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Abstract
Non-invasive brain-computer interfaces (BCIs) based on an event-related potential (ERP) component, P300, elicited via the

oddball paradigm, have been extensively developed to enable device control and communication. While most P300-based

BCIs employ visual stimuli in the oddball paradigm, auditory P300-based BCIs also need to be developed for users with

unreliable gaze control or limited visual processing. Specifically, auditory BCIs without additional visual support or multi-

channel sound sources can broaden the application areas of BCIs. This study aimed to design optimal stimuli for auditory

BCIs among artificial (e.g., beep) and natural (e.g., human voice and animal sounds) sounds in such circumstances. In

addition, it aimed to investigate differences between auditory and visual stimulations for online P300-based BCIs. As a

result, natural sounds led to both higher online BCI performance and larger differences in ERP amplitudes between the

target and non-target compared to artificial sounds. However, no single type of sound offered the best performance for all

subjects; rather, each subject indicated different preferences between the human voice and animal sound. In line with

previous reports, visual stimuli yielded higher BCI performance (average 77.56%) than auditory counterparts (average

54.67%). In addition, spatiotemporal patterns of the differences in ERP amplitudes between target and non-target were

more dynamic with visual stimuli than with auditory stimuli. The results suggest that selecting a natural auditory stimulus

optimal for individual users as well as making differences in ERP amplitudes between target and non-target stimuli more

dynamic may further improve auditory P300-based BCIs.
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Introduction

Brain-computer interfaces (BCIs) provide alternative

means for people to communicate with the external envi-

ronments without any involvement of motor control,

especially for the patients who suffer from neurological

disorders such as amyotrophic lateral sclerosis (ALS) and

spinal cord injury (Wolpow et al. 2002; Birbaumer and

Cohen 2007). Electroencephalography (EEG) has been

widely employed as a non-invasive method of sensing

brain activities for BCIs, primarily due to its cost-effec-

tiveness and high temporal resolution (Nicolas-Alonso and

Gomez-Gil 2012; De Vos 2014). Non-invasive EEG-based

BCIs can be categorized into active, passive, and reactive

BCIs according to the degree of volitional engagement of

BCI users (Zander and Kothe 2011). Among them, reactive

BCIs harness neural responses induced by external stimuli

to infer users’ intentions. Such reactiveness makes BCIs

relatively easy to use, even for people who are unfamiliar

with the BCI systems, as the users only need to selectively

attend to a given stimulus without much mental effort.

Event-related potentials (ERPs) and steady-state visually

evoked potentials (SSVEPs) are the most prominent EEG

patterns exploited by reactive BCIs. In particular, P300 is a

key feature for ERP-based BCIs, which is an ERP com-

ponent elicited approximately 300 ms after a target stim-

ulus onset in the oddball paradigm where an infrequent
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target stimulus is randomly given amid a series of frequent

stimuli (Donchin et al. 1978; Sara et al. 1994). BCIs based

on P300 have been widely investigated and developed into

practical systems such as a P300 speller and device control

systems (Farwell and Donchin 1988; Carabalona et al.

2010; Corralejo et al. 2014; Kim et al. 2019).

A majority of P300-based BCIs rely on visual stimuli

via the oddball paradigm. For instance, the P300 speller,

developed by Farwell and Donchin, enables people to

select and type a letter by gazing at the flashes in the row

and column of the matrix displayed on the screen (Farwell

and Donchin 1988). However, P300-based BCIs based on

visual stimuli can be limited in certain circumstances. First,

some users who have a deficit of eye movements due to

severe disabilities may find it difficult to control their gazes

at a target. For example, patients with late-stage ALS may

develop completely locked-in syndrome (CLIS) and have

unreliable gaze control (Harvey et al. 1979; Hayashi and

Kato 1989; Kübler and Birbaumer 2008). Second, the

integration of BCIs with augmented reality (AR) and vir-

tual reality (VR) technologies can bring limitations to

visual P300-based BCIs; while the development of P300-

based BCIs in AR and VR presents visual stimuli in vari-

ous environments instead of those limited to traditional

monitors, it can also cause a visual distraction that might

induce irrelevant ERP components and consequently lower

the BCI performance (Takano et al. 2011; Zeng et al. 2017;

Si-Mohammed et al. 2020).

To overcome these limitations of visual P300-based

BCIs, other approaches to designing P300-based BCIs

without visual stimuli have been investigated, including

auditory P300-based BCIs (Furdea et al. 2009; Klobassa

et al. 2009; Simon et al. 2015; Oralhan, 2019). A key

aspect that differentiates auditory P300-based BCIs from

their visual counterparts, is the design of stimuli, as the

oddball paradigm per se is supramodal (Huang et al. 2018).

A variety of auditory stimulation design methods have

been proposed for P300-based BCIs: some proposed using

both auditory and visual stimuli together by employing

supportive visual cues in addition to auditory stimuli. For

example, in the study of Furdea et al. (2009), a visual

matrix that did not flash was provided additionally as the

reference in the design of a P300 speller with auditory

stimuli. Klobassa et al. (2009) also used a static character

matrix with auditory stimuli for a P300 speller where the

rows and columns of the visual matrix were assigned to

different environmental sounds. While visual matrices did

not provide any stimulation in these cases, they effectively

supported the users to remember which auditory stimuli

they needed to attend to (Furdea et al. 2009). Moreover,

other methods used both supportive visual matrices and

multiple auditory channels. For example, Simon et al.

