
RESEARCH ARTICLE

3D Convolution neural network with multiscale spatial and temporal
cues for motor imagery EEG classification

Xiuling Liu1,2 • Kaidong Wang1,2 • Fengshuang Liu1,2 • Wei Zhao3 • Jing Liu3

Received: 9 November 2021 / Revised: 1 August 2022 / Accepted: 6 September 2022 / Published online: 2 November 2022
� The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Recently, deep learning-based methods have achieved meaningful results in the Motor imagery electroencephalogram (MI

EEG) classification. However, because of the low signal-to-noise ratio and the various characteristics of brain activities

among subjects, these methods lack a subject adaptive feature extraction mechanism. Another issue is that they neglect

important spatial topological information and the global temporal variation trend of MI EEG signals. These issues limit the

classification accuracy. Here, we propose an end-to-end 3D CNN to extract multiscale spatial and temporal dependent

features for improving the accuracy performance of 4-class MI EEG classification. The proposed method adaptively

assigns higher weights to motor-related spatial channels and temporal sampling cues than the motor-unrelated ones across

all brain regions, which can prevent influences caused by biological and environmental artifacts. Experimental evaluation

reveals that the proposed method achieved an average classification accuracy of 93.06% and 97.05% on two commonly

used datasets, demonstrating excellent performance and robustness for different subjects compared to other state-of-the-art

methods.In order to verify the real-time performance in actual applications, the proposed method is applied to control the

robot based on MI EEG signals. The proposed approach effectively addresses the issues of existing methods, improves the

classification accuracy and the performance of BCI system, and has great application prospects.
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Introduction

A brain-computer interface (BCI) is a system that connects

the human brain with computational devices by decoding

neuronal activity (Lotte et al. 2018). EEG is among the

most widely used BCI signals because of its non-invasive

nature, high temporal resolution and low cost.Motor ima-

gery electroencephalogram (MI EEG) is the only BCI

paradigm that reflects a user’s voluntary conscious move-

ment consciousness without any external stimuli. It is a

promising technology owing to its very widespread

domains in both medical applications and human aug-

mentation technologies (Zhang et al. 2019). When a sub-

ject actively imagines a body movement, the power of l (8-

12 Hz) and b (16-26 Hz) rhythms decrease or increase in

their brain’s sensorimotor cortex area of the contralateral

and ipsilateral hemispheres, which is denoted as event-re-

lated desynchronization (ERD) and event-related synchro-

nization (ERS), respectively. The core problem of MI EEG

classification is that of decoding the low signal-to-noise
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ratio (SNR) and significant individual variance of MI EEG

signals into correct instructions effectively. In this study,

our goal is to accurately analyze brain activity for helping

people, such as post-stroke and paralyzed patients, to solve

the problem of communication with the outside world.

Numerous studies have reported on the classification of

MI EEG signals. These studies can be divided into two

categories, including machine learning- and deep learning-

based methods. Here, we only provide a general summary;

more details can be found in Sect. 2.

Conventional machine learning (ML)-based MI EEG

classification methods consist of hand-crafted feature

extraction and subsequent different objective feature clas-

sifiers. The most popular method is the common spatial

pattern (CSP) and its variants (Ang et al. 2012; Kwon et al.

2019; Dong et al. 2020). However, the effectiveness of

CSP is highly affected by the frequency band and time

window of the EEG segments’ range for each subject,

which influences the final performance.

In addition to CSP-based methods, other ML-based

methods combined with other feature extraction algorithms

can also extract potentially valuable components of EEG

signals and show satisfactory results on MI classification

tasks (Xie et al. 2016; Miao et al. 2021). Unfortunately,

because they generally depends on manually designed

features based on human knowledge and experience to

extract features at a fixed time period or frequency band,

the existing ML-based methods are not capable of

achieving a high-performance MI EEG classification (Gaur

et al. 2021).

In contrast, deep learning (DL) integrates the feature

extraction phase and the feature classification phase into a

single end-to-end architecture to jointly learn all parame-

ters, and has achieved excellent performance in medical

image processing (Zhang et al. 2020), computer-aided

diagnosis (Zhang et al. 2019), and computer vision (Pang

et al. 2020). In contrast to machine learning-based algo-

rithms, deep learning-based methods are empowered to

learn distinct high-level representations from raw brain

signals without the limitation of human handcrafted fea-

tures, and have been proven to be more suitable for EEG

single processing (Penaloza and Nishio 2018). Therefore,

researchers have paid more attention to the DL-based

methods for multi-class MI EEG classification

(Schirrmeister et al. 2017; Dai et al. 2020). In addition,

with the development of graphics processing units, the real-

time performance of MI EEG classification has also been

enhanced (Zhao et al. 2019; Li et al. 2019; Zhang et al.

2021). According to the input format definition, two main

branches of research have been developed in DL-based

multiclass MI EEG classification methods. One is to take

the feature maps extracted from the original MI EEG

signals as input, and the other directly focuses on the input

format as the original MI EEG signals.

The first case represents MI EEG signals into a series of

two-dimensional feature maps as the input format for

reducing noise and enhancing low SNR signals by manu-

ally selected feature extraction methods (Lei et al. 2019;

Ma et al. 2020; Sun et al. 2021). However, the key

potential problem of the feature-based input case is that the

extracted features must be manually designed by human

experts. More importantly, MI EEG signals are non-sta-

tionary and easily corrupted by various biological fluctua-

tions and events (e.g., eye blinks, muscle artifacts, fatigue,

and concentration levels), which results in different sub-

jects exhibiting activities in different time periods, and the

most optimal features being subject-specific. Therefore, it

is difficult to manually choose a suitable feature extraction

method across subjects, which usually leads to poor gen-

eralization ability and low decoding performance for multi-

class classification tasks.

Another input format of the network is to represent the

original MI signal as a two-dimensional array, which takes

the number of time sampling points as the array width and

the number of electrodes as the array height (Schirrmeister

et al. 2017; Hong et al. 2021; Liu et al. 2021). However,

when representing the raw MI EEG as a 2D array input in

the abovementioned manner, deep learning-based methods

typically omit the spatial dependencies of MI EEG data,

which has been proven to be important for improving the

classification performance (Bashivan et al. 2015). Nor can

the correlation among nearby sampling electrodes cannot

be fully reflected the 2D array. Consequently, the final

performance of the MI classification model is affected. To

address these issues, some studies have attempted to

incorporate a topological structure into deep learning

architectures (Zhao et al. 2019; Zhang et al. 2019).

However, MI EEG data are recorded from many elec-

trodes (typically 32, 64, 128, and even more) placed at

different locations across the brain. Each electrode channel

EEG signal is a time sequence whose features also vary

over time and exhibit significant variations between dif-

ferent individuals and different tasks. Some researchers

have used feature selection algorithms after applying the

channel selection algorithms to further improve the system

performance (Li et al. 2019; Zhang et al. 2021; Li et al.

2020). Therefore, how to determine the best optimal ones

remains a changeling question (Baig et al. 2020).

Based on the above discussion, MI EEG classification

task still has the following problems.

