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Abstract
Parkinson’s disease (PD) is one of the cognitive degenerative disorders of the central nervous system that affects the motor

system. Gait dysfunction represents the pathology of motor symptom while gait analysis provides clinicians with sub-

clinical information reflecting subtle differences between PD patients and healthy controls (HCs). Currently neurologists

usually assess several clinical manifestations of the PD patients and rate the severity level according to some established

criteria. This is highly dependent on clinician’s expertise which is subjective and ineffective. In the present study we

address these issues by proposing a hybrid signal processing and machine learning based gait classification system for gait

anomaly detection and severity rating of PD patients. Time series of vertical ground reaction force (VGRF) data are

utilized to represent discriminant gait information. First, phase space of the VGRF is reconstructed, in which the properties

associated with the nonlinear gait system dynamics are preserved. Then Shannon energy is used to extract the characteristic

envelope of the phase space signal. Third, Shannon energy envelope is decomposed into high and low resonance com-

ponents using dual Q-factor signal decomposition derived from tunable Q-factor wavelet transform. Note that the high Q-

factor component consists largely of sustained oscillatory behavior, while the low Q-factor component consists largely of

transients and oscillations that are not sustained. Fourth, variational mode decomposition is employed to decompose high

and low resonance components into different intrinsic modes and provide representative features. Finally features are fed to

five different types of machine learning based classifiers for the anomaly detection and severity rating of PD patients based

on Hohen and Yahr (HY) scale. The effectiveness of this strategy is verified using a Physionet gait database consisting of

93 idiopathic PD patients and 73 age-matched asymptomatic HCs. When evaluated with 10-fold cross-validation method

for early PD detection and severity rating, the highest classification accuracy is reported to be 98:20% and 96:69%,

respectively, by using the support vector machine classifier. Compared with other state-of-the-art methods, the results

demonstrate superior performance and support the validity of the proposed method.

Keywords Parkinson’s disease � Machine learning � Signal processing � Gait classification � Vertical ground reaction force

(VGRF) � Hohen and Yahr (HY) scale

Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative

brain disorder that mainly affects the motor system of the

elderly people to perform regular activities (Balaji et al.

2020). It usually leads to typical symptoms including tre-

mor, bradykinesia, rigidity, gait disturbance and postural

instability, among which gait disturbance is one of the

early manifestations of PD and evolves over time (Haus-

dorff et al. 1998; Rehman et al. 2019a). Current diagnosis

of PD is commonly based on subjective clinical
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examination in conjunction with expensive and time-con-

suming brain imaging techniques (Hoehn and Ravikumar

1998; Rehman et al. 2019b). Recent work has revealed that

objective quantification of gait impairments can not only

inform early diagnosis, but also rate the severity, which is

non-invasive and inexpensive (Mirelman et al. 2019; Del

Din et al. 2019). Particularly, features of gait pattern can

serve as significant biomarkers which are critical for not

only identifying the presence of PD but also quantifying

the progression of the disease.

Gait analysis provides clinicians with various parame-

ters including spatiotemporal, kinematic and kinetic types

(Morris et al. 1999). They are recognized as variables of

influence by gait impairment in PD patients due to their

association with clinical attributes. Spatiotemporal param-

eters concern the foot step pattern which include step

length, step velocity, step width, swing time and stance

time (Morris et al. 1999). Kinematic parameters refer to

variables about the pattern of motion with no consideration

of the source of motion, such as the angular displacement

of the hips, knees and ankle joints over time (Morris et al.

1999). Kinetic parameters, such as ground reaction force

during walking, measure the force that causes the motion.

Kinetics refers to the underlying forces, powers and ener-

gies of the lower limbs and trunk that enable the person to

walk (Winter 1991). Among these parameters, gait kine-

matics and kinetics provide a more comprehensive

description of locomotion as well as highlighting distur-

bances in the moments and powers contributing to the gait

pattern. In addition, kinetic measures permit a deeper

analysis at the level of neuromotor processes. Currently,

vertical ground reaction force (VGRF) has been widely

used in gait analysis, which is a reflection of the net forces

exerted by the human body on ground while walking

(Manap and Tahir 2013; Alkhatib et al. 2020). It charac-

terizes disorder patterns, diagnosis, rehabilitation clinic,

and monitoring of treatment progress, which is widely used

as discriminate feature in early detection and severity

grading of PD patients. Farashi (2020) proposed some new

feature sets from VGRF data for the gait cycle including

area under VGRF curve, peak delay of VGRF data and

higher-order moments of VGRF data in both time and

frequency domains to improve performance of a PD

diagnostic approach. Minamisawa et al. (2012) demon-

strated the influence of neurological changes and aging on

the VGRF components and the difference in fluctuation

pattern behavior in healthy controls and PD patients.

Detrended fluctuation analysis was used to study charac-

teristics of fluctuation of VGRF. Manap and Tahir (2013)

utilized the peak values of VGRF during initial contact,

mid-stance and toe off phases to detect gait irregularities in

PD patients.

Conventional diagnosis of PD is largely depending on

the subjective measures obtained from visual observations

and questionnaire of the clinicians. For example, Hoehn &

Yahr (HY) scale has been widely used in assessing the

severity level of PD, which consists of 5 stages originally

and is further extended with additional stage 1.5 and 2.5

(Hoehn and Yahr 1967). The Unified Parkinsons Disease

Rating Scale (UPDRS) is more complex and 42 questions

are arranged to assess the motor symptoms, daily activities

and behavioral characteristics (Martinez-Martin et al.

1994). It is time-consuming and subjective when clinicians

employ these scales to rate the severity level of PD patients

as several diagnostic criteria use descriptive symptoms.

Since these measurements cannot provide a quantified

diagnostic basis (Zhao et al. 2018), an objective, quick and

computer-aided diagnosis system has been urgently

required in the clinical applications.

Machine learning (ML) methods can provide such an

objective and efficient diagnosis and severity rating system

for PD patients. Widely reported ML models in literature

for classification of PD include support vector machine

(SVM) (Wu et al. 2019), Naive Bayes (NB) (Cavallo et al.

2019), random forest (RF) (Kuhner et al. 2017), k-nearest

neighbour (KNN) (Oung et al. 2018), decision tree (DT)

(Sakar et al. 2019), artificial neural networks (ANNs)

(Berus et al. 2019), logistic regression (LR) (Cao et al.