(2015) used five speakers to present different animal

sounds along with a static visual support matrix, in which

each row and column was coded with the animal tone.

Oralhan (2019) also introduced an auditory P300 speller,

which presented spatially localized auditory stimuli via two

speakers with corresponding visual references on the

screen. While these designs of auditory stimulation mixed

with visual references exhibit a clear purpose of improving

the relatively low performance of auditory P300 BCIs by

helping the users process the auditory stimuli more effec-

tively through visual references, a new design of auditory

stimulation is necessary for certain real-life environments

with no visual support available (e.g., using BCIs during

driving a car where gazing at distracting visual stimuli is

dangerous, or using BCIs to control smart home systems

during chores where visual processing is concentrated on

given tasks). In addition, it will provide greater flexibility

to the design of BCIs if multiple auditory stimuli can be

delivered through a single channel, as multiple sound

sources can be limited in cost and portability.

For such auditory P300-based BCIs without additional

visual cues or sound localization, the selection of auditory

stimuli becomes crucial. To achieve high accuracy and fast

information transfer rate (ITR) with a serial presentation of

auditory stimuli through a single channel, it is necessary to

present stimuli that can be easily distinguished from one

another as well as transmitted rapidly in a short time. The

speed-accuracy tradeoff should be taken into special

account in this case, because auditory stimuli with a longer

duration may be more accurately distinguished while

reducing ITR at the same time. Previous studies of auditory

BCIs have investigated various types of auditory stimuli.

The studies by Furdea et al. (2009) and Oralhan (2019)

used acoustically presented numbers via the human voice.

Also, Klobassa et al. (2009) presented environmental

sounds while Halder et al. (2016) used beeps. Meanwhile,

Höhne et al. (2012) demonstrated that natural sounds

would be more suitable than artificial tones for auditory

BCIs by showing that the stimuli of spoken and sung syl-

lables not only showed high ergonomic ratings but also

improved performance compared to artificially generated

tones. In addition, Huang et al. (2018) indicated that both

the accuracy and ITR of online BCIs were higher with

natural drip-drop sounds compared to the ones with beeps.

While these studies indicated that auditory BCIs could

benefit from natural sounds than artificial sounds, little is

known about which type of natural sound is more appro-

priate for auditory BCIs.

It has been consistently reported that auditory P300-

based BCIs yielded poorer performance than their visual

counterparts (Furdea et al. 2009; Belitski et al. 2011;

Oralhan 2019). Studies showed higher accuracy using the

visual P300 spellers than using the auditory ones [e.g.,

94.62% vs. 65.00% (Furdea et al. 2009), or 78.06% vs.
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54.08% (Oralhan 2019)), as well as higher ITR (e.g., 6.80

bits/min vs. 1.54 bits/min (Furdea et al. 2009), or 5.17 bits/

min vs. 3.43 bits/min (Oralhan 2019)]. The higher perfor-

mance of visual spellers reportedly accompanied higher

P300 peak amplitudes (Oralhan 2019; Belitski et al. 2011).

However, it remains unknown whether P300 amplitudes

would differ among different natural and artificial sounds.

As the higher performance of visual BCIs entailed higher

P300 amplitudes, higher P300 amplitudes are expected

with natural sounds if they lead to better performance than

artificial sounds. Identifying differences in ERP waveforms

between auditory and visual stimulations will be important

to understand why visual P300-based BCIs outperform

auditory ones and potentially how to reduce the perfor-

mance gap.

This study aimed to investigate the optimal design of

auditory stimuli for P300-based BCIs by comparing dif-

ferent types of natural sounds as well as artificial ones

regarding online BCI performance. Auditory stimuli were

presented serially through a single auditory channel with

no visual support. Individual differences in the design of

optimal auditory stimuli were also investigated. Then, we

compared the online performance of auditory P300-based

BCIs with individually selected auditory stimuli to that of

visual P300-based BCIs. Moreover, differences in the ERP

waveforms elicited by each stimulation were examined. To

compare stimulations for P300-based BCIs in a real-life

environment, we used BCIs built to control the functions of

a home appliance—an electric light (EL) device—in real-

time.

Among many natural sounds that have been used for

auditory P300-based BCIs—including the human voice,

animal sounds, environmental sounds such as a bell, bass,

ring, thud, chord, buzz, drip drops, and others (Klobassa

et al. 2009; Belitski et al. 2011; Simon et al. 2015; Huang

et al. 2018)—we chose human voice and animal sounds for

this study. Previous studies showed that spoken words have

been claimed to provide straightforward stimuli and require

less training time needed to run auditory BCIs (Ferracuti

et al. 2013). Other studies on auditory BCIs also showed

relatively high performance with human voice stimuli

(Furdea et al. 2009; Belitski et al. 2011; Höhne et al. 2012;

Chang et al. 2013; Oralhan 2019). In addition, animal

sounds render higher discriminability than artificial tones

(Simon et al. 2015), according to follow-up studies (Bay-

kara et al. 2016). For the comparison with natural sounds,

we selected a beep as an artificial sound, as it has been

often used for auditory P300-based BCIs (Halder et al.

2010; Höhne et al. 2011; Huang et al. 2018).