• The traditional 2D representation of MI EEG does not

consider spatial topological dependencies among elec-

trode channels. Furthermore, the correlation among

nearby electrode channels cannot be fully reflected
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using a traditional 2D convolution kernel. As a result,

the performance of MI EEG classification systems is

affected.

• The purpose of EEG electrode channel selection is to

determine the most discriminative EEG nodes. The

motor regions (C3, C4, and CZ) are three commonly

hand-selected channels located in the brain motor

regions, which may have certain effects on different

subjects or MI tasks.

• A subject usually concentrates at some time but is

distracted at the other times, and different subjects pay

attention at different times within a trial. Therefore,

emphasizing the EEG temporal slices when a subject

concentrates in the trial while neglecting the other slices

is necessary for successful EEG analysis. Therefore,

adequately extracting time-invariant high-level tempo-

ral features from a temporal slice to encode temporal

information for a higher and more robust classification

of different subjects is problematic.

To address these issues, we propose a end-to-end 3D CNN

to extract multiscale spatial and temporal dependent fea-

tures (MST-3DCNN) for the 4-class motor imagery clas-

sification tasks. MST-3DCNN is specifically composed of a

3D representation, a 3D spatial attention module (3D-

SAM), multiscale temporal attention module (MS-TAM),

and dense fused classification module.

The goal of 3D-SAM and MS-TAM is to adaptively

assign higher weights to motor-related spatial channels and

temporal sampling cues than motor-unrelated ones across

all brain regions. They can define a new compact feature

representation of MI EEG in space and time domains and

prevent influences caused by biological and environmental

artifacts to improve classification performance.

The major contributions of this study are summarized as

follows.

1. An end-to-end 3D convolution neural network with

multiscale spatial and temporal cues was proposed for

4-class MI EEG classification tasks. It can further

improve the robustness and accuracy of subject-

dependent and subject-independent data with limited

annotation data.

2. To validate the robustness and accuracy, we carried out

comprehensive experiments on two public benchmark

datasets. The results demonstrate the superior general-

ization performance of the proposed methods, which

exhibited significantly higher classification accuracy

than the state-of-the-art methods.

3. We provide insight into the intrinsic patterns inherent

in MI EEG signals to explain the reason that the

proposed approach enhanced the feature representation

capability and obtaining more distinct feature repre-

sentations for high-level applications.

4. To validate the real-time capability of the proposed

method, we design a 4-class trial to acquire an MI EEG

dataset. Then, a BCI-based NAO robot system was

developed through the online decoding of our acquired

MI EEG signals.

The remainder of this study is organized as follows.

‘‘Previous works’’ section provides a description of the

challenge. ‘‘Method’’ section discusses the details of the

proposed method. The experimental results and discussion

are presented in ‘‘Experiment results and discussion’’ sec-

tion. Finally, ‘‘Conclusion’’ section provides our final

conclusions and suggests some potential avenues for fur-

ther research.

Previous works

Studies on MI EEG signal classification are divided into

two categories: machine learning and deep learning-based

methods.

Among the ML-based methods, the filter bank common

spatial pattern (FBCSP) algorithm is a representative

method using the common spatial pattern (CSP). It

improved the classification accuracy by performing

autonomous selection of the discriminative subject-specific

frequency range for bandpass filtering of the EEG mea-

surements. Ang et al. (2012). A sparse filter band common

spatial pattern (SFBCSP) algorithm (Zhang et al. 2015)

was proposed to automatically estimate significant CSP

features on multiple signals from raw EEG data at a set of

overlapping bands, which is considered as a potential

method for improving the performance of MI EEG. How-

ever, the effectiveness of CSP is highly affected by the

frequency band and time window of the EEG segment

range for each subject, which influences the final

performance.

The DL-based multiclass MI EEG classification meth-

ods consist of two categories, including those of the feature

map-based input case and those of the original signal-based

input case.

The first is to use the feature maps from MI EEG signals

as input to reduce the effect of noise and enhance low SNR

signals. Sun et al. (2021) proposed a new framework called

sparse spectro-temporal decomposition and a CNN for MI-

EEG classification tasks. Instead of using conventional

time-frequency analysis methods for feature extraction, a

sparse spectro-temporal decomposition method was pro-

posed to enforce sparsity of EEG signals on the time-fre-

quency plane, overcoming the drawbacks of the

conventional model and enhancing the ERS and ERD

phenomena. Xu et al. (2020) proposed a unified time-fre-

quency energy calculation architecture to learn a
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topographical representation data structure of brain activ-

ities from EEG data with frequency band handle selection.

They constructed an appropriate data structure by indicat-

ing the intrinsic connections of brain activity status in EEG

to reduce computational complexity.

In contrast, the other format directly takes the original

MI EEG as input. Schirrmeister et al. (2017) verified the

feasibility of decoding MI EEG data using a convolutional

neural network (CNN). They described architectural choi-

ces and training strategies for CNNs on EEG data,

including how to represent the EEG input formations.

Three CNN architectures were used in their study, and

several specific design choices were evaluated for these

architectures. Lawhern et al. (2018) used depthwise and

separable convolutions to construct a compact EEG-

specific network for the precise classification of EEG sig-

nals. Hong et al. (2021) proposed a dynamic joint domain

adaptation network based on an adversarial learning strat-

egy to learn domain-invariant feature representation and

improve MI EEG classification performance in the target

domain by leveraging useful information from the original

EEG signals.

However, most DL-based classification methods use a

single receptive kernel size in a limited number of con-

volutional layers, which has to change the parameters of

the network for different subjects and cannot extract high-

level features to improve the classification accuracy.

Therefore, Amin et al. (2019) proposed a multi-layer CNN

architecture for fusing different features. It contained dif-

ferent convolutional features with different depths and fil-

ter sizes to capture spatial and temporal features from raw

EEG data to improve the accuracy of MI EEG classifica-

tion. Dai et al. (2020) introduced a hybrid-scale CNN

classification architecture to enhance the information in

different domains (time, frequency, and space) with dif-

ferent convolution scales, and exploited an optimal con-

volution scale varying from subject to subject. They also

generated artificial training data based on real training data

to improve classification accuracy when the available

training data were limited. Liu et al. (2021) attempted to

fuse different models using their complementary charac-

teristics to develop a multiscale space-time-frequency

feature-guided multitask learning CNN architecture. Their

method includes a multitask learning framework in which

four modules are trained simultaneously and jointly opti-

mized in an end-to-end manner.

However, representing the raw MI EEG as a 2D array

usually omits the spatial information of MI EEG data,

which is important for the final classification performance

(Bashivan et al. 2015). Some studies have attempted to

incorporate a topological structure into a deep learning

architecture. The 1D-vector EEG format with the location

information of electrodes was mapped to a 2D mesh-like

EEG signal, which was further employed to form 3D for-

mat data that was fed to the designed 3DCNN (Zhang et al.

2019). Zhao et al. (2019) proposed a 3D representation by

transforming the original EEG signals into a sequence of

2D arrays that contain the spatial structure of all electrodes.

A multi-branch 3D CNN with different receptive field sizes

is designed to extract high-level MI EEG-related features.

In addition, MI EEG data were recorded from many

electrodes placed at different locations across the brain.

Gong et al. (2018) selected signal channels in motor

regions, such as (C3, C4, and CZ). Furthermore, Li et al.