2020) and ensemble learning based Adaboost (ELA) (Yang

et al. 2021). In addition, ML methods identify the best

combination of clinically relevant gait features to address

questions around gait characteristics, PD classification and

progression detection. The choice of gait features is

important for the models so that their findings are easy to

interpret. However, based on the literature, extraction and

utilization of gait features vary widely, often with no

consistency on datasets and data type across studies or

rationale for classification of PD (Rehman et al. 2019a).

For example, Sakar et al. (2019) applied the tunable

Q-factor wavelet transform (TQWT) to the voice signals of

PD patients for feature extraction, which has higher fre-

quency resolution than the classical discrete wavelet

transform. The feature subsets were fed to multiple clas-

sifiers and the predictions of the classifiers were combined

with ensemble learning approaches. Caramia et al. (2018)

extracted range of motions and spatio-temporal parameters

from gait raw data collected by Inertial Measurement

Units. These parameters were fed to six different ML

classifiers for PD classification and severity rating. Peng

et al. (2017) extracted multilevel regions of interest (ROIs)

features from T1-weighted brain magnetic resonance ima-

ges. Filter- and wrapper-based feature selection method

and multi-kernel SVM were used for PD classification.

Yuvaraj et al. (2018) extracted higher-order spectra bis-

pectrum features from electroencephalography (EEG)
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signals and fed them to the traditional ML classifiers like

KNN, SVM and DT for PD classification. Prabhu et al.

(2020) extracted nonlinear features from gait signals by

using recurrence quantification analysis and statistical

analysis. These features better represented the dynamics of

human gait and were fed to SVM and probabilistic neural

network for PD identification. Farashi (2020) extracted

time, frequency and time-frequency domains features from

VGRF data by using wavelet packet decomposition and

power spectral density. These feature were fed to the DT

classifier for PD detection. Oung et al. (2018) detected and

classified PD using signals from wearable motion and

audio sensors based on both empirical wavelet transform

(EWT) and empirical wavelet packet transform (EWPT).

EWT and EWPT decomposed both speech and motion data

signals up to different levels and provided the instanta-

neous amplitudes and frequencies from the coefficients of

the decomposed signals by applying the Hilbert transform.

These features were fed to KNN for PD detection and

severity rating. Balaji (2021) proposed a long short term

memory (LSTM) network for severity rating of PD from

gait data without any hand crafted features and learned the

long-term temporal dependencies in the gait cycle for

robust diagnosis of PD. Findings from the above-men-

tioned studies reveal that different types of features coop-

erated with different ML methods may provide various

ideas and performance for PD classification. Therefore,

there is a need to identify suitable ML models and the

optimal combination of gait characteristics for detection

and severity rating of PD.

Despite the fact that these previous approaches have

demonstrated respectable classification accuracy, the

potential of dynamical nonlinear features together with ML

methods has not been thoroughly investigated. In the pre-

sent study, we propose a combined and computational

method from the area of nonlinear method and ML for PD

diagnosis and severity rating. From the gait patterns

acquired from 16 foot worn sensors, time series of VGRF

data are utilized to represent discriminant gait information.

First, phase space of the VGRF is reconstructed, in which

the properties associated with the nonlinear gait system

dynamics are preserved. Then Shannon energy is used to

extract the characteristic envelope of the phase space sig-

nal. Third, Shannon energy envelope (SEE) is decomposed

into high and low resonance components using dual Q-

factor signal decomposition (DQSD) derived from tunable

Q-factor wavelet transform (TQWT). Note that the high Q-

factor component consists largely of sustained oscillatory

behavior, while the low Q-factor component consists lar-

gely of transients and oscillations that are not sustained.

Fourth, variational mode decomposition (VMD) is

employed to decompose high and low resonance compo-

nents into different intrinsic modes and provide

representative features. Finally, features are fed to five

supervised ML algorithms namely SVM, DT, RF, KNN

and ELA classifiers for the anomaly detection and severity

rating of PD patients based on HY scale. This is not only

the binary classification but also the multi-class classifi-

cation problem. Moreover, in order to avoid data overfit-

ting problem and enhance the classification accuracy,

10-fold cross validation technique is utilized.

The remainder of the paper is organized as follows.

Section Method depicts the procedure of the proposed

method. It also includes the data description, feature

extraction and selection, and classification models. Sec-

tion 3 presents some experimental results. Sections Exper-

imental results and Conclusion give some discussions and

conclusions, respectively.

Method

In this section, we simply introduce the procedure of the

proposed method for PD identification and severity rating.

Figure 1 illustrates the block diagram of the proposed

method for the binary and multi-class classification prob-

lems. The method includes the feature extraction and

classification stages and follows the following steps. In the

first step, features are extracted by using hybrid signal

processing methods, including PSR, DQSD, VMD and

statistical analysis. In the second step, feature vectors are

fed into five different types of classification models to

discriminate between PD patients and healthy controls

(HCs) and classify the stages (healthy, mild, medium and

high) of PD patients based on HY scale. Finally, different

performance parameters are used to evaluate the classifi-

cation results.

Dataset description

In the present study, we use the publicly available gait

database provided by Physionet (Goldberger et al. 2000)

(https://physionet.org/content/gaitpdb/1.0.0/), which

includes 73 HCs (mean age: 66.3 years; 55% men) and 93

idiopathic PD patients (mean age: 66.3 years; 63% men).

Demographic and clinical characteristics of the participants

are depicted in Table 1. The database contains 55 PD

patients with HY scale 2 (mild), 28 PD patients with HY

scale 2.5 (medium) and 10 PD patients with HY scale 3

(high). This indicates that most of the PD patients were at

the early stage of the disease or with moderate severity,

which can serve as a benchmark to assess the proposed

early detection and severity rating of PD. The database

includes the VGRF records of subjects as they walked at

their usual, self-selected pace for approximately 2 minutes

on level ground. Underneath each foot were 8 sensors
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(Ultraflex Computer Dyno Graphy, Infotronic Inc.) that

measure force (in Newtons) as a function of time. The

output of each of these 16 sensors has been digitized and

recorded at 100 samples per second, and the records also

include two signals that reflect the sum of the 8 sensor

outputs for each foot. Here in Fig. 2, we demonstrate the

samples of the total force Y(t) and Z(t) under the left foot

and the right foot, respectively, from HCs and PD patients

with three types of HY scale.

In order to obtain more efficient features, this study

considers parameters from VGRF data Y(t) and Z(t) by

using SEE, DQSD and VMD. This helps extraction of

discriminative features from human gait system for PD

classification and severity rating.

