * * * 0.49 * * * * * *

Beta-band CC * 0.06 * * * * * 0.38 * * * *

LE 0.3 0.15 * 0.09 * * * 0.29 * 0.74 * 0.1

GE 0.41 0.29 * 0.76 0.96 0.37 * 0.08 0.19 0.28 * *

Q 0.9 0.52 * * * * 0.3 0.85 0.3 0.39 0.2 0.7

r 0.31 * 0.35 * * 0.9 * 0.37 * 0.5 * *

T 0.83 0.11 * * * 0.3 * 0.91 * * * *

Gamma-band CC 0.15 * * * * 0.48 0.28 0.60 * * * *

LE 0.28 * * 0.09 * 0.49 0.27 0.35 * 0.11 * 0.23

GE 0.62 0.18 * 0.34 0.73 0.26 0.28 * 0.76 0.10 * *

Q 0.62 0.72 * * * * 0.20 0.37 * * * *

r 0.38 * 0.31 * * 0.37 * 0.51 * * * *

T 0.98 0.89 * * * 0.28 * 0.16 * * * *
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classification of two contrasting emotions, Happiness and

Sadness in overall experiments.

Overall results reveal that acoustic sounds can induce

emotional states in very short time interval (2 sec) due to

fast neurotransmitter activities due to influence of both

tempo and rhythmic units in sounds. In the brain, emotional

circuits are formed as a tree-like structure including roots

and lines in subcortical areas, and interactive branches in

cortical regions. Perception of acoustic sounds and cogni-

tion of emotional states access the higher reaches of

emotional circuits through auditory cortex into the amyg-

dala, frontal and parietal inputs into limbic system

including basal ganglia, nucleus accumbens, cingulate

cortex. Thus, overall results reveal that Graph Theoretical

network measures can quantify the differences in neuro-

transmitter driven cortical activities between discrete

emotions.

Conclusion and future work

From methodological point of view, the most meaningful

results are obtained by using PDC where PC can also

provide useful results in discriminating emotional states

induced by fast-paced and emotionally stimulating acoustic

sounds. Unlike DTF, PDC is normalized to show a ratio

between the outflow from channel j to channel i to all the

outflows from the source channel j, so it emphasizes rather

the sinks, not the sources. Therefore PDC is found to be

superior to DTF in the present study. In detail, PC mea-

sures statistical association between two EEG segments

based on covariance showing the degree to which the

amplitude change in an EEG segment is relative to the

amplitude change in another EEG segment, while PDC

measures the normalized relative coupling strength of fre-

quency domain interactions from the source of an EEG

segment to the others across the cortex. Besides, the

common technical outcome of PC and PDC is to provide

normalized results lie between 0 and 1. In depth, PDC can

quantify immediate directional coupling between neural

populations whereas DTF describes the existence of

directional signal propagation even if neural info travels

through intermediate pathways rather than through an

immediate direct causal influence path. From computa-

tional point of view, DTF estimates causal influence of an

EEG recording channel on the other one at particular fre-

quency, while PDC provides only direct flows between

them. Regarding DTF, the resulting connectivity levels lie

between 0 and 1 producing a ratio between the inflow

(from a channel to a particular channel) to all the inflows to

a particular channel. In contrast to DTF, the resulting

estimations show a ratio between the outflow from a source

channel to the particular channel to all the outflows from

the source channel in examining PDC. Therefore, PDC

provided better results for emotion recognition from EEG

recordings based on GT, while DTF was found to be useful

for detection of marginal variations such as local seizure

(Franaszczuk and Bergey 1994), sleep stages (Kaminski

and Blinowska 1997) in past.

Several neuropsychiatric disorders cause both functional

and structural network parameters of segregation and

integration to change (Mu 2018). Dysfunctional brain

connectivity can be modeled by a loss of small-world

organization of the brain, if healthy connectome is corre-

lated with balanced neural communication across the cor-

tex. By means of EEG recordings, graph theoretic

functional brain parameters are originated from superpo-

sition of excitatory and inhibitory post-synaptic potentials

that are caused by neurotransmitter release. The healthy

brain integrates a wide range of incoming external stimuli

through binding the spontaneous complex stream of

information into cortical regions assumed to be subsystems

of a complex network (Cohen 2016). So, dynamically

reconfigures of emotional perception relies not only on

independent processing of stimuli in particular cortices

(segregation) but also on global cooperation between these

regions (integration). Several studies show that functional

brain capacity can be measured by both segregation and

integration measures such that the higher segregation is

Table 5 Classification performances (CA (%) driven by feature sets

(FS) according to 1st threshold in shorter segments of 2 sec

F-A H-S R-F R-A R-H R-S

Pearson correlation

FS-1 86.08 94.94 64.13 76.87 75.22 62.03

FS-2 55.98 73.47 81.47 67.65 74.93 63.33

FS-3 60.39 71.60 71.18 57.52 72.67 70.65

FS-4 73.33 72.40 68.53 71.70 69.20 69.70

FS-5 60.10 71.20 49.71 65.69 61.87 66.31

FS-6 67.65 60.00 61.18 50.87 71.73 57.54

FS-7 69.41 70.27 73.92 66.08 68.27 55.48

Partial directed coherence

FS-1 91.79 88.67 83.69 72.73 70.39 81.30

FS-2 75.98 70.13 63.53 65.62 74.00 69.17

FS-3 78.63 58.93 70.59 66.99 58.67 67.44

FS-4 82.25 76.00 66.27 66.67 56.00 73.33

FS-5 88.48 81.00 69.12 73.53 80.67 69.35

FS-6 83.95 89.56 60.54 86.27 72.80 64.64

FS-7 75.98 96.67 66.70 89.54 83.56 71.95
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mostly linked to simple motor tasks, while the higher