(2019) employed raw multi-channel EEG as inputs to

capture the multi-scale temporal features of EEG signals

using a channel-projection mixed-scale convolutional

neural network. However, because the strength of the MI

EEG signals varies between subjects, it is impossible to

determine exactly which brain regions are most associated

with MI for different people (Ma et al. 2019). All brain

functional areas may have certain effects on different MI

tasks, instead of only the motor regions.However, all

electrodes were selected by a priori knowledge, which

might lead to missing some information available in other

channels.

Li et al. (2020) proved the feasibility of improving the

classification performance with the attention mechanism.

They introduced the attention mechanism to a multi-scale

fusion convolutional neural network. Their network

extracted multi-scale features from multi-brain regions

representation signals and was supplemented by a dense

fusion strategy to retain the maximum information flow.

As may be noted from the discussion above, previous

algorithms have usually resulted in methods of extracting

general representations involving significant limitations, as

well as a low accuracy for subject-specific and subject-

independent classification

Method

In this section, the detailed configurations of the MI clas-

sification architecture are presented. As shown in Fig. 1

and Table 1. The proposed architecture is an end-to-end

framework that can be trained using standard back-

propagation.

First, we explain the definition of 3D representations.

Let Xi
j be the original MI EEG signal, where Xi

j 2 RC�T

represents the i� th trial of j� th subject as a traditional

2D matrix in which the width of the matrix is the number

of discretized time sampling points (T) and the height of

the matrix is the number of electrode channels (C). How-

ever, as discussed above, traditional 2D representation Xi
j
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cannot fully reflect the correlation among nearby electrode

channels without considering the space topological

dependencies among them. Therefore, as shown in Fig. 2,

we expanded the traditional 2D matrix Xi
j to a 3D tensor

(Mi
j) by using the locations of the EEG electrode channels.

For example, the color number k in Mi
j (see Fig. 2c)

indicates that it has the same relative location as the

electrode channel k in Fig. 2a, whose temporal sampling

values are formed as sequential data in Mi
j . The blue

number 0 in Mi
j indicates that there was no electrode

channel, and its temporal sampling values were zero. The

purpose of adding zero to Mi
j is to retain Mi

j as a 3D cube

tensor, to support the use of 3D convolution without

introducing any noise.

This 3D representation not only uses the electrode dis-

tribution to explicitly preserve the relative space topolog-

ical information between electrode channels, but also uses

the sequential form of temporal sampling values to pre-

serve the temporal information. Therefore, it is easily used

to extract spatiotemporal features using 3D convolution.

Fig. 1 Schematic architecture of the proposed method. The color

cuboids are extracted features in different phases, and their

corresponding sizes are indicated around cuboids. The convolution

and pooling operations are listed in the arrow line. a The 3D spatial

feature extraction phase and multiscale temporal feature extraction

phase are shown in the green and pink rectangles, respectively. b

Dense fused Feature classification phase. Mi
j is the 3D representation

of the i� th trial of j� th subject
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Spatial feature extraction

As shown by the green rectangle in Fig. 1, based on the 3D

representation, the purpose of this section is to automati-

cally explore most motor-related discriminative spatial

dependent features and the corresponding hierarchical

correlation between any two electrode channels. It is

independent of subjects, MI tasks, and manual-selected

parameters, which can eliminate artifacts caused by man-

ually selected channels and adaptively improve the accu-

racy on different subjects or MI tasks.

1. 3D spatial feature attention module (3D-SAM) learns

a new 3D spatial representation of Mi
j , which auto-

matically assigns higher weights to the most motor-

related channels and lower weights to the motor-un-

related channels (see Fig. 2 ).

• As shown in Fig. 3 and Table 2, Mi
j is first fed into

three separable 3D convolutions (Conv3d 1,

Conv3d 2, Conv3d 3) to generate different 3D

spatial feature blocks L1, L2 and L3, respectively.

L1, L2 and L3 belong to RC1�T�H�W , and C1 is 4,

which indicates the number of feature blocks.

Furthermore, L1, L2 and L3 are reshaped and

transposed (RT1, RT2 and RT3) to different sizes

as RðH�WÞ�ðC1�TÞ, RðC1�TÞ�ðH�WÞ and

RðC1�TÞ�ðH�WÞ, for performing a matrix multiplica-

tion (Mat) between them. Then, a softmax function

Table 1 Detailed parameters of the proposed architecture

Input Layer Output Feature Feature Kernel Stride Padding Activation

Blocks Maps

EEG 3D Representation Xi
j(1,22,1125) Transformation Mi

j(1,1125,6,7) 1 – – – – –

3D Spatial Mi
j(1,1125,6,7) – L(1,1125,6,7) 1 – See the 3D-SAM in ‘‘Spatial feature

extraction’’ section for more details

Attention Module

Mi
j(1,1125,6,7) Concatenate Y1(2,1125,6,7) 2 – – – – –

L(1,1125,6,7)

Y1(2,1125,6,7) Conv3d_A Y2(16,1125,2,3) 16 – (25,3,3) (1,2,2) (12,0,0) –

Y2(16,1125,2,3) Conv3d_B Y3(32,1125,1,1) 32 – (25,3,3) (1,2,1) (12,1,0) Square

Y3(32,1125,1,1) SC1
1 TS1(32,25,45) – 32 – – – –

Multiscale Temporal TS1(32,25,45) – S1(32,25,45) – 32 See the MS-TAM-1 in Sect. 3.2 for more

details

Attention Module1

S1(32,25,45) Pooling12 P1(32,1,45) – 32 (25,1) (1,1) – Log

Y3(32,1125,1,1) SC2
1 TS2(32,45,25) – 32 – – – –

Multiscale Temporal TS2(32,45,25) – S2(32,45,25) – 32 See the MS-TAM-2 in Sect. 3.2 for more

details

Attention Module2

S2(32,45,25) Pooling22 P2(32,1,25) – 32 (45,1) (1,1) – Log

Y3(32,1125,1,1) SC1
3 TS3(32,75,15) – 32 – – – –

Multiscale Temporal TS3(32,75,15) – S3(32,75,15) – 32 See the MS-TAM-3 in Sect. 3.2 for more

details

Attention Module3

S3(32,75,15) Pooling32 P3(32,1,15) – 32 (75,1) (1,1) – Log

P1(32,1,45) Concatenate P(32,1,85) – 32 – – – –

P2(32,1,25)

P3(32,1,15)

P(32,1,85) Conv2d_C O(4,1,1) – 4 (1,85) (1,1) – –

O(4,1,1) LogSoftmax Predict Labels – – – – – –

(4,1,1)

1Split ? Concatenate With i� thScale of Y3.
2The i� thof Avg-Pooling
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(a) (b) (c)

Fig. 2 The 3D representation. a Electrode channels locations corresponding to the international standard 10/20 system. b The 2D matrix Xi
j of the

original MI EEG signal. c 3D representation of EEG

Fig. 3 Flow diagram of the 3D Spatial Feature Attention Modulear. It is best viewed in color

Table 2 Detailed parameters of 3D-SAM

Input Layer Output Feature Blocks Kernel Stride Padding

Mi
j(1,1125,6,7) Conv3d_1 L1(4,1125,6,7) 4 (3,3,3) (1,1,1) (1,1,1)