Phase space reconstruction (PSR)

It is sometimes necessary to search for patterns in a time

series and in a higher dimensional transformation of the

time series (Sun et al. 2015). Phase space reconstruction is

a method used to reconstruct the so-called phase space. The

concept of phase space is a useful tool for characterizing

any low-dimensional or high-dimensional dynamic system.

A dynamic system can be described using a phase space

diagram, which essentially provides a coordinate system

where the coordinates are all the variables comprising

mathematical formulation of the system. A point in the

phase space represents the state of the system at any given

time (Sivakumar 2002; Lee et al. 2014). The VGRF data

Y(t) and Z(t) can be written as the time series vector

t ¼ ft1; t2; t3; :::; tKg, where K is the total number of data

points. The phase space can be reconstructed according to

(Lee et al. 2014):

Yj ¼ ðtj; tjþs; tjþ2s; :::; tjþðd�1ÞsÞ ð1Þ

where j ¼ 1; 2; :::;K � ðd � 1Þs, d is the embedding

dimension of the phase space and s is a delayed time.

The behaviour of the signal over time can be visualized

using PSR (especially when d ¼ 2 or 3). In this work, we

have confined our discussion to the value of embedding

dimension d ¼ 3, because of their visualization simplicity.

In addition, different studies have found this value to best

represent the attractor for human biological system

(Venkataraman and Turaga 2016; Som et al. 2016). For s,

we either use the first-zero crossing of the autocorrelation

function for each time series or the average s value

obtained from all the time series in the training dataset

Fig. 1 Block diagram of the proposed method for PD classification and severity rating using nonlinear features and different classification models

Table 1 Demographic and

clinical characteristics of the

participants

Demographics Healthy Mild (HY=2) Medium (HY=2.5) High (HY=3)

Number 73 55 28 10

Age (years) 63.69 ± 40.32 62.88 ± 16.39 69.34 ± 10.71 68.52 ± 11.43

Height (m) 1.68 ± 0.08 1.67 ± 0.06 1.71 ± 0.07 1.68 ± 0.06

Weight (kg) 71.20 ± 22.64 69.50 ± 14.48 72.39 ± 7.93 62.73 ± 6.24

Ratio of Male to Female 40/33 36/19 16/12 6/4
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using the method proposed in (Michael 2005). In this

study, we consider the values of time lag s ¼ 1 to test the

classification performance. PSR for d ¼ 3 has been refer-

red to as 3D PSR.

Reconstructed phase spaces have been proven to be

topologically equivalent to the original system and there-

fore are capable of recovering the nonlinear dynamics of

the generating system (Takens 1980; Xu et al. 2013). This

implies that the full dynamics of the gait system are

accessible in this space, and for this reason, features

extracted from it can potentially contain more and/or dif-

ferent information than the common features extraction

method (Chen et al. 2014).

3D PSR is the plot of three delayed vectors tj; tjþ1 and

tjþ2 to visualize the dynamics of human gait system.

Euclidian distance (ED) of a point ðtj; tjþ1; tjþ2Þ, which is

the distance of the point from origin in 3D PSR and can be

defined as (Lee et al. 2014)

EDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2
j þ t2

jþ1 þ t2
jþ2

q

ð2Þ

ED measures can be used in features extraction and have

been studied and applied in many fields, such as clustering

algorithms and induced aggregation operators (Merigó and

Casanovas 2011).

Figures 3 and 4 demonstrate samples of the PSR of total

force Y(t) and Z(t) under the left and right feet from HCs

and PD patients with different HY scales.
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(b) PD patient with HY scale 2.
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(c) PD patient with HY scale 2.5.
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(d) PD patient with HY scale 3.

Fig. 2 Samples of sum of the 8 sensor outputs for each foot from HCs and PD patients with different HY scales
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Shannon energy envelope (SEE)

The normalized average Shannon energy named as Shan-

non energy envelope is a well-known technique for the

envelope extraction of signals. The extraction of SEE fol-

lows the following steps.

Suppose the original signal recorded as s(t). The nor-

malization is applied by setting the variance of the signal to

a value of 1. The resulting signals is expressed as

snormðtÞ ¼
sðtÞ

j max
N

i¼1
sðiÞ j

; ð3Þ

where snormðtÞ is a normalized amplitude, N denotes the

signal length. The Shannon energy of signal snormðtÞ is

calculated as

E ¼ �s2
normðtÞlogðs2

normðtÞÞ: ð4Þ

Then the average Shannon energy is calculated as

Ea ¼ � 1

N

X

N

i¼1

s2
normðiÞlogðs2

normðiÞÞ: ð5Þ

Energy that better approaches detection ranges in the

presence of noise or domains with more width results in

fewer errors. Capacity to emphasize medium is the

advantage of using Shannon energy rather than classic

energy (Beyramienanlou and Lotfivand 2017; Zidelmal

et al. 2014). The selected signal is normalized in the fol-

lowing equation (6) for decreasing the signal base and

placing the signal below the baseline,

En ¼
Ea � m

1
; ð6Þ

where En is the average Shannon Energy standardized or

normalized (known as Shannon energy envelope, SEE), m is

the average value of energy Ea, 1 is the standard deviation

of energy Ea. Here, after computing Shannon energy, small

spikes around the main peak of the energy are generated.

These spikes make main peaks detection difficult. To

eliminate this spike, Shannon energy is converted into SEE

(Beyramienanlou and Lotfivand 2017).
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(b) PD patient with HY scale 2.
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(c) PD patient with HY scale 2.5.
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(d) PD patient with HY scale 3.

Fig. 3 Samples of PSR of the total force Y(t) under the left foot from HCs and PD patients with different HY scales
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Figures 5 and 6 demonstrate samples of SEE of the PSR

of total force Y(t) and Z(t) under the left and right feet from

HCs and PD patients with different HY scales.

Tunable Q-factor wavelet transform (TQWT)
and dual Q-factor signal decomposition (DQSD)

Wavelet transform is an effective time-frequency tool for

the analysis of non-stationary signals. The tunable Q-factor

wavelet transform (TQWT) is a flexible fully-discrete

wavelet transform suitable for analysis of oscillatory sig-

nals (Selesnick 2011a). TQWT depends on changeable

parameters: Q-factor (Q), redundancy (R), and decompo-

sition level (J). Generally, Q measures the oscillatory

behavior and waveform shape of wavelet waveform. R

helps localize the wavelet in time-domain without affecting

its shape. The decomposition level J controls the expansion

extent and bandpass location of wavelet waveform. There

will be a total of J þ 1 subbands. For the TQWT param-

eters, the wavelet transform should have a low Q-factor

when the signal illustrates small or no oscillatory behavior.