Methods

Participants

Thirty healthy subjects (14 females aged 19 to 37 with a

mean of 23.6 ± 3.83) participated in the main study, while

a separate group of six healthy subjects (4 females aged 21

to 26 with a mean of 23.5 ± 1.87) participated in the

preliminary behavioral study. No subject reported suffering

from any neurological or psychiatric disorders or hearing

impairment, and all of them had a normal or corrected-to-

normal vision. All subjects gave informed consent for the

study, approved by the Ulsan National Institute of Science

and Technology, Institutional Review Board (UNIST-IRB-

21-22-A).

Auditory stimuli

Three types of auditory stimuli were designed for the

experiment, including the human voice, animal, and beep

sounds. Furthermore, the voice and animal sounds were

categorized as natural sounds, while the beep was catego-

rized as an artificial sound. In each stimulus type, we

designed four stimuli that were supposed to be distin-

guished from one another, except for the animal sound

type, where we initially designed six sounds and later

selected four via a preliminary behavioral study (see

below). This additional selection procedure for animal

sounds was needed, as animal sounds could not be created

with the adjustment of sound parameters unlike the human

voices and beeps, thus opting to select animal sounds

empirically. The number of stimuli (4) was determined

based on the number of functions of an electronic light

(EL) device (Philips hue 2.0, Philips, Netherlands) that

were controlled by a P300-based BCI system in this study.

Every sound stimulus used in this study was equalized to

have identical loudness by adjusting the root mean square

(RMS). Also, the duration of every stimulus was set as

275 ms. Identical stimuli were presented via earphones

(AZLA, Republic of Korea) plugged into both ears. The

spectrograms of every stimulus are depicted in Fig. 1.

For the type of beep sounds, four beeps with different

frequencies were designed. According to the previous

study that investigated auditory P300-based BCIs using

beeps (Huang et al. 2018), we created three beep sounds

with frequencies of 800, 1000, and 1200 Hz, respectively.

We also added another beep with a frequency of 1400 Hz

to match the number of stimuli required for our BCI

experiment.

For the type of voice sounds, we created four stimuli by

recording human voices reading Korean words, ‘han’,

‘dul’, ‘set’, and ‘net’, which mean the numbers 1, 2, 3, and

Cognitive Neurodynamics (2023) 17:1401–1416 1403

123



4, respectively. ‘Hana’ is the original Korean word mean-

ing the number 1, but it was reduced to ‘han’ to equalize

the syllable length to one. We intended to create a single-

syllable sound to accommodate a short stimulation period.

The human voice reading each function of the electric light

device could be another possible design, but it was difficult

to find an appropriate single-syllable word to effectively

represent each function (e.g. ‘brightness change’, ‘color

change’). Additionally, some verbal sounds were not easily

distinguishable when they were presented shortly (e.g. ‘on’

for ‘light on’, ‘off’ for ‘light off’). A male voice with the

same pitch was recorded and edited to make the stimuli.

For the type of animal sounds, a cat’s meow, bird’s

chirp, frog’s croak, dog’s bark, duck’s quack, and sheep’s

baa were initially chosen. The original sound clips were

downloaded from the websites, https://mixkit.co/ and

https://www.epidemicsound.com/, and edited to make the

length and RMS of the sounds equal. We posited that if one

sound is more salient than others, it would attract more

attention regardless of its position as a target or non-target

and therefore not be a desirable stimulus. To select and

remove those salient sounds among the six sounds, we

conducted a preliminary behavioral study on six subjects.

The behavioral study consisted of three sessions. In each

session, every possible pair of the six sounds were pre-

sented randomly to the subjects. Two sounds of each pair

were given successively, and the subjects were asked to

press 1 if the first clip sounded more salient and 2 if vice

versa. If the two clips sounded with a similar level of

saliency, the subjects pressed 3. This session was repeated

three times, and a total of 90 pairs of the sounds were

evaluated. As a result, the number of responses that

selected dog’s bark and duck’s quack as the salient clips

was the highest among six clips on average, which was also

consistent across sessions (Online Resource 1). Conse-

quently, we discarded these two clips and selected the rest

for the experiment: cat’s meow, bird’s chirp, frog’s croak,

and sheep’s baa.

Experimental protocol

For each subject, the experiment was conducted on two

different days with an interval of 3 to 7 days (mean

5.23 ± 1.63 days) in between. On the first day, three dif-

ferent auditory P300-based BCI systems with each stimulus

type were operated in a randomized order. A post-survey

was conducted after each auditory BCI system. On the

second day, a visual BCI system, as well as an auditory

BCI system with the stimulus type that had shown the best

BCI control accuracy on the first day were operated in a

randomized order (Online Resource 1). On both days,

paper-based instructions were shared at the beginning of

Fig. 1 Spectrograms of each auditory stimulus
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the BCI experiment with each stimulus type, which

described the association of each auditory stimulus with the

function of the device. After the subjects read the

instructions, they performed a pre-training task (see below)

before the online operation of P300-based BCIs. The pre-

training task was obligatory only on the first day but

optional on the second day.

Pre-training task

Before the online BCI operation, the pre-training task was

prepared to allow the subjects to become familiar with the

auditory stimuli. This pre-training was implemented

according to the previous study’s report on the effects of

familiarity on the performance of auditory BCIs (Baykara

et al. 2016). It demonstrated that familiarity with auditory

oddball paradigms should be considered, as high task

demands are needed in an oddball task with a series of

rapidly presented auditory stimuli. Since the subjects in the

present study operated multiple BCIs with different types

of stimuli sequentially, familiarity could confound BCI

performance. Thus, we prepared pre-training to alleviate

the effect of familiarity on BCI performance.