L1(4,1125,6,7) RT1
1

L4(42,4500) – – – –

Mi
j(1,1125,6,7) Conv3d_2 L2(4,1125,6,7) 4 (3,3,3) (1,1,1) (1,1,1)

L2(4,1125,6,7) RT1
2

L5(4500,42) – – – –

3D-SAM L4(42,4500), L5(4500,42) MNS2 L7(42,42) – – – –

Mi
j(1,1125,6,7) Conv3d_3 L3(4,1125,6,7) 4 (3,3,3) (1,1,1) (1,1,1)

L3(4,1125,6,7) RT1
3

L6(4500,42) – – – –

L6(4500,42), L7(42,42) MRT3 L8(4,1125,6,7) 4 – – –

L8(4,1125,6,7) Conv3d_4 L9(1,1125,6,7) 1 (1,1,1) (1,1,1) (0,0,0)

Mi
j(1,1125,6,7), L9(1,1125,6,7) EWS4 L(1,1125,6,7) 1 – – –

1The i� thof Reshape ? Transpose.

2Matrix multiplication ? Normalization ? Softmax

3Matrix multiplication ? RT4

4Element-wise
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is applied to the matrix multiplication result of L4
and L5 to obtain the space attention weight matrix

(L7 2 RD�D).

Lij7 ¼ MatðLi4; L
j
5ÞPD

j¼1 MatðLi4; L
j
5Þ

ð1Þ

where D is (H �W) which is equal to the number

of electrode channels in Mi
j . L

ij
7 2 L7 ranges from 0

to 1, which represents the similarity weights

between the i� th and the j� th electrode channels

of Mi
j . The more similar the motor-related charac-

teristics, the larger the weight Lij7 .

• Another matrix multiplication between L7 and L6
was performed to obtain L8. L8 is the new attention-

based spatial representation of Mi
j that updates each

electrode channel by adaptively aggregating 3D

spatial features of other electrode channels accord-

ing to the space attention weight matrix (L7).

• A 1� 1 convolutional kernel (Conv3d_4) is imple-

mented because of its powerful ability to decrease

the dimension of feature blocks, while the 1� 1

convolution operation only focuses on the feature

block dimension, and the number of input data is

constant. Therefore, it is suitable for handling a

large number of input channels efficiently.

• Finally, by multiplying a learnable parameter c1 to

L9 and performing an element-wise sum operation

with the original EEG 3D representation Mi
j , the

attention-based adaptive spatial feature was

obtained as follows.

L ¼ Mi
j þ L9 � c1; L 2 RðT�H�WÞ ð2Þ

c1 is a real number that automatically learns the

optimistic value when training the proposed archi-

tecture. In contrast to other spatial feature extrac-

tions such as 2D convolution, 3D-SAM focuses on

the location of electrode channels in the real world.

It enhances the valuable motor-related features and

suppresses useless motor-unrelated features based

on 3D space information, which is consistent with

our hypothesis that different brain functional

regions may have certain effects on different MI

tasks for different subjects. Therefore, by incorpo-

rating the self-attention mechanism into 3D con-

volution for the first time, 3D-SAM can be seen as a

complement to the existing 3D neural networks.

2. The attention-based spatial adaptive feature and the

original EEG 3D representation Mi
j are combined via

concatenation as

Y1 ¼ fMi
j ; Lg ð3Þ

3. Conv3d_A. is a function that transforms the Y1 into

feature blocks Y2 using a 3D convolution, which, along

with the width and height of Mi
j resulting a more

compact structure.

4. Conv3d_B1BN1NA. Conv3d B, whose aim is to

extract the spatial feature and reducing dimensions, is

used to reshape the size as 32 � T � 1 � 1. More

compact features along the height and width of Y2 are

obtained, but the distribution of input features may

change, and the shift of the data distribution affects the

training of the network (Santurkar et al. 2018). BN and

NA are the batch normalization (Bjorck et al. 2018)

and square nonlinear active function (Schirrmeister

et al. 2017), which is applied to extract the final output

spatial feature Y3 of this extraction phase.

Multiscale temporal feature extraction

In order to enhance the robustness of subject-specific and

subject-independent classification, as shown by the yellow

rectangle in Fig. 1 and Table 3, the extracted spatial fea-

tures (Y3) from an EEG 3D representation were cut into

three time slices (TSi 2 R32�Ti�Ni ; i ¼ f1; 2; 3g, Ti is the

length of each time slice, and Ni is the number of time

slices with scale i) along the time dimension and fed into a

designed multiscale temporal attention modular (MS-

TAM)-based neural network

(MA� TAM � i; i ¼ f1; 2; 3g).
1. Multiscale temporal attention module (MS-TAM). A

subject usually concentrates on the trial some of the

time, but is distracted at other times, and different

subjects pay attention at different times within a trial,

emphasizing on the EEG temporal slices when a sub-

ject concentrates on the trial while neglecting the other

slices is necessary for successful EEG analysis. To

better extract the time-invariant high-level features

within each time slice, we assigned adaptive weights to

different time slices by utilizing the attention mecha-

nism to meet the requirement of EEG analysis, where

different subjects concentrate on different temporal

periods. In contrast to previous methods, the MS-TAM

does not rely on subjects or tasks, but is also more

robust to new subjects or tasks. Taking the MS-TAM

of the i� th scale as an example, as shown in Fig. 4,

TSi is fed into two separate 2D convolutions (Con-

v2d_i1 and Conv2d_i2) to generate initial temporal

features Si1 and Si2, the sizes of all of which were

RC2�Ti�Ni . Then Si1, Si2 and TSi are reshaped and

transposed (RTi
1, RT

i
2 and RTi

3) to generate Si3, S
i
4 and
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Si5, whose sizes are RNi�ðC2�TiÞ, RðC2�TiÞ�Ni and

RðC2�TiÞ�Ni . Matrix multiplication (Mat) between Si3
and Si4 with a softmax function is applied to obtain the

temporal attention weight matrix (Si6 2 RNi�Ni ).

Si6ðk; lÞ ¼
MatðSi3ðkÞ; Sl4ÞPD
j¼1 MatðSi3ðkÞ; Sl4Þ

ð4Þ

where Ni is the number of time slices under scale i.

Si6ðk; lÞ is the similarity weight between the k � th and

the l� th time slices in a trial. Si6 focuses on specific

motor-related temporal slices that are more distin-

guishable than other motor-unrelated slices. The larger

Si6ðk; lÞ is, the more similar the k � th and the l� th

time slices are to each other. Then, a weighted sum of

all EEG temporal slices (Si5) is computed to learn an

attention-based temporal representation (Si7). Finally,

another learnable parameter ci2 to Si7 and perform an

element-wise sum operation with TSi to obtain the

attention-based adaptive temporal feature under scale i

as follows.