On the other hand, the wavelet transform should have a

relatively high Q-factor for the analysis and processing of

oscillatory signals. It is worth noting that unwanted

excessive ringing of wavelets needs to be prevented while

performing TQWT by appropriately choosing the value of

R greater than or equal to 3 (Selesnick 2011a). Generally, a

value of R ¼ 4 is recommended. The TQWT decomposes

gait signals into subbands with a number of decomposition

levels by using the input parameters (Q, R, and J). TQWT

consists of two iterative band-pass filter banks, i.e., the

high resonance component filter HfilterðxÞ and the low

resonant component filter LfilterðxÞ. The resonance char-

acteristics of oscillatory signal can be represented by

quality factor Q, i.e. the ratio of its center frequency to its

bandwidth, Q ¼ fc=Bw, where fc denotes the center fre-

quency and Bw represents the bandwidth of signal.

Let the low-pass and high-pass scaling factors of the

two-channel filter bank be denoted by k and r, respec-

tively. In order to prevent excessive redundancy and

achieve perfect reconstruction, the scaling factors should

be: 0\k\1, 0\r� 1, kþ r[ 1. Mathematically, the

low-pass filter LfilterðxÞ and high-pass filter HfilterðxÞ are

expressed as follows (Selesnick 2011a), respectively :
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(b) PD patient with HY scale 2.
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(c) PD patient with HY scale 2.5.
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(d) PD patient with HY scale 3.

Fig. 4 Samples of PSR of the total force Z(t) under the right foot from HCs and PD patients with different HY scales
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LfilterðxÞ ¼

1; if j x j � ð1 � rÞp

#
xþ ðr� 1Þp
kþ r� 1

� �

; if ð1 � rÞp\ j x j \kp

0; if kp� j x j � p

8

>

>

>

<

>

>

>

:

ð7Þ

and

HfilterðxÞ ¼

0; if j x j � ð1 � rÞp

#
kp� x
kþ r� 1

� �

; if ð1 � rÞp\ j x j \kp

1; if kp� j x j � p

8

>

>

>

<

>

>

>

:

ð8Þ

where #ðxÞ is the frequency response of Daubechies filter

and is defined with the following expression:

#ðxÞ ¼ 0:5 � ð1 þ cosðxÞÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � cosðxÞ
p

; j x j � p:

ð9Þ

The Q-factor, R and maximum number of decomposition

level Jmax can be expressed in terms of parameters k and r
as follows:

Q ¼ fc
Bw

¼ 2 � r
r

; R ¼ r
1 � k

; Jmax ¼
logðrL=8Þ
logð1=kÞ ; ð10Þ

where L is the length of the analysed heart sound signal.

Detailed expressions of Q, R, Jmax, fc and Bw have been

provided in (Selesnick 2011a).

Consider sparse representation of a signal using two Q-

factors simultaneously. This problem can be used for

decomposing a signal into high and low resonance
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(b) PD patient with HY scale 2.
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(d) PD patient with HY scale 3.

Fig. 5 Samples of SEE of PSR of the total force Y(t) under the left foot from HCs and PD patients with different HY scales
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components (Selesnick 2011b), which is also named as

dual Q-factor signal decomposition (DQSD).

Consider the problem of expressing SEE of the PSR of a

given total force signal Y(t) under left foot as the sum of an

oscillatory signal y1ðtÞ and a non-oscillatory signal y2ðtÞ,
that is

SEEPSRYðtÞ ¼ y1ðtÞ þ y2ðtÞ: ð11Þ

The signal SEEPSRYðtÞ
is a measured signal, and y1ðtÞ and

y2ðtÞ are to be determined in such a way that y1ðtÞ consists

mostly of sustained oscillations and y2ðtÞ consists mostly of

non-oscillatory transients. As described in(Selesnick

2011b), such a decomposition is necessarily nonlinear in

SEEPSRYðtÞ
, and it cannot be accomplished using frequency-

based filtering. One approach is to model y1ðtÞ and y2ðtÞ as

having sparse representations using high Q-factor and low

Q-factor wavelet transforms respectively (Selesnick

2011b). In this case, a sparse representation of the signal

SEEPSRYðtÞ
using both high Q-factor and low Q-factor

TQWT jointly, making the identification of y1ðtÞ and y2ðtÞ
feasible. This approach is based on morphological com-

ponent analysis (MCA) (Starck 2005), a general method for

signal decomposition relying on sparse representations.

Denote TQWT1 and TQWT2 as the TQWT with two

different Q-factors (high and low Q-factors). Then the

sought decomposition can be achieved by solving the

constrained optimization problem:

argmin
w1;w2

k1jjw1jj1 þ k2jjw2jj1 ð12Þ

such that
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(d) PD patient with HY scale 3.

Fig. 6 Samples of SEE of PSR of the total force Z(t) under the left foot from HCs and PD patients with different HY scales
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SEEPSRYðtÞ ¼ TQWT�1
1 ðw1Þ þ TQWT�1

2 ðw2Þ: ð13Þ

For greater flexibility, we will use subband-dependent

regularization:

argmin
w1;w2

X

J1þ1

j¼1

k1;jjjw1;jjj1 þ
X

J2þ1

j¼1

k2;jjjw2;jjj1 ð14Þ

where wi;j denotes subband j of TQWTi for i ¼ 1; 2, Ji
represents the decomposition level of TQWTi for i ¼ 1; 2.

When w1 and w2 are obtained, we set

y1ðtÞ ¼ TQWT�1
1 ðw1Þ; y2 ¼ TQWT�1

2 ðw2Þ: ð15Þ

Given the signal SEEPSRYðtÞ
, the function returns signals

y1ðtÞ and y2ðtÞ. In addition, it returns sparse wavelet

coefficients w1 and w2 corresponding to y1ðtÞ and y2ðtÞ,
respectively.

Likewise, SEE of the PSR of the total force Z(t) under

the right foot can also be expressed as

SEEPSRZðtÞ ¼ z1ðtÞ þ z2ðtÞ: ð16Þ

SEEPSRZðtÞ ¼ TQWT�1
1 ðw1Þ þ TQWT�1

2 ðw2Þ; ð17Þ

where wi;j denotes subband j of TQWTi for i ¼ 1; 2, Ji
represents the decomposition level of TQWTi for i ¼ 1; 2.