For each type of auditory stimuli, the pre-training task

started by presenting each of the four stimuli successively

via earphones (Online Resource 1). Then, the pre-training

task blocks followed. In each block, a target stimulus was

presented at first via the earphones, followed by the task

instruction displayed on the monitor (1920 9 1080 reso-

lution, Full-high-definition (FHD), LG Electronics Co.,

Ltd., Republic of Korea), which asked the subjects to count

covertly the number of times the target sound was heard in

the subsequent presentation of a series of stimuli. Then,

each of the four stimuli was presented randomly for

275 ms for 6 to 8 repetitions with a 250 ms inter-stimulus

interval. A fixation (white cross) was continuously shown

on the monitor during the presentation of all stimuli. After

the presentation of stimuli, the subjects entered their

counting result on the computer keyboard. Visual feedback

was provided on the monitor about whether the subject’s

count was correct or not. Afterward, the subjects were

asked whether they wanted to continue with the next block

or finish the pre-training task. As the pre-training task was

designed only to let the subjects become familiar with the

sounds used in the experiment, the subjects could finish the

task whenever they felt familiar with the stimuli. Although

we did not conduct any explicit test on each subject’s

familiarity, we provided instruction about two basic criteria

to the subjects: first, the subjects should conduct a mini-

mum of five blocks; and second, they should give a correct

answer in at least one block. Accordingly, the number of

blocks differed across individual subjects as well as

stimulus types. Overall, eight blocks of the pre-training

task were conducted on average.

On the second day, pre-training was optional, as we

assumed that the subjects were already familiar with the

stimuli. If the subjects opted for pretraining, the two cri-

teria above were not applied, and the subjects could con-

duct the pre-training blocks as many as they wanted. Only

eight of the thirty subjects chose to perform the pre-training

task on the second day.

Online BCI operation

The main task was to control an EL device using a P300-

based BCI system. EL was located in front of the subjects

so that they could receive the closed-loop feedback about

the brain control of EL. We built three BCI systems

according to the stimulus type. In each system, each of the

four stimuli was associated with four different functions of

EL: ‘light on’, ‘light off’, ‘brightness change’, and ‘color

change’ (Fig. 2). In the auditory BCI system, the stimuli

were presented via earphones, and an additional USB

sound card (COMSOME SD-30 T) was used to reduce

jitter. A white fixation cross was presented on the monitor

(1920 9 1080 resolution, Full-high-definition (FHD), LG

Electronics Co., Ltd., Republic of Korea) to minimize the

eye movement of the subjects, without any other visual

stimuli. In the auditory BCI systems, a target function of

EL that the subjects needed to select was provided by the

auditory stimulus sound associated with that target

function.

In contrast, in the visual BCI system, the four visual

stimuli were simultaneously displayed on the monitor.

Each stimulus was designed as a blue square containing an

icon that directly described an associated function of EL.

The stimuli were placed in every corner of the screen, and

the length of the square was a fourth of the vertical length

of the screen. To instruct the target, the border of the

corresponding square turned to red. Each of the four stimuli

was presented one at a time by changing its color from blue

to green.

There were 30 blocks in the training session and 15

blocks in the testing session for every auditory or visual

BCI system. A block contained 28 trials of the presentation

of a stimulus in a random order where each of the four

stimuli was presented 7 times. An auditory or visual

stimulus was presented for 275 ms with an ISI of 250 ms,

making the duration of a trial 525 ms. Thus, a block

spanned 14,700 ms and an inter-block interval was

approximately 5000 ms. A target stimulus was informed to

the subjects before each block began (see above). The

subjects were instructed to count covertly the number of

target presentations in both training and testing sessions.

Since the primary goal of counting was to maintain the
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subjects’ attention to a target stimulus, we did not verify

the correctness of counting at the end of every block to

save experiment time. At the end of a block in the test

session, EL was controlled by the control output from the

BCI system, whereas no explicit feedback was given to the

subjects during the training session.

Post-survey

On the first day, a post-survey was conducted after the

online operation of each auditory BCI system. As the

survey asked about the experience of the auditory BCI, it

was not conducted on the second day. The survey consisted

of six questions. The first four questions were based on the

NASA Task Load Index (NASA-TLX, NASA Human

Performance Research Group, 1987), regarding the sub-

jective workload of mental demand, performance, effort,

and frustration. Each question was evaluated on a 7-point

scale ranging from ‘very low’ to ‘very high.’ Lastly, after

all the post-surveys were conducted, the subjects were

asked to rank three auditory stimuli according to their

suitability for real-life BCI systems (see Online Resource 1

for the list of the questionnaires used in the post-survey).

Data acquisition and preprocessing

The scalp EEG signals were acquired using 31 active wet

electrodes (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FT9, FC5,

FC1, FC2, FC6, FT10, T7, C3, Cz, C4, CP5, T8, CP1, CP2,

CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2) with a standard

EEG cap following the 10–20 system of American Clinical

Neurophysiology Society Guideline 2. The electrode

attached to the mastoid of the left ear was used as the

ground, while that of the right ear as the reference. The

impedance of all electrodes was kept under 5 kX. EEG
signals were amplified and sampled at 500 Hz using a

commercial EEG amplifier (actiCHamp, Brain Products

GmBH, Germany).