Si ¼ TSi þ Si7 � ci2; S
i 2 R 32�Ti�Nið Þ: ð5Þ

2. Poolingi 1 NA. Next, the i� th attention-based

temporal adaptive representation (Si) is fed into an

Avg-Pooling layer (Poolingi) with a log nonlinear

active function (NA) to aggregate the features of the

temporal dimension in parallel. It further reduces the

Table 3 Detailed parameters of of MS-TAM

Input Layer Output Feature Maps Kernel Stride

TS1(32,25,45) Conv2d_11 S11(32,25,45) 32 (1,1) (1,1)

S11(32,25,45) RT1
1
1 S13(45,800) – – –

TS1(32,25,45) Conv2d_12 S12(32,25,45) 32 (1,1) (1,1)

MS-TAM-1 S12(32,25,45) RT1
2
1 S14(800,45) – – –

S13(45,800), S
1
4(800,45) MNS2 S16(45,45) – – –

TS1(32,25,45) RT1
3
1 S15(800,45) – – –

S15(800,45),S
1
6(45,45) MRT3 S17((32,25,45) 32 – –

TS1(32,25,45), S17((32,25,45) EWS4 S1(32,25,45) 32 – –

TS2(32,45,25) Conv2d_21 S21(32,45,25) 32 (1,1) (1,1)

S21(32,45,25) RT2
1
1 S23(25,1440) – – –

TS2(32,45,25) Conv2d_22 S22(32,45,25) 32 (1,1) (1,1)

MS-TAM-2 S22(32,45,25) RT2
2

1 S24(1440,25) – – –

S23(25,1440), S
2
4(1440,25) MNS2 S26(25,25) – – –

TS2(32,45,25) RT2
3

1 S25(1440,25) – – –

S25(1440,25),S
2
6(25,25) MRT3 S27(32,45,25) 32 – –

TS2(32,45,25), S27(32,45,25) EWS4 S2(32,45,25) 32 – –

TS3(32,75,15) Conv2d_31 S31ð32; 75; 15Þ 32 (1,1) (1,1)

S31(32,75,15) RT3
1

1 S33(15,2400) – – –

TS3(32,75,15) Conv2d_32 S32(32,75,15) 32 (1,1) (1,1)

MS-TAM-3 S32(32,75,15) RT3
2

1 S34(15,2400) – – –

S33(15,2400), S
3
4(2400,15) MNS2 S36(15,15) – – –

TS3(32,75,15) RT3
3

1 S35(2400,15) – – –

S35(2400,15), S
3
6(15,15) MRT3 S37(32,75,15) 32 – –

TS3(32,75,15),S37(32,75,15) EWS4 S3(32,75,15) 32 – –

1The i� thscale of slice and the j� th of Reshape

? Transpose.

2Matrix multiplication ? Normalization ? Softmax.

3Matrix multiplication ? RTi
4.

4Element-wisesum
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temporal dimension and transforms the low-level

context features to high-level abstract features (P1,

P2 and P3) , which are concatenated as the multiscale

spatiotemporal feature

P ¼ fP1;P2;P3g,P 2 Rð32�1�NÞ.

Dense fused classification

The dense fused classification phase consists of a dropout

layer (Li et al. 2019), a convolutional layer (Conv2d C),a

batch normalization layer and a LogSoftmax classification

layer, as shown by the gray rectangle in Fig. 1. To reduce

the computation and increase the robustness of the model, a

dropout layer is employed before Conv2d_C. It randomly

selects a portion of the input features with a certain Ber-

noulli probability distribution (p = 0.5) to reduce the risk of

overfitting. Batch normalization was applied to high-level

abstract features extracted by Conv2d_C. Finally, the typ-

ically LogSoftmax function is used for multi-classification

by converting O to the conditional probability of four

labels.

Implementation strategy

For the classification task, we used the negative log-like-

lihood loss function (NLLoss) to evaluate the proposed

architecture. Let h be all parameters of our architecture,

and the total loss function is defined as follows.

LossðhÞ ¼ 1

X

XX

i¼1

NLLossðOi
j � O

i

jÞ þ c � khk2 ð6Þ

where X denotes the number of trials, Oi
j represents the

ground truth label of the i� th trial of j� th subject. O
i

j is

the predicted result of the dense fused classification phase.

c is a hyperparameter whose value is between 0 and 1

(c ¼ 0:01). khk2 is denoted as a regularization term to

alleviate overfitting. Our goal is to find an optimal

parameters h so as to obtain the minimum loss Loss(h).
The training configuration of the network was as

follows.

1. The Adam (2017) algorithm is employed as an

optimizer.

2. Convolution layer parameters are initialized by the

Xavier algorithm (Glorot and Bengio 2010).

3. The initial learning rate is 0.0001, and the decay

weight is 0.01.

4. The batch size is 32.

5. 80% and 20% trials in each dataset were selected

randomly for training and cross-validation, respec-

tively, while all test data were selected for the testing.

The proposed architecture is optimized by the back-

propagation of the total loss function in (6) on the

training and validation sets.

6. In addition, an early stopping strategy (Schirrmeister

et al. 2017) was applied in this architecture.

The EEG signal preprocessing was carried out using MNE-

Python (Gramfort et al. 2013) in the Ubuntu 16.04, 64bit

system with an Intel(R) Core i9-9900X 3.50Ghz. For deep

learning, we used one NVIDIA 2080Ti GPU with 12 GB.

The Braindecode framework (Schirrmeister et al. 2017)

was implemented using the PyTorch deep learning frame-

work (Paszke et al. 2019).

Experiment results and discussion

To verify the accuracy and robustness of the proposed

method, a series of experiments with two changeling public

datasets (‘‘Overall quantitative and qualitative evaluations

for subject-specific classification using the IV-2a and HGD

Fig. 4 Flow diagram of the the i� th Multiscale Temporal Attention Modulear
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datasets’’ section).We provide a detailed insight into the

overall performance of our method with those of other

state-of-the-art methods using five ten-fold cross-valida-

tion. The confusion matrix is used for the quantitative

evaluations. T-distributed stochastic neighbor embedding

(T-SNE) (Maaten and Hinton 2008) was used for the

qualitative evaluations.

The accuracy (7), which is the most widely used indi-

cator for MI classification, was used as the evaluation

metric.

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
� 100% ð7Þ

where TP is the true positive, TN is the true negative, FP is

the false positive, and FN is the false negative.

Public benchmark datasets

Two public MI EEG datasets were used to evaluate the

proposed method. The first dataset was the BCI Competi-

tion IV-2a (IV-2a) (Ang et al. 2012). IV2a is a 25-channel

(22 EEG and 3 EOG) with 4-class MI tasks (left hand, right

hand, foot, and tongue, ‘‘http://www.bbci.de/competition/

iv/#schedule’’) dataset from nine healthy subjects. It con-

tained 72 trials per subject. The total number of trials was

5184. IV2a was separately recorded at 250 Hz and band-

pass-filtered between 0.5 Hz and 100 Hz. Each MI EEG

signal was divided into several labeled time fragments

([0.5s, 4s]), which were called trials. Thus, the input MI

EEG signals were 22 electrode channel time series with

1125 sampling points.