When w1 and w2 are obtained, we set

z1ðtÞ ¼ TQWT�1
1 ðw1Þ; z2 ¼ TQWT�1

2 ðw2Þ: ð18Þ

Given the signal SEEPSRZðtÞ
, the function returns signals

z1ðtÞ and z2ðtÞ. In addition, it returns sparse wavelet coef-

ficients w1 and w2 corresponding to z1ðtÞ and z2ðtÞ,
respectively.

It can be seen in Figs. 7 and 8 that this procedure sep-

arates the given VGRF signal into two signals that have

quite different behavior. One signal (the high Q-factor

component) is sparsely represented by a high Q-factor

wavelet transform (Q ¼ 4). The second signal (the low Q-

factor component) is sparsely represented by a low Q-

factor wavelet transform (Q ¼ 1). Note that the high Q-

factor component consists largely of sustained oscillatory

behavior, while the low Q-factor component consists lar-

gely of transients and oscillations that are not sustained.

Variational mode decomposition (VMD)

VMD is aiming to decompose a composite input signal x(t)

(for example, y1ðtÞ,y2ðtÞ,
z1ðtÞ,z2ðtÞ) into n number of intrinsic modes lnðtÞ,

which have specific sparsity properties while reproducing

the input signal. The decomposition process can be written

as a constrained variational problem with the following

function:

min
ln;xn

X

K

n¼1

o

ot
dðtÞ þ j

pt

� �

� lnðtÞ
� �

e�jxkt

�

�

�

�

�

�

�

�

2

2

( )

;

subject to
X

K

n¼1

lnðtÞ ¼ xðtÞ;
ð19Þ

where K is the number of decomposition modes, o
ot ½��

denotes the partial derivative of a function, d is the Dirac

function, ‘�’ represents convolution computation, ln ¼
fl1; l2; :::; lng is the set of all modes, xn ¼
fx1;x2; :::;xng is the set of center frequency, t is the time

script, j is the complex square root of �1.

Considering a quadratic penalty term and Lagrange

multiplier g, the above-mentioned constrained variational

problem can be transferred into an unconstrained opti-

mization problem, which is represented as follows:

Lðflng; fxng; gÞ ¼ a
X

K

n¼1

o

ot
dðtÞ þ j

pt

� �

� lnðtÞ
� �

e�jxkt

�

�

�

�

�

�

�

�

2

2

þ xðtÞ �
X

K

n¼1

lnðtÞ
�

�

�

�

�

�

�

�

�

�

2

2

þ gðtÞ; xðtÞ �
X

K

n¼1

lnðtÞ
* +

;

ð20Þ

where L denotes the augmented Lagrangian, a is balancing

parameter of the data-fidelity constraint,‘h�i’ represents the

inner product.

Alternate direction method of multipliers (ADMM) has

been used to generate various decompose modes and centre

frequency at the time of shifting operation of each mode

(Dragomiretskiy and Zosso 2014). The solution of Eq. (20)

can be derived by using ADMM, in which the process of

the solution of ln and xn mainly consists of the following

steps:

• Step 1: Intrinsic mode update. The Wiener filtering is

embedded for updating the mode directly in Fourier

domain with a filter tuned to the current center

frequency. The solution for updated mode is obtained

as follows:

l̂jþ1
n ¼

x̂ðxÞ �
P

i6¼n

l̂iðxÞ þ ĝðxÞ
2

1 þ 2aðx� xnÞ2
; ð21Þ
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(a) Healthy controls.
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(b) PD patient with HY scale 2.
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(c) PD patient with HY scale 2.5.
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(d) PD patient with HY scale 3.
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(e) Healthy controls.
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(f) PD patient with HY scale 2.
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(g) PD patient with HY scale 2.5.
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(h) PD patient with HY scale 3.
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where j is the number of iterations, x̂ðxÞ, l̂iðxÞ and

ĝðxÞ represent the Fourier transforms of x̂ðtÞ, l̂iðtÞ and

ĝðtÞ, respectively.

• Step 2: Center frequency update. The center frequency

is updated as the center of gravity of the corresponding

mode’s power spectrum, which is represented as

follows:

x̂jþ1
n ¼

R1
0

xjl̂nðxÞj
2dx

R1
0

jl̂nðxÞj
2dx

ð22Þ

The complete algorithm of VMD can be found in

(Dragomiretskiy and Zosso 2014). Figures 9, 10, 11 and 12

demonstrate samples of the VMD of VGRF data

y1ðtÞ,y2ðtÞ,z1ðtÞ and z2ðtÞ from PD patients and HCs.

The VMD method can effectively capture narrow-band

and wide-band modes unlike the fixed bandwidth of sub-

abands as in the case of the wavelet transform based

decomposition approach (Babu et al. 2018). It is more

robust to noisy data. Since each mode is updated by Wiener

filtering in Fourier domain during the optimization process,

the updated mode is less affected by noisy disturbances.

Therefore, VMD can be more efficient for capturing the

signal’s short and long variations (Mishra et al. 2018;

Sujadevi et al. 2019). Hence, we apply the VMD method to

make up for the disadvantage of TQWT and serve as

complementary tool to more effectively extract features

from VGRF signals.

Feature extraction and selection

In order to obtain more efficient features, this paper pro-

poses the following extraction scheme.

(1) PSR of the VGRF data Y(t) and Z(t) under left and

right feet from HCs and PD patients.

(2) Extraction of SEE of the PSR of the VGRF data Y(t)

and Z(t).

(3) DQSD of the SEE of the PSR of the VGRF data Y(t)

and Z(t).

(4) VMD of the high and low Q-factor components of

the SEE of the PSR of the VGRF data Y(t) and Z(t).

The first six intrinsic modes are selected as feature

vectors ½yln1 ; y
ln
2 ; z

ln
1 ; z

ln
2 �T ; ðn ¼ 1; 2; :::; 6Þ. These

twenty-four features are fed to the following classi-

fication models for the early detection and severity

rating of PD patients.

Classification models

To carry out a comparative study, five popular ML meth-

ods, i.e., the support vector machine (SVM), K-nearest

neighbor (KNN), naive Bayes (NB) classifier, decision tree

(DT) and ensemble learning based Adaboost (ELA) clas-

sifier are evaluated because they are usually utilized to

solve the classification problem in nonlinear feature space.

For detailed introductions of these models, please refer to

references (Vapnik 1998; Zhang et al. 2017; Berger 2013;

Tanha et al. 2017; Wang et al. 2014; Freund and Schapire

1996).

Support vector machine (SVM)

SVM is a prevalent ML and pattern classification technique

which transforms data points into a high-dimensional fea-

ture space and identifies an optimum hyperplane separating

the classes present in the data (Vapnik 1998).