The sampled raw EEG signals were processed through

the following procedure: (1) High-pass filtering above

0.5 Hz was applied; (2) For each channel, if more than

70% of all other channels exhibited a cross-correlation

lower than 0.4 with that channel after band-pass filtering

between 0.5 and 1 Hz, the channel was deemed as a bad

one and was removed (Bigdely-Shamlo et al. 2015); (3)

Potential noise components from the reference were

removed using the common average reference (CAR)

technique; (4) The re-referenced signals were low-pass

filtered below 50 Hz; (5) Artifacts were minimized using

the artifact subspace reconstruction (ASR) method (Big-

dely-Shamlo et al. 2015; Chang et al. 2020; Mullen et al.

2015); and (6) Low-pass filtering below 12 Hz was applied

to the signals for the ERP analysis. The average number of

bad channels was two across all the BCI systems.

Fig. 2 Experimental protocol
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Feature extraction

We extracted EEG features for classification to discrimi-

nate a target from non-target stimuli. Features were com-

posed of the ERP amplitudes from every channel. To

obtain ERPs induced by each stimulus, we adaptively

determined the epoch of ERPs for each subject, as the

previous study showed that there are individual variations

in response time to auditory stimuli (Ng and Chan 2012).

Moreover, the time taken for information processing would

be different between visual and auditory stimuli because

auditory stimulation delivered the cue information contin-

uously via sound waves, whereas visual stimulation simply

altered the color at stimulus onset, as supported by the

discrepancies reported in previous studies regarding

response time between visual and auditory stimulations

(Cheng et al. 2008; Ng and Chan 2012).

In this study, we determined the epoch of ERPs based on

the accuracy of classifying between target and non-target in

the training session. With the training data, eight options of

the post-stimulus epoch length along with a fixed-length

baseline were compared using cross-validation, where

eight options included 800, 900, 1,000, 1,100, 1,200, 1,300,

1,400, and 1500 ms. and the baseline was defined as - 200

to 0 ms to stimulus onset. As the P300 component would

be elicited 300–600 ms after stimulus onset, we set the

shortest option as 800 ms to sufficiently embrace the P300

component (Puanhyuan and Wongsawat 2012). ERPs were

obtained by averaging EEG amplitudes within a given

epoch length across trials and baseline-corrected by sub-

tracting the averaged amplitude of the baseline from each

data point. With these ERP amplitudes as features, we

classified target versus non-target using a support vector

machine (SVM) classifier (see below for details) with a

leave-one-block-out validation scheme in which 29 blocks

were used for training and 1 block for validation repeat-

edly. The epoch length option with the highest validation

accuracy was chosen as the final epoch length for each

subject.

Afterward, a feature vector was constructed as follows:

(1) A set of amplitude values from 200 ms after stimulus

onset to an epoch length was extracted for each channel.

We excluded a period from 0 to 200 ms after stimulus

onset as we focused on the endogenous ERP components

that occur relatively slowly after stimulus onset (e.g. N2pc,

P300). The number of features per channel (NC) was

NC ¼ L� fs, where L is the epoch length in second and fs is

the sampling rate (500 Hz); (2) NC features from each

channel were then concatenated to create a feature vector

of the dimensionality Nf ¼ NC � Ne, where Ne is the

number of channels excluding bad channels. The average

Nf across the subjects was 422 (average number of features

per channel with varying epoch length) 9 29 (average

number of channels after bad channel removal) = 12,238.

(3) Down-sampling by a 10-sample window with a factor

of 2 was applied to extracted features to reduce dimen-

sionality, resulting in Nf = 84.4 (average number of fea-

tures per channel) 9 29 (average number of

channels) = 2447.6.

Classification and evaluation

We built a binary classifier based on a linear kernel SVM to

discriminate a target from non-target stimuli. This type of

classifier was chosen following our previous studies of the

P300-based BCIs to control home appliances (Kim et al.

2019). As a single block produced four ERP feature vectors

in response to four stimuli, one target, and three non-target,

an input feature matrix, D 2 RNd�Nf was constructed for

SVM training, where Nd is the number of data samples.

From 30 blocks of the training session, Nd = 120 training

samples were obtained, including 30 samples for target and

90 for nontarget, respectively. In each block of the test

session, four ERP feature vectors were collected and

classified as either target or non-target. Specifically, let XC

be a feature vector corresponding to the c-th stimulus in a

block. The SVM classified XC with a penalty parameter

fixed as 1 and produced the classification score, f ðXCÞ,
which represents the probability that the c-th stimulus was

a target. Finally, the target stimulus, T was determined by:

T ¼ argmaxCf XCð Þ. Then, the function associated with the

target stimulus was executed to control EL. When training

the classifier, the number of features exceeded the number

of training samples; however, as our previous study suc-

cessfully classified such a large number of ERP features

using SVM for online BCI control (Kim et al. 2019), we

followed a similar feature extraction procedure without

further feature selection steps.

The performance of online BCI systems was assessed by

target detection accuracy = NC

NT
, where NC is the number of

correctly selected testing blocks and NT is the total number

of testing blocks. As there were 15 blocks in the test ses-

sion for each BCI system, NT was 15 in this study. In

addition, ITR was calculated to evaluate online BCI

performance:

ITR ¼
N þ PPþ 1� Pð Þ 1�P

N�1

� �

T
: ð1Þ

To compare the classification accuracy and ITR among

BCI systems, statistical tests of rmANOVA followed by a

post-hoc paired t-test with Bonferroni correction were

conducted.
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Post-hoc ERP analysis

We compared ERP waveforms induced by target and non-

target stimuli among different BCI systems. We assessed

ERP waveforms in response to each stimulus type using the

training data. For the comparison of ERP waveforms, the

epoch length was equalized as 800 ms for all subjects, as

cross-validation outcomes were not substantially different

across various epoch lengths, thus we opted to use the

shortest length for the simplicity of analysis (Online

Resource 1). In ERP waveforms, we first analyzed the P300

component determined as a positive component appearing

between 150 and 600 ms after stimulus onset. We identi-

fied the peak of the P300 component at each channel in

each subject as the highest amplitude within this designated

time window and the latency as the time when this highest

amplitude occurred.