In contrast to IV-2a, the high gamma dataset (HGD)

(Schirrmeister et al. 2017) RECORDED the 4-class EEG

signal of executed movement (left hand, right hand, rest,

and both feet, ‘‘https://web.gin.g-node.org/robintibor/high-

gamma-dataset’’). All EEG signals of HGD were obtained

from 44 electrode channels of 14 subjects. For each sub-

ject, approximately 880 trials and 160 trials were included

in the training and testing datasets, respectively. The Tor-

tola trial number was 14560. For a fair comparison with

IV2a, HGD used the same time fragment ([0.5s, 4s]) and

sampling rate (250 Hz), which contained 44 channel time

series with 1125 sampling points per trial.

Overall quantitative and qualitative evaluations
for subject-specific classification using the IV-2a
and HGD datasets

Evaluations with the IV-2a dataset

Evaluations of the IV-2a dataset (Ang et al. 2012) (‘‘Public

benchmark datasets’’ section) were conducted to validate

the performance and advancement of the subject-specific

classification between the proposed method and other state-

of-the-art methods in the past three years with various

model structures and feature extraction strategies, such as

deep learning-based methods (M3DCNN (Zhao et al.

2019), HSCNN (Dai et al. 2020), MS-AMF (Li et al.

2020), ETRCNN (Xu et al. 2020), TCNet-Fusion (Musal-

lam et al. 2021), DJDAN (Hong et al. 2021), SSD-SE-

CNN (Sun et al. 2021)), and machine-learning-based

methods (PSCP (Dong et al. 2020) and TSGSP (Zhang

et al. 2018).

As listed in Table 4, the proposed method had the best

performance, with an average accuracy of 93.06% for the

subject-specific classification. We first compared two

recently published ML-based methods. PSCSP (Dong et al.

2020) proposed a new hybrid kernel function to fit both

local (Gaussian) and global (polynomial) kernel functions

for relevance vector machines. With the ‘one versus one’

CSP feature extraction strategy, it constructed six sets of

spatial filters to extracted the phase space CSP features,

which were classified by the hybrid kernel function.

TSGSP (Zhang et al. 2018) used a joint sparse optimization

of filter bands and time windows with temporal smoothness

constraints to extract robust CSP features under a multitask

learning framework. Although TSGSP achieved the best

average accuracy of ML-based methods on the IV-2a

dataset, reaching 84.00%, it was also nearly 10% lower

than ours. It is limited by human expert knowledge and

experience, and usually results in the extracted features

may not be the most suitable for classification when dif-

ferent subjects exhibit significantly dynamic characteristics

of EEG in different MI tasks.

Then, the proposed method was compared with SSD-

SE-CNN Sun et al. (2021) and ETRCNN Xu et al. (2020),

which are representative deep learning-based methods

using feature maps as input formations and the time-fre-

quency information in EEG data is fully used. The accu-

racy of these two methods is 79.30% and 84.57%

respectively. However, the selection of the most optimal

feature-extraction method for different subjects or different

tasks is a changeling task and mainly depends on human

experience. In contrast, we used the original signals as

inputs to satisfy the relay time requirement. Furthermore,

the proposed 3D-SAM and MS-TAM modules can elimi-

nate the artifacts caused by the manually selected electrode

channels and various biological, even adaptively improving

the robustness and accuracy of different subjects or MI

tasks for subject-specific and subject-independent. Thus,

our average accuracies are 13.76% and 8.49% higher than

those of SSD-SE-CNN and ETRCNN, respectively.

A further comparison with the most advanced repre-

sentative original signal input case-based deep learning

methods since 2019 was performed. Their average accu-

racy values range from 75.01% to 91.57%.

Cognitive Neurodynamics (2023) 17:1357–1380 1367

123

http://www.bbci.de/competition/iv/#schedule
http://www.bbci.de/competition/iv/#schedule
https://web.gin.g-node.org/robintibor/high-gamma-dataset
https://web.gin.g-node.org/robintibor/high-gamma-dataset


M3DCNN (Zhao et al. 2019) first introduced a 3D data

structure into the EEG signal process. Its greatest contri-

bution is to indicate that a deeper and more complex rep-

resentation of the original MI EEG can help improve the

performance. Our model demonstrated a better perfor-

mance than M3DCNN (18.05% higher average accuracy).

MS-AMF (Li et al. 2020) proposed a multi-scale fusion

CNN based on the attention mechanism, which extracts

spatiotemporal multi-scale features from multi-brain

regions representation signals and improves the network’s

expression ability. However, when the channel is manually

selected, the characteristic information of the MI signal

will be lost. Compared with the average accuracy of

79.90% for MS-AMF, ours was 13.16% higher.

DJDAN (Hong et al. 2021) proposed a dynamic joint

domain adaptation CNN to learn discriminative features for

MI classification, simultaneously reducing the marginal

and conditional distribution discrepancies across domains

via global and local discriminators. However, a single

receptive kernel size in a limited convolutional layer

restricts DJDAN to extract high-level features for

improving classification performance. Our average accu-

racy was 11.54% higher than that of DJDAN (81.52%).

TCNet-Fusion (Musallam et al. 2021) was proposed

with the EEG-TCNet (Ingolfsson et al. 2020) architecture

to improve accuracy by 83.61%. It extends the receptive

field while increasing the number of parameters linearly, as

opposed to traditional CNNs. In addition, based on the

backbone of the inception-time network (Fawaz et al.

2020), EEG-inception (Zhang et al. 2021) attempted to

explore the role of different depths and filter sizes on

capturing space and time features from raw EEG data. The

average accuracy reached 88.39%. However, the best

convolution scale differs from subject to subject, which

limits classification accuracy.

HSCNN (Dai et al. 2020) performed convolution on a

hybrid scale to improve the classification. Three kernel

sizes distributed with distances were used to extract EEG

information in time, space, and frequency domains to suit

different subjects. However, these methods used raw MI

EEG as a 2D array input, omitting the potential spatial

information in 3D space. In contrast, we automatically

resolved the above problems using the proposed 3D rep-

resentation and the MS-TAM module. Compared with the

average accuracy of 91.57% for HSCNN, ours was still

1.49% higher.

In addition to the average accuracy, we also achieved

the best results in three out of nine subjects (1, 3, 7 and 9).

The confusion matrix and the T-SNE distribution of subject

1 and subject 3 are shown in Figs. 5 and 6.

Evaluations with the HGD dataset

To further verify the effectiveness and robustness of our

method, evaluations were conducted on the HGD dataset

(Schirrmeister et al. 2017) for subject-specific classifica-

tion. The corresponding results are presented in Table 5.

This clearly shows that our method was even more robust

for different datasets and achieves a significantly better

accuracy of 97.05% to the discussion above, the proposed

method has been demonstrated as more powerful than other

state-of-the-art methods.