K-nearest neighbor (KNN)

KNN is an effective nonparametric classifier which per-

forms the classification by searching for the test data’s

k nearest training samples in the feature space (Zhang et al.

2017). It utilizes Euclidean or Manhattan distance as a

distance metric for the similarity measurement.

Naive Bayes (NB) classifier

NB classifier is a probabilistic method relying on the

assumption that every pair of features involved are inde-

pendent of each other whose weights are of equal impor-

tance (Berger 2013). The main advantages of NB are the

conditional independence assumption, which lead to a

quick classification and the probabilistic hypotheses (re-

sults obtained as probabilities of belonging of each class).

Decision tree (DT)

In DT, features are used as input to construct a tree

structure in which several rules are extracted to recognize

the class of the test data (Tanha et al. 2017).

Ensemble learning based Adaboost (ELA) classifier

Ensemble learning techniques combine the outputs of

several base classification techniques to form an integrated

output and enhance classification accuracy. Compared to

other ML methods that try to learn one hypothesis from the

training data, ensemble learning relies on constructing a set

of hypotheses and combines them for use (Wang et al.

bFig. 7 Samples of high and low Q-factor components y1ðtÞ and y2ðtÞ
of SEE of PSR of the total force Y(t) under the left foot from HCs and

PD patients with different HY scales
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500 1000 1500 2000 2500 3000 3500 4000
Data points

-1.5

-1

-0.5

0

0.5

1

1.5

y 1

High Q-factor component z 1(t) of SEE of PSR of the Z(t) signal

(c) PD patient with HY scale 2.5.
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(d) PD patient with HY scale 3.
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(e) Healthy controls.

500 1000 1500 2000 2500 3000 3500 4000
Data points

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y 2
Low Q-factor component z 2(t) of SEE of PSR of the Z(t) signal

(f) PD patient with HY scale 2.
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(g) PD patient with HY scale 2.5.
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(h) PD patient with HY scale 3.

Fig. 8 Samples of high and low

Q-factor components z1ðtÞ and

z2ðtÞ of SEE of PSR of the total

force Z(t) under the right foot

from HCs and PD patients with

different HY scales

Cognitive Neurodynamics (2024) 18:109–132 121

123



2014). For the popular Boosting ensemble method, we

adopt the addative boosting (Adaboost) algorithm (Freund

and Schapire 1996) in this study.

Each classification model requires one or several

parameters that control the prediction outcome of the

classifier. Choosing the best values for these parameters is

difficult and involves finding a trade-off between the

model’s complexity and its generalization ability. In the

present study, we adopt the popular radial basis function

(RBF) kernel for SVM classifier. The parameter C is the

penalty coefficient. The higher C is, the more the classifier

cannot tolerate errors, which will lead to overfitting, and

the lower C is, the less likely there will be underfitting. The

parameter gamma affects the number of support vectors in

the model. The relationship between the size of gamma and

the number of support vectors is: when gamma is larger,

the support vector is lower; when gamma is smaller, the

support vector is higher. The penalty coefficient is set C =

2.25, and the gamma in the RBF function is set gamma =

0.028. For KNN classifier, different values for k are tested;

the system operates best when the number of neighbors is

ten (k = 10). The distance matrix calculation approach is

Euclidean, and the distance weight is kept equal. In NB

classifier, the Gaussian kernel function with unbounded

support vector is configured, and the multivariate multi-

nomial predictor is set for categorical predictions. In DT

classifier, Gini’s diversity index is chosen as a split crite-

rion with the maximum number of splits being 100 and the

surrogate decision splits per node being 10. In ELA clas-

sifier, the number of learners is assigned as 50 and the

maximum number of splits is set as 200 with the learning

rate of 0.1.

Experimental results

Several experiments are conducted to test the ability of the

proposed features on different classifiers. For the evalua-

tion, seven performance parameters are used including the

Sensitivity (SEN), the Specificity (SPF), the Accuracy

(ACC), the Positive Predictive Value (PPV, which is also

referred to as precision), the Negative Predictive Value

(NPV), the Matthews Correlation Coefficient (MCC) and

F1 score. These measurements are defined as follows (Azar

and El-Said 2014):

SEN ¼ TP

TP + FN
� 100ð%Þ ð23Þ
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(c) PD patient with HY scale 2.5.
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(d) PD patient with HY scale 3.

bFig. 9 Samples of VMD of y1ðtÞ from HCs and PD patients with

different HY scales
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SPF ¼ TN

TN + FP
� 100ð%Þ ð24Þ

ACC ¼ TP + TN

TP + TN + FN + FP
� 100ð%Þ ð25Þ

PPV ¼ TP

TP + FP
� 100ð%Þ ð26Þ

NPV ¼ TN

TN + FN
� 100ð%Þ ð27Þ

MCC ¼ TP � TN-FN � FP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP + FNÞðTP + FPÞðTN + FNÞðTN + FPÞ
p

ð28Þ

F1 score ¼ 2 � TP

2 � TP + FN + FP
ð29Þ

where TP is the number of true positives, FN is the number

of false negatives, TN is the number of true negatives and

FP is the number of false positives. The sensitivity and

specificity correspond to the probabilities that PD patients

and healthy controls, respectively, are correctly classified.

To be accurate, a classifier must have a high classification

accuracy, a high sensitivity, as well as a high specificity

(Chu 1999). For a larger value of MCC, the classifier

performance will be better (Azar and El-Said 2014; Yuan

et al. 2007). F1 score, which conveying the accuracy of the

model, is the weighted harmonic mean of precision and

sensitivity.

Binary and multi-class classification problems are dealt

with by using five classification models: SVM, KNN, NB,

DT and ELA. 10-fold cross-validation technique is used

and performance outcome such as SEN, SPF, ACC, PPV,

NPV, MCC and F1 score is calculated to obtain reliable

and stable evaluation on the performance of the proposed

method. For the 10-fold cross-validation, the data set is

divided into ten subsets. Each time, one of the ten subsets is

used as the test set and the other night subsets are put

together to form a training set. As such, every fold has been

used nine times as train data and one time as test data. The

final result is the average of the 10 implementations. All

experiments described in Table 2 focus on early PD

detection and severity rating. Case 1 deals with the binary

classification while Case 2 accomplishes four-class classi-

fication, respectively.