We also analyzed a difference in the amplitudes of ERP

waveforms between target and nontarget stimuli. We

assumed that a bigger difference between target and non-

target would be likely to make feature vectors more dis-

tinguishable, thus potentially illuminating the effect of the

stimulus type on BCI performance. In addition, we con-

ducted two sample t-tests with multiple comparison cor-

rection by False Discovery Rate (FDR) to identify time

points at each channel that show significant differences in

ERP amplitudes between the target and non-target, which

resulted in t-value maps over time and channel for each

BCI system. Note that the channels in which a bad channel

was detected at least in one subject were removed from this

post-hoc analysis. As a result, as FT10 was removed in

most subjects, FT10 was completely excluded from the

ERP analysis.

Results

Comparison of online BCI performance
between different auditory stimuli

The average (± standard deviation) classification accuracy

from the online BCI operation on the first day with the

beep, voice, and animal sounds were 31.56% (± 13.55),

49.11% (± 22.11), and 55.78% (± 21.12), respectively

(Fig. 3a). Note that the chance level was 25% as there were

four possible selections by the BCI systems. The rmA-

NOVA test revealed a significant difference in accuracy

among three auditory BCI systems (F (2,58) = 21.79,

p\ 0.001). A post-hoc t-test with Bonferroni correction

showed significant differences between the beep and voice

or between the beep and animal sounds (ps\ 0.001).

When operating each BCI system, all the subjects

(N = 30) showed better performance with natural sounds

than with artificial sounds. Specifically, 20 subjects showed

the highest accuracy with the animal sounds while 10

subjects showed the highest accuracy with the voice

sounds. In terms of the worst performance, 6 subjects

showed the lowest accuracy with the voice, 1 with the

animal sounds, and 23 with the beeps. Notably, when the

number of repetitions of the stimulations increased, accu-

racy also increased with the voice and animal sounds, but

not with the beeps (Fig. 3b, Table 1).

The average values (± standard deviation) of ITR from

the online BCI operation with the beep, voice, and animal

sounds were 0.32 bits/min (± 0.36), 1.43 bits/min

(± 1.91), and 1.83 bits/min (± 1.88), respectively

(Fig. 3c). The rmANOVA test on ITR showed a significant

difference among three auditory BCI systems

(F (2,58) = 8.88, p\ 0.001). A post-hoc t-test with Bon-

ferroni correction showed a significant difference between

Fig. 3 Performance shown in online BCI session. a Averaged

classification accuracy (%) and standard error of mean depicted with

bar graphs and the vertical lines, respectively. b Averaged values of

the accuracy (%) per each type of the stimuli when the repetition

number of the stimulation was differed. c Averaged values of ITR

(bits/min) per each type of the stimulus (*p\ 0.05; **p\ 0.005;

***p\ 0.001)
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the beep and voice or between the beep and animal

(ps\ 0.001).

Individual preference of auditory stimuli

Based on the online BCI performance results above

showing that BCIs with either of the two natural sounds

yielded higher accuracy than those with the artificial sound

and that all the subjects achieved the best BCI performance

with natural sounds, we further investigated if natural

sounds provided more suitable stimuli for BCIs than arti-

ficial ones in general. If that would be the case, we posited

that a performance margin between the two natural sounds

would be smaller than that between the natural sound with

lower performance and the artificial sound. In each subject,

we first calculated a difference in accuracy between the two

natural sounds (dNN) and then a difference in accuracy

between one of the natural sounds yielding lower perfor-

mance and the beep sound (dNA) (Fig. 4a). The average

values of dNN and dNA were 23.56% (± 12.47) and

9.11% (± 12.68), respectively (Fig. 4b). Only 7 out of 30

subjects showed larger values of dNA than dNN. Paired

t-test showed that dNN was significantly larger than dNA

(t (29) = 3.74, p\ 0.001). This result was in contrast to

our expectation that natural sounds would be generally

more suitable for auditory P300-based BCIs than artificial

sounds. Rather, it indicated that the selection of a specific

type of natural sounds preferred by each user may be more

important for auditory P300-based BCIs.

Comparison of ERPs among auditory stimuli

We analyzed ERPs induced by the target and non-target of

each auditory stimulus type (see Fig. 5a for the grand

average ERPs at representative channels). The peak latency

and amplitude of P300 components for the target among

three auditory stimulus types were compared at each

channel using rmANOVA (Online Resource 1). In com-

parison to the peak amplitude, it was revealed that signif-

icant differences were observed at 10 channels (Fz, T7, C4,

CP5, CP2, P7, Oz: p\ 0.05, FC2, Cz, O1: p\ 0.001). A

post-hoc t-test with Bonferroni correction on these chan-

nels further revealed that the peak amplitude induced by

the beeps was smaller than that by the voices at 6 channels

(Fz, FC2, Cz, C4, CP2, O1), and that by the animal sounds

at 7 channels (FC2, T7, Cz, CP5, P7, O1, Oz). Meanwhile,

only one channel (T7) showed that the peak amplitude

induced by the voices was smaller than that by the animal

sounds (p\ 0.05). In comparison to the peak latency, there

were only four channels (C4, P8, Oz, O2) that showed

significant differences among three auditory stimulus types

(ps\ 0.05) and only two channels (T7, O2) showed sig-

nificant differences in the post-hoc t-tests. These channels

showed that the peak latency of the voice sounds was

shorter than that of the animal sounds (ps\ 0.05). Table 2

summarizes the significant results with the corresponding

p values.