Table 4 Accuracy performances of the 4-class MI IV-2a dataset for subject-specific classification. Best scores are in bold

Classification Accuracy (%)

ML DL

Feature Map-based Input

Case

Original Signal-based Input Case

Subject

ID

PSCSP TSGSP ETRCNN SSD-SE-

CNN

M3DCNN HSCNN MS-

AMF

DJDAN EEG-

inception

TCNet-

Fusion

Proposed

1 80.00 85.00 88.02 78.50 77.39 90.07 88.32 86.46 89.61 90.75 97.22

2 65.30 92.4 73.21 67.90 60.14 80.28 65.69 68.75 80.01 70.48 84.10

3 87.10 89.70 90.68 68.30 82.92 97.08 91.97 93.06 96.17 95.28 98.37

4 67.50 75.80 81.71 96.50 72.28 89.66 77.68 85.42 81.26 76.60 92.33

5 55.50 73.90 65.63 81.40 75.83 97.04 60.89 72.57 83.76 81.95 92.71

6 50.10 75.10 91.72 85.70 68.98 87.04 63.67 63.54 81.20 68.66 81.98

7 91.70 88.30 85.47 76.90 76.03 92.14 88.15 95.49 94.75 94.23 99.34

8 84.10 93.00 91.67 79.30 76.85 98.51 93.23 85.76 98.29 88.95 95.38

9 87.80 82.50 93.00 79.60 84.66 92.31 89.51 83.68 90.50 85.74 96.15

AVG 74.40 84.00 84.57 79.30 75.01 91.57 79.90 81.52 88.39 83.61 93.06
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Fig. 5 The confusion matrix and T-SNE of subject 1. All results are computed by the proposed method. Best see in color

Fig. 6 The confusion matrix and T-SNE of subject 3. All results are computed by the proposed method. Best see in color

Table 5 Accuracy performance of 4-class MI classification using the

HGD dataset for subject-specific between the proposed method and

other state-of-the-art methods. The best scores are in bold. Because

most state-of-the-art methods only provide the average accuracy

values for HGD, compare these methods with ours, we only listed the

average accuracy cross 14 subjects

Methods DeepCNN

Schirrmeister et al.

(2017)

MCNN Amin

et al. (2019)

CPMixedNet Li

et al. (2019)

MSFBCNN Wu

et al. (2019)

TCNet-Fusion

Musallam et al. (2021)

Proposed

HGD Accuracy

(%)

91.40 95.40 93.70 94.90 94.41 97.05
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Influence of different modules

In this section, we analyze the learning process of the

proposed architecture to show how EEG features are

encoded by the 3D spatial attention module (3D-SAM) and

the multiscale temporal attention module (MS-TAM)

modules for 4-class MI classification. In each evaluation,

one module was omitted, and the others remained. All

evaluations were performed on the VI-2a dataset for sub-

ject-specific classification.

Firstly, one modular was omitted and the others

remained. Two evaluations were performed on the VI-2a

dataset for subject-specific classification.

In Evaluation 1, we omitted the MS-TAM while

keeping the others. Here, we extracted the motor-related

potential spatial dependent features and the corresponding

hierarchical correlation between any two channels, which

reflects the intrinsic connection of brain activity status in

bFig. 7 Confusion matrices of IV-2a dataset using the different

modulars over all subjects. a-b Confusion matrixes of Evaluation 1

and 2. c Confusion matrix of the proposed method for subject-specific

classification. d Confusion matrix of the proposed method for subject-

independent classification. e-f Confusion matrixes of Evaluation 1

and 2 for subject-independent classification

(a)

(b)

(c)

(d)

Fig. 8 Topological scalp plot maps of extracted spatial attention

weights between different electrode channels. The blue color as the

similarity between different electrode channels when subject imagery

left hand movement (Fig. 9(a and c). The red color is used as the

similarity between different electrode channels when subject imagery

right hand movement (Fig. 9b and d). These electrodes (C3, C4, and

CZ ) directly over the motor cortex areas. More blue and red the color,

the stronger the positive correlation
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EEG. However, because the MI EEG has a low SNR and

non-stationary signal, the evaluation result is easily affec-

ted by various biological (e.g., eye blinks, muscle artifacts,

fatigue, and mood of a subject) and environmental artifacts

(e.g., external noises). The result sharply decreases from

93.06% to 80.90%, which is nearly 12.16%. Meanwhile, as

shown in Fig. 7a and c, our method efficiently reduces the

misclassification error between the right hand and feet.

In Evaluation 2, we simply omitted the 3D-SAM while

keeping the others. In this case, we extracted implicit

multiscale temporal features based on the 3D representa-

tion. However, the intensity of the MI EEG signals varies

among subjects, and it was impossible to manually deter-

mine which channels were most associated with the MI

task. Hence, it was necessary to automatically assign the

most suitable weights to motor-related brain electrode

channels. When omitting the 3D-SAM, the corresponding

average accuracy sharply decreases from 93.06% to

78.55%, which is nearly 14.51%. Meanwhile, as shown in

Fig. 7b and c, the mistakes of misclassifying the right hand

Fig. 9 The peak and valley trends of the attention matrix Si6 under different scales, when subject #2 imagery right movement
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to the left hand and misclassifying feet to tongue were

increased. The purpose of designing the 3D-SAM module

was to improve the accuracy of cross-subject adaptation

and eliminate the artifacts caused by the manual selection

of signal channels, the corresponding subject-independent

classification average accuracy increases from 60.61% to

62.77%, which is nearly 2.16%. Meanwhile, as shown in

Fig. 7e and f.

Furthermore, we visualize the learned space and time

attention weights from 3D-SAM and MS-TAM to discuss

how these modulars encode spatial and temporal

similarities among different electrode channels and dif-

ferent time slices, respectively.

According to the space attention similarity matrix (L7 ,

(1)), Fig. 8 presents 9 representative topological scalp plot

maps of extracted spatial attention weights between dif-

ferent electrode channels. We define the blue color as the

similarity between different electrode channels when sub-

ject imagery left hand movement (Fig. 8a and c). More

blue the color, the stronger the similar correlation. In

contrast, the red color is used as the similarity between

different electrode channels when subject imagery right

Fig. 10 The peak and valley trends of the attention matrix Si6 under different scales, when subject #7 imagery right movement
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hand movement (Fig. 8b and d). More red the color, the

stronger the positive correlation. Taking the Fig. 8a as an

example, when a subject #1 imagery the left hand move-

ment, channels with similar motor-related characteristics

can mutually promote, regardless of their location in the

space domain, not just the electrode channel C3 that tra-

ditional choose in previous methods. We can conclude that

the 3D-SAM can explore motor-related potential spatial

dependent features and the corresponding hierarchical

correlation between any two channels, which eliminates the

artifacts caused by the manual-selected electrode channels,

and adaptively improves the accuracy of different subjects

or MI tasks.

On the contrary, in order to explain how the MS-TAM

module learns time attention similar weights, we collect the

attention matrices (Si6, (4), i means the scale 1, 2, 3) of the

correctly classified samples of the MS-TAM model and

plot the statistical results in Figs. 9, 10, 11 and 12. The

elements in the attention matrix indicate the similar weight

values between time slices under different scales. Larger

number on horizontal axis means later in time. It is obvious

that the weight values of temporal slices are varied from

subject to subject for the same MI task (Figs. 9 and 10), or

Fig. 11 The peak and valley trends of the attention matrix Si6 under different scales, when subject #1 imagery left movement
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from task to task for the same subject (Figs. 11 and 12).

This trend shows that the MS-TAM module can focus on

the most MI task-related time slices, satisfying the phe-

nomenon that different subjects have different ways of

thinking and would concentrate on different temporal

periods.