For a visual display of the classification results between

PD patients and HCs, the confusion matrices obtained by

the proposed five classifiers are shown in Tables 3, 4, 5, 6

and 7. Summary of the classification performance outcome

of Case 1 for the five classifier models is illustrated in
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(d) PD patient with HY scale 3.

bFig. 10 Samples of VMD of y2ðtÞ from HCs and PD patients with

different HY scales
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Table 8 with 10-fold cross-validation style. Among the five

classifier models, the SVM classifier achieves the best

classification performance.

The classification performance outcome of Case 2 for

the five classifier models is illustrated in Tables 9, 10, 11,

12 and 13. Summary of the overall average classification

performance of Case 2 for the five classifier models is

illustrated in Table 14. Among the five classifier models,

the SVM classifier achieves the best classification

performance.

To further elucidate the performance of the five machine

learning classifiers, Fig. 13 demonstrates the ROC curves

in binary and multi-class classification, respectively.

Discussion

Literature reveals that various methods have been proposed

in recent years for the classification of gait signals in binary

(for example, HVs vs PD patients) and multi-class (for

exmaple, HCs vs PD with HY 2 vs PD with HY 2.5 vs PD

with HY 3) classification problems. We present and discuss

about the experimental results for different cases regarding

early PD detection and severity rating. Comparisons with

state-of-the-art methods are illustrated in Tables 15 and 16

by using 10-fold cross-validation on the same Physionet

database.

For the binary classification, Aydin and Aslan (2021)

used Hilbert-Huang Transform (HHT) to extract features

from VGRF data coming from sixteen sensors on the

bottom of both feet. Then 16 features were fed to the

classifier constructed by vibes algorithm and classification

and regression trees. The reported accuracy was 96.68%.

Alkhatib et al. (2020) extracted features from VGRF by

using center of pressure (COP) path and load distribution

and fed them to the linear discriminant analysis (LDA)

classifier. Overall classification accuracy was recorded to

be 95%. Alam et al. (2017) used the swing time, stride time

variability, and center of pressure features extracted from

VGRF data and fed to the SVM classifier. The reported

accuracy was 95.7%. Balaji et al. (2020) proposed statis-

tical analysis for feature selection from 16 VGRF data.

Nine discriminant features were selected and fed to four

machine learning classifiers for classification and the

reported highest accuracy for four-class classification was

99.4% with a DT classifier. El Maachi et al. (2020) pro-
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(d) PD patient with HY scale 3.

bFig. 11 Samples of VMD of z1ðtÞ from HCs and PD patients with

different HY scales
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posed 1D convolutional neural network (1D-Convnet) to

build a Deep Neural Network (DNN) classifier. This model

was using 18 1D-signals coming from VGRF without any

handcrafted features. The reported accuracy for binary and

four-class classification was 98.7% and 85.3%, respec-

tively. Veeraragavan et al. (2020) used VGRF data to

compute the initial contact of right foot (ICR), initial

contact of left foot (ICL), terminal contact of the right

(TCR) and terminal contact of left foot (TCL) as gait

features. Then they were fed to the ANN model for clas-

sification and the reported accuracy for binary and four-

class classification was 87.9% and 76.08%, respectively.

Overall, our classification approach achieves greatest

accuracy, especially in binary classification. For multi-

class classification, although our classification accuracy is

not higher than that reported in (Balaji et al. 2020), we

present a new classification tool together with building a

novel feature vector rather than using directly the VGRF

signals. In addition, we used 24 features which are less than

26 features reported in (Balaji et al. 2020). The results

indicate that the proposed system can be effective for the

classification of gait patterns between HCs and PD patients.

The proposed method serves not only as a measure of

kinematic variability and discrimination between two

groups of HCs and PD patients, but also as a potential and

useful artificial intelligent tool in planning ongoing pre-

diction of PD progress, as an alternative or supportive

technical means to other diagnostic approaches such as

MRI, CT, etc.

Conclusion

This study investigated the performance of novel gait

features extracted from VGRF data on five classification

models for discriminating gait patterns between HCs and

PD patients. The results of this study indicate that the

pattern classification of VGRF data can offer an objective

and non-invasive method to assess the gait disparity

between HCs and PD patients with different HY scales.

Hybrid signal processing methods can extract discriminant

features to figure out the gait disparity between different

groups of gait patterns.These results demonstrate the

potential of the proposed technique for early PD detection

and severity rating through pathological gait patterns rep-

resented by VGRF on different classification models. Dif-

ferent from most of the previous machine learning based

approaches which deal with binary classification problem
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bFig. 12 Samples of VMD of z2ðtÞ from HCs and PD patients with

different HY scales
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Table 2 Different experimental

cases in the present study
Case Groups Description

Class 1 Class 2 Class 3 Class 4

1 HCs-PD HCs PD patients – –

2 HCs-HY2-HY2.5-HY3 HCs PD with HY 2 PD with HY 2.5 PD with HY 3

Table 3 The confusion matrix for Case 1: binary classification with

SVM classifier

True
positive=92PD

PD

False
negative=1

HCs

False
positive=1HCs

True
negative=72

Actual
value

Prediction outcome

Table 4 The confusion matrix for Case 1: binary classification with

KNN classifier

True
positive=90PD

PD

False
negative=3

HCs

False
positive=3HCs

True
negative=70

Actual
value

Prediction outcome

Table 5 The confusion matrix for Case 1: binary classification with

NB classifier

True
positive=91PD

PD

False
negative=2

HCs

False
positive=2HCs

True
negative=71

Actual
value

Prediction outcome

Table 6 The confusion matrix for Case 1: binary classification with

DT classifier

True
positive=89PD

PD

False
negative=4

HCs

False
positive=2HCs

True
negative=71

Actual
value

Prediction outcome
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that detects only the presence of PD, the proposed approach

carries out a multi-class classification and quantify the

stages of PD.

In terms of the limitations in the present study, there are

two concerns: (1) the method was evaluated on a relatively

small size of database. Future work will include a clinical

validation of the proposed technique with a larger number

of PD patients with different HY scales and age-matched

healthy controls. (2) there are only VGRF gait signals

extracted from the participants. Various gait signals like

joint angles, angular velocity and acceleration, kinetic

parameters (force, moment, etc) may also be considered in

future work to comprehensively reflect the characteristic of

pathological and normal gait patterns between HCs and PD

patients. This may offer better prediction of PD stages

based on HY scale.