As larger differences in the ERP amplitudes between the

target and non-target would be linked to BCI performance,

we examined those differences among the auditory stimu-

lus types. To this end, we analyzed the ERP amplitudes for

Table 1 Averaged classification accuracy (%) per each group of the

stimulus when the repetition number of the stimulations was differed

Rep no 1 2 3 4 5 6 7

Beep

Mean 24.67 32.89 30.44 30.89 33.33 30.22 31.56

STD 12.64 14.43 12.22 14.17 10.93 12.59 13.55

Voice

Mean 31.11 37.56 42.89 43.56 45.78 49.11 49.11

STD 11.39 15.21 16.76 17.31 16.68 18.65 22.11

Animal

Mean 35.33 40.67 43.33 45.33 52.44 53.33 55.78

STD 14.13 15.20 16.77 21.26 19.24 17.77 21.12

B.P. auditory

Mean 31.33 38.67 46.44 53.33 50.89 54.44 54.67

STD 15.18 18.81 21.76 23.88 23.71 22.63 23.45

Visual

Mean 48.22 57.56 65.56 67.56 74.44 75.78 77.56

STD 20.17 24.48 23.10 23.21 23.56 21.83 23.06

unit: %

Fig. 4 a Individual values of dNN and dNA, b averaged values of dNN and dNA (***p\ 0.001)
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target and non-target in each subject, which were obtained

by averaging over training blocks. Additional averaging of

the ERP amplitudes for non-target was conducted over

three non-targets. First, we calculated the differences

between these two ERP amplitude waveforms for each

stimulus type in each subject (see Fig. 6a for the grand

averaged ERP differences at representative channels) and

constructed topographies of them over time (Fig. 6b).

Overall, relatively larger differences were observed with

the natural sounds compared to the beeps. Also, negative

difference values were largely observed in frontal areas

whereas positive values were observed in parietal and

occipital areas (Fig. 6a, b). We compared the area between

200 and 800 ms of the ERP difference waveforms among

three stimulus types using rmANOVA and observed sig-

nificant differences at 23 channels (see Table 3). A post-

hoc t-test with Bonferroni correction showed that the area

of the beeps was smaller than those of the human voice or

animal sounds at 19 channels, while there was no signifi-

cant difference between the two natural sounds at any

channel (Table 3). The topographies also displayed larger

differences between target and non-target with the human

voice and animal sounds than with the beeps, especially in

the centro-parietal areas at 400 ms after stimulus onset

(Fig. 6b). Moreover, such larger differences were contin-

uously present 500–600 ms after stimulus onset with ani-

mal sounds.

Fig. 5 Grand averaged ERP waveforms across all subjects shown in

five channels (FPz, Fz, Cz, Pz and Oz). a ERP waveforms shown with

beep, human voice, and animal sounds. b ERP waveforms shown with

the auditory and visual stimulations on the second day. Their last

figures were depicted to compare the ERPs of the target

Table 2 p values resulted by the post-hoc Bonferroni tests, which

were conducted to compare peak amplitude and latency of P300

components only with the channels that showed significant

differences in rmANOVA (light-brown: *p\ 0.05, pink:

**p\ 0.005, dark-brown: ***p\ 0.001)
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Next, we identified the ERP amplitude features showing

significant differences between the target and non-target,

using two-sample t-tests with multiple comparison cor-

rection by FDR, where non-target feature values were

derived from averaging the features of three non-targets.

Then, we constructed a time-channel map of the t-values

corresponding to those features that showed significant

differences (p\ 0.05) for each stimulus type (Fig. 6c).

When comparing the average of absolute t-values among

the stimulus types (beep: 3.533 ± 0.436, voice:

4.003 ± 0.896, animal: 3.524 ± 0.763), significant differ-

ences were found with ANOVA followed by a post-hoc

analysis between the beep and voice (p\ 0.001) and

between the animal sounds and voice (p\ 0.001), while

there was no significant difference between the beep and

animal sounds (p[ 0.05). However, the number of fea-

tures with a larger difference (FDR-adjusted p val-

ues\ 0.01) were inspected (beep: 120, voice: 971, animal:

Fig. 6 a Grand averaged waveforms and b topographies showing the

differences in ERP amplitudes of the target and nontarget induced by

three different auditory BCI systems. c Time-channel maps with

t-values of each feature determined by two-sample t-tests, which were

conducted to identify the features that showed significant differences

between the target and nontarget. The features with positive t-values

represent that the ERPs induced by the nontarget were bigger than the

ones of the targets and they are colored in yellow or red. d Averaged

classification accuracy derived by using the data of each different

time window with the horizontal dotted lines representing the mean

accuracy of the online tests

Table 3 p values and F-values resulted by rmANOVA, which was

conducted to compare the area of the ERP waveforms showing the

differences between the ERP amplitudes of the target and nontarget

between 200 and 800 ms, on the first line and the ones resulted by the

post-hoc. Bonferroni tests on the other three lines (light-brown:

*p\ 0.05, pink: **p\ 0.005, dark-brown: ***p\ 0.001)
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2004), showing the smallest with the beep. The time-

channel t-value map also illustrated that the significant

features appeared to be temporally localized, particularly

with the beep and voice sounds. To associate this obser-

vation with BCI performance, we simulated classification

accuracy offline using the portions of features within a

particular time window: 0–200 ms, 200–400 ms,

400–600 ms (Fig. 6d). For the BCI with the beeps, the

average accuracy derived by using the features between

200 and 400 ms was slightly higher than the online BCI

accuracy using all the features. In contrast, for the BCIs

with natural sounds, the online BCI accuracy was higher

than those from any other windows.