Taking Fig. 9 as an example, when subject #2 imagery

right movement, the peak and valley trends of the curve

throughout the attention matrices are located in the same

time range (the sampling rectangles location on horizontal

axis of scales). In contrast, although subject #7 imagery the

same movement, the weight value distribution of temporal

slices are different from subject #2. Hence, the MS-TAM

modular can automatically learn weights to different time

slices under different scales to adequately extract time-

invariant high-level temporal features for a higher and

more robust classification.

Fig. 12 The peak and valley trends of the attention matrix Si6 under different scales, when subject #1 imagery right movement
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Evaluation for subject-independent classification
using the IV-2a dataset

The main reason for the low accuracy performance of

subject-independence is that the MI EEG signals vary over

time from subject to subject, or from time to time for the

same subject. It is impossible to determine exactly which

electrode channels or time periods are most associated with

MI. Therefore, traditional methods have limited perfor-

mance in subject-independent classification.

In contrast, one of the main contributions of our method

is to improve the classification accuracy for subject-inde-

pendence with the 3D-SAM and MS-TAM modules, which

automatically assigns weights to the most motor-related

electrode channels and time periods. As shown in Fig. 13b,

the ‘Leave-One-Subject-Out (LOSO)’ was used as the

training and testing strategy for the conducted evaluations

on the IV-2a dataset. For example, when computing the

subject-independent accuracy of subject #1, the testing

samples of subject #1 (green rectangle in Fig. 13b) were

used as the testing samples for the performance evaluation.

Table 6 Average accuracy performance of 4-class MI classification with the different modules on the IV-2a dataset. The best scores are in bold

Accuracy (%)

Evaluation Subjet #1 Subjet #2 Subjet #3 Subjet #4 Subjet #5 Subjet #6 Subjet #7 Subjet #8 Subjet #9 AVG

1 85.41 57.29 91.67 77.78 70.48 60.76 91.32 86.46 85.76 78.55

2 90.27 62.15 93.41 79.51 75.00 63.54 88.89 85.76 89.58 80.90

Proposed 97.22 84.10 98.37 92.33 92.71 81.98 99.34 95.38 96.15 93.06

(a) (b)

Fig. 13 Strategies for different classification tasks

Table 7 Average accuracy performance of 4-class MI classification with the different modules on the IV-2a dataset. The best scores are in bold

The Classification Accuracy (%) of 4-class on BCIIV2a dataset

Subjet

#1

Subjet

#2

Subjet

#3

Subjet

#4

Subjet

#5

Subjet

#6

Subjet

#7

Subjet

#8

Subjet

#9

Average

DeepCNN Schirrmeister et al.

(2017)

47.06 31.22 41.02 33.19 41.57 34.71 43.09 46.01 51,78 41.07

MCNN Amin et al. (2019) 62.07 42.44 63.12 52.09 49.96 37.16 62.54 59.32 69.43 55.34

EEGNet Lawhern et al. (2018) – – – – – – – – – 40.00

C2CM Sakhavi et al. (2018) – – – – – – – – – 44.44

Proposed 71.53 47.22 81.25 56.94 52.78 55.56 63.19 72.22 68.75 63.27
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Meanwhile, all datasets of the other subjects (blue rectan-

gles in Fig. 13b) were used as the training samples.

As listed in Table 7. Owing to the highly dynamic

characteristics between subjects, the final average accuracy

is lower than the results of the subject-specific classifica-

tion listed in Table 7. As shown in Fig. 7d, the mistake of

misclassifying the right hand to the left hand and mis-

classifying feet to the tongue are increased. However, the

proposed method achieved an average accuracy of

63.27acceleration of 7.93and showed better results for

eight out of nine subjects. It is concluded that the proposed

method achieves a more robust classification performance

in different backgrounds.

(a)

(b)

(d)

(c)

Fig. 14 System flow chart. The subjects imagined corresponding actions according to the screen instructions displayed on a screen to generate

corresponding EEG signals. a Test block. b Four visual cases. c Electrode channel distribution map. d Data collection equipments
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MI BCI-Based Robot System

Although the proposed method has achieved high accuracy

performance, it is important to extend it to real-time, online

MI-BCI applications. Therefore, we further tested and

validated the real-time capability of the proposed model

through the online decoding of MI movements from

streamed EEG signals for NAO robot control. We used a

Neuroscan 32-channel EEG amplifier to collect the MI

EEG data, the system flow chart is shown in Fig. 14. As

shown in Fig. 14a, each trial lasted for 7 s. Each test block

consisted of 40 trials (10 for the right hand,10 for the left

hand, 10 for the tongue, and 10 for both feet) and lasted

280 s. In a trial, a white fixation cross first appeared in the

center of the screen to indicate that the trial was about to

begin. One second later, one of four visual cases (the left

hand, right hand, tongue, and both feet) appeared ran-

domly, and the subjects were asked to imagine the corre-

sponding action immediately without feedback (see

Fig. 14b) and avoid eye and muscle movement artifacts.

After 4 s, the visual case disappeared and the white letters

indicating ‘Break’ appeared in the center of the screen,

lasting 1 s for resting. The total number of trials was set at

400.

According to the international standard 10/20 system,

the EEG data were acquired using the Neuroscan system

with 24 Ag/AgCl scalp electrodes to record the signal (see

Fig. 14c). The sampling frequency used in the experiment

was 250 Hz. Before the data collection process, we used

conductive glue to adjust the skin impedance of the EEG

electrode to less than 5 kilo-ohms. Of the 24 electrodes, all

but two reference electrodes were used for the data anal-

ysis. All subjects were asked to concentrate during the

experiment to prevent other actions and brain activities

from affecting the data collection (see Fig. 14d).

Figure. 15 describes the entire scheme of how we used

the collected data to control the movement of robots by

decoding the original MI EEG signals. When the subject

imagined the movement of the left hand, right hand, ton-

gue, and feet, the robot moved left, right, forward, and

backward, respectively. Another live demonstration video

is provided as a supplementary material.

Conclusion

In this paper, we have proposed an end-to-end 3D CNN to

extract multiscale spatial and temporal dependent features

to improve the accuracy performance of 4-class EEG MI

classification tasks. It consists of a 3D representation, a 3D

spatial attention module, a multiscale temporal attention

module, and a dense fused classification module. With the

definition of a compact feature representation of MI EEG

in space and time domains, the proposed method adaptively

assigns higher weights to motor-related spatial channels

and temporal sampling cues than the motor-unrelated ones

across all brain regions, which can prevent influences

caused by biological and environmental artifacts. This

indicates that the 3D EEG topological representation with

the attention mechanism improves the overall accuracy

performance more significantly.

Quantitative and qualitative evaluations were conducted

using two public challenge datasets (IV-2a and HGD) to

validate the robustness and accuracy of our method against

various characteristics from subject to subject, or from time

to time for the same subject. For the IV-2a dataset, the

Fig. 15 The scheme of the MI BCI-based robot system
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proposed MI EEG classification method achieved an

average classification accuracy of 93.06dataset, the pro-

posed method achieved an average classification accuracy

of 97.05extraction and the impact of different modules are

demonstrated using statistical significance tests. Although

our method has been applied as a part of an advanced MI

BCI-based robot system, we plan to refine it to explore

further applications on wearable devices in the future.
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