Table 7 The confusion matrix for Case 1: binary classification with

ELA classifier

True
positive=92PD

PD

False
negative=1

HCs

False
positive=3HCs

True
negative=70

Actual
value

Prediction outcome

Table 8 Performance of the

proposed classification

approaches evaluated by 10-fold

cross-validation method with

Case 1: HCs-PD

Classifier SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC F1 score

SVM 98.92 98.63 98.8 98.92 98.63 0.976 0.989

KNN 96.77 95.89 95.89 96.77 95.89 0.927 0.968

NB classifier 97.85 97.26 97.59 97.85 97.26 0.951 0.979

Decision tree 95.7 97.26 96.39 97.8 94.67 0.927 0.967

ELA classifier 98.92 95.89 97.59 96.84 98.59 0.951 0.979

The bold entries are used to highlight the significance of our experimental results

Table 9 Performance of the proposed classification approach evaluated by 10-fold cross-validation method for Case 2: four-class classification

with SVM classifier

Evaluation methods Predicted

groups

Actual groups SEN

(%)

SPF

(%)

ACC

(%)

PPV

(%)

NPV

(%)

MCC F1 score

(%)

HY

2

HY

2.5

HY

3

HCs

10-fold cross-

validation

HY 2 53 1 0 1 96.36 95.5 95.78 91.38 98.15 0.907 0.938

HY 2.5 2 25 1 0 89.29 97.1 95.78 86.21 97.81 0.852 0.877

HY 3 1 2 7 0 70 99.36 97.59 87.5 98.1 0.771 0.778

HCs 2 1 0 70 95.89 98.92 97.59 98.59 96.84 0.951 0.972

Cognitive Neurodynamics (2024) 18:109–132 127

123



Table 10 Performance of the proposed classification approach evaluated by 10-fold cross-validation method for Case 2: four-class classification

with KNN classifier

Evaluation methods Predicted

groups

Actual groups SEN

(%)

SPF

(%)

ACC

(%)

PPV

(%)

NPV

(%)

MCC F1 score

(%)

HY

2

HY

2.5

HY

3

HCs

10-fold cross-

validation

HY 2 50 2 2 1 90.91 94.59 93.37 89.29 95.45 0.851 0.901

HY 2.5 2 23 2 1 82.14 95.65 93.37 79.31 96.35 0.767 0.807

HY 3 2 2 5 1 50 96.79 93.98 50 96.79 0.468 0.5

HCs 2 2 1 68 93.15 96.77 95.18 95.77 94.74 0.902 0.944

Table 11 Performance of the proposed classification approach evaluated by 10-fold cross-validation method for Case 2: four-class classification

with NB classifier

Evaluation methods Predicted

groups

Actual groups SEN

(%)

SPF

(%)

ACC

(%)

PPV

(%)

NPV

(%)

MCC F1 score

(%)

HY

2

HY

2.5

HY

3

HCs

10-fold cross-

validation

HY 2 49 3 2 1 89.09 94.59 92.77 89.09 94.59 0.837 0.891

HY 2.5 2 23 2 1 82.14 94.93 92.77 76.67 96.32 0.750 0.793

HY 3 1 2 6 1 60 96.79 94.58 54.55 97.42 0.543 0.571

HCs 3 2 1 67 91.78 96.77 94.58 95.71 93.75 0.890 0.937

Table 12 Performance of the proposed classification approach evaluated by 10-fold cross-validation method for Case 2: four-class classification

with DT classifier

Evaluation methods Predicted

groups

Actual groups SEN

(%)

SPF

(%)

ACC

(%)

PPV

(%)

NPV

(%)

MCC F1 score

(%)

HY

2

HY

2.5

HY

3

HCs

10-fold cross-

validation

HY 2 50 2 2 1 90.91 94.59 93.37 89.29 95.45 0.851 0.901

HY 2.5 3 22 3 0 78.57 96.38 93.37 81.48 95.68 0.761 0.8

HY 3 1 2 5 2 50 96.15 93.37 45.45 96.77 0.442 0.476

HCs 2 1 1 69 94.52 96.77 95.78 95.83 95.74 0.914 0.952

Table 13 Performance of the proposed classification approach evaluated by 10-fold cross-validation method for Case 2: four-class classification

with ELA classifier

Evaluation methods Predicted

groups

Actual groups SEN

(%)

SPF

(%)

ACC

(%)

PPV

(%)

NPV

(%)

MCC F1 score

(%)

HY

2

HY

2.5

HY

3

HCs

10-fold cross-

validation

HY 2 51 2 1 1 92.73 96.4 95.18 92.73 96.4 0.891 0.927

HY 2.5 1 23 2 2 82.14 97.1 94.58 85.19 96.4 0.804 0.836

HY 3 2 1 7 0 70 97.44 95.78 63.64 98.06 0.645 0.667

HCs 1 1 1 70 95.89 96.77 96.39 95.89 96.77 0.927 0.959
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Table 14 Summary of the overall average classification performance evaluated by 10-fold cross-validation for Case 2 with five different

classifiers

Classifier TP TN FP FN SEN (%) SPF (%) ACC (%) PPV (%) NPV (%) MCC F1 score (%)

SVM 155 487 11 11 93.37 97.79 96.69 93.37 97.79 0.912 0.934

KNN 146 478 20 20 87.95 95.98 93.98 87.95 95.98 0.839 0.880

NB 145 477 21 21 87.35 95.78 93.67 87.35 95.78 0.831 0.874

DT 146 478 20 20 87.95 95.98 93.98 87.95 95.98 0.839 0.880

ELA 151 483 15 15 90.96 96.99 95.48 90.96 96.99 0.880 0.910

The bold entries are used to highlight the significance of our experimental results
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(b) Multi-class classification

Fig. 13 The receiver operating characteristics (ROC) curves for five

classifiers of binary and multi-class classification task: a Binary

classification; b Multi-class classification. The SVM classifier is

superior to others classifiers with an AUC under both conditions.

AUC: area under the curve

Table 15 Comparing the performance (10-fold cross-validation style) in binary classification between HCs and PD patients using different

methods

Reference Feature extraction Classifier SEN

(%)

SPF

(%)

ACC

(%)

Aydin and Aslan

(2021)

Hilbert-Huang transform Vibes algorithm and

regression trees

98.39 96.57 96.68

Alkhatib et al. (2020) Center of pressure path and load distribution Linear discriminant analysis n/a n/a 95

Alam et al. (2017) The swing time, stride time variability, and center of

pressure

SVM 94.4 96.6 95.7

El Maachi et al.

(2020)

18 1D-signals coming from VGRF without any

handcrafted features

1D convolutional neural

network

98.1 100 98.7

Veeraragavan et al.

(2020)

ICR, ICL, TCR and TCL ANN n/a n/a 87.9

Proposed method PSR, SEE, DQSD and VMD SVM 98.92 98.63 98.8
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