integration is mostly linked to cognitive loads (Fransson

2018; Fong 2019; Finc 2020). However, it remains a great

challenge to understand how the brain’s emotional con-

figurations are supported by segregation and integration

measures. In experimental cognitive neuroscience, several

studies showed that the ratio between excitatory and inhi-

bitory neural activities remains balanced at pyramidal

neurons over both time and space (Haider 2006; Okun

2008). The more recent study reveals that emotional brain

functions have been sustained through functional connec-

tivity supported by a balanced ratio of excitation to inhi-

bition originated from neurotransmitter release in response

to audio-visual and affective stimuli (Kılıç 2022). In the

current study, we employed six network measures to

quantify both segregation and integration in response to

music clips over shorter time lengths.

Many neurotransmitters serve neural communications

between cortical nerve cells in order to regulate mood and

emotional states. Among them, dopamine, serotonin,

endorphins, and oxytocin mediate well and happiness.

Besides, low levels of norepinephrine, serotonin, and

dopamine are associated with negative mood and

unpleasant states. Apart from arousal-valance scores of

contrasting emotional states (Fear vs Anger, Happiness vs

Sadness), characteristic variations in post-synaptic

potentials triggered by particular neurotransmitters might

be more distinct in between Happiness and Sadness in

comparison to Fear and Anger. Thus, this neurobiological

facts might be main factor leading to the high accuracy of

96% in classifying Happiness and Sadness in Gamma sub-

band, despite the fact that the unpleasant feelings, Fear and

Anger can be distinguished with the less CA.

According to computational and behavioral neuro-

science, affective perception is usually accompanied by

changes in high-frequency EEG series, i.e. gamma sub-

bands (Boucher 2014; Aydın 2018; Yang 2020). Our

results also proved that gamma-band specific brain network

measures were closely relevant to discrete emotions.

Emotion can be considered as a high-level cognitive

function that requires the re-configuration of multiple brain

regions in response to external stimuli. So, the relationships

and information interactions among the cortices have been

detected in high frequency components of EEG series

mediated by affective music clips in the present study.

Further, anger is found to be characterized by high tran-

sitivity and low modularity in Gamma-band activities.

The stable neural patterns have shown across the indi-

viduals in between negative and positive emotions induced

by different video clips of 1 min in references Zheng and

Zhu (2017); Li and Liu (2019). However, Fear and Anger

can not be considered as distinct emotional states due to

Fig. 3 Statistical box-plots in brain network indices estimated from Gamma band intervals of shorter EEG segments (2 sec) by using PDC with

the 1st threshold
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particular emotional labeling principle of four quadrants

assigned with low arousal/low valence, high arousal/low

valence, low arousal/high valence, and high arousal/high

valence (Zheng and Zhu 2017; Li and Liu 2019). We have

used discrete emotional model to investigate the neural

dynamics underlying both Fear and Anger triggered by

musical sounds of 12 sec. Besides, the recent studies have

also shown the usefulness of Granger causality included by

connectivity estimations to classify video clips into pleas-

ant, neutral and unpleasant quadrants of arousal/valance

dimensions (Li and Zheng 2018; Chen and Miao 2021). In

more details, EEG based brain connectivity analysis has

also been successfully examined to quantify the interac-

tions between limbic system and motor cortex during

emotional expressions induced by video clips (Li and Li

2020). In conclusion, music clips can exactly induce basic

and discrete emotional states in very short time period such

as 2 sec depending both rhythmicity and tonality of excerpt

in comparison to presentation of longer duration video

clips mapped on arousal/valance quadrants. Functional

connectivity estimations can provide to insight the hierar-

chial neurodynamics at both modular and system levels

into EEG frequency sub-bands.

Regarding GT based global connectivity estimations,

the important parameter is threshold that influence the

resulting measures. In analysis of fMRI data, this issue has

been found to be the leading factor for investigation of

brain networks where the optimum threshold is determined

empirically between 0.2 and 0.3 (Bordier et al. 2017).

Several binarization methods have been used in combina-

tion with phase domain synchronization approaches for

detection of disorders encoded by clinical resting-state

EEG recordings (Sun and Li 2019b; Tsai and Wang 2022),

while two popular thresholds of the mean and 60% max

value of individual connectivity matrix for recognition of

discrete emotional states (Kılıç 2022) and cognitive emo-

tion regulation strategies (Aydın 2022). The weak, noisy,

and insignificant edges/connections across the cortex are

eliminated by setting a threshold in obtaining a binary

version of connectivity matrix, while the most important

connections remain. Thus, network connectivity measures

are estimated from binary adjacency matrix. Since EEG

recordings are nonlinear, random, and probabilistic time

series, use of adaptive thresholds as 60% of max value and

the mean value in individual connectivity matrix computed

for each short segment for classification of discrete emo-

tional states induced by musical sounds in the present

study.

Appendix

See Table 6.
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