Comparison between visual and auditory BCIs

We compared visual and auditory P300-based BCIs on the

second day in the same way as we did for the three auditory

BCIs on the first day, in terms of online BCI performance,

P300 component characteristics, and the degree of feature

differences between target and non-target.

The average (± standard deviation) classification accu-

racy of auditory and visual BCIs on the second day was

54.67% (± 23.45) and 77.56% (± 23.06), respectively

(Fig. 3a). A paired t-test showed a significant difference in

accuracy between two BCIs (t(29) = - 6.13, p\ 0.001).

When the number of stimulus repetitions was increased

from 1 to 7, a 175% increase in the classification accuracy

was shown in the visual paradigms, while there was a

161% increase in the auditory one (Fig. 3b). In addition,

the average ITR of the visual BCI systems was signifi-

cantly higher than that of the auditory BCI system as the

mean (± standard deviation) of ITR from auditory and

visual BCI systems were 1.90 bits/min (± 2.09) and 4.47

bits/min (± 2.73), respectively (t(29) = - 5.97,

p\ 0.001, paired t-test) (Fig. 3c).

The grand averaged ERPs induced by the target and

non-target with visual and auditory stimuli on the second

day are depicted in Fig. 5b, showing larger ERP ampli-

tudes induced by the visual target stimuli than auditory

target stimuli. Paired t-tests on the peak amplitude of P300

components between two modalities revealed significant

differences at 19 channels, especially in frontal areas

(Online Resource 1). In contrast, there were only two

channels (FC5, CP5) that showed a significant difference in

the peak latency of the P300 component between the two

modalities (FC5: p\ 0.001, CP5: p\ 0.05).

An additional investigation regarding the differences

between the amplitudes obtained by the target and the

averaged ones induced by three non-targets was conducted.

The difference waveforms and topographies are depicted in

Fig. 7a, b, respectively. Paired t-test showed significant

differences at 14 channels (FPz, Fz, FC1, FC2, CP2, P7,

P8, Oz: p\ 0.05, FC6, O1: p\ 0.005, FT9, C3, Cz, O2:

p\ 0.001) between 200 and 800 ms ssof the ERP differ-

ence waveforms (Online Resource 1). In addition,

topographies also showed differences between target and

non-target in central, parietal, and occipital areas. Espe-

cially, while the visual stimuli induced large differences as

early as 200 ms after stimulus onset, the auditory stimuli

induced large differences around 400 ms after stimulus

onset.

There were also dissimilarities between the two

modalities in the time-channel maps of t-values corre-

sponding to the features that showed significant differences

between the target and non-target (Fig. 7c). The number of

features with a larger difference (FDR-adjusted p-val-

ues\ 0.01) was smaller with the auditory stimuli than with

the visual stimuli (auditory: 1752, visual: 1959). In addi-

tion, with the auditory stimuli, negative t-values were

mostly distributed in the frontal channels and positive

t-values in the parietal and occipital areas. In contrast,

negative and positive t-values were distributed more

dynamically over the different areas with the visual stimuli.

Especially, the spatial distributions of t-values appeared to

be more synchronized for the visual stimuli; temporally

synchronized positive and negative t-values appeared sev-

eral times with the visual stimuli at approximately 200 ms,

250–500 ms, and 500–700 ms, which was less apparent

with the auditory stimuli. Lastly, using the subset of fea-

tures within the time windows of 0–200 ms, 200–400 ms,

and 400–600 ms yielded lower accuracy than the online

BCI accuracy for both visual and auditory BCIs (Fig. 7d).

Discussion

Reactive BCIs using auditory stimuli can provide an

alternative means for the users with unreliable eye move-

ments caused by severe disabilities or for those with lim-

ited visual processing in AR or VR environments. Previous

studies have proposed the stimulation paradigms for audi-

tory BCIs that present supportive visual guides or spatially

localized auditory stimuli. However, a vision-free auditory

BCI with no spatial information via a single auditory

channel can simplify the BCI design and broaden the

applications of BCIs. This study aimed to design auditory

stimuli suitable for such a single-channel vision-free

auditory BCI by exploring natural and artificial stimuli. In

line with previous reports, the online BCIs with natural

sounds showed better performance than those with artificial

sounds in every subject.
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However, when we compared two natural sounds such

as human voice and animal sounds, no specific type was

better than the other across all the subjects; each subject

exhibited the best performance with their preferred type of

natural sounds. Moreover, in each subject, the BCI per-

formance gap between the two natural sounds was bigger

than that between the natural sound with lower perfor-

mance and the artificial sound (beep). From this result,

when designing an optimal sound for single-channel

auditory BCIs in individuals, instead of simply choosing a

natural sound over an artificial one, further exploration of a

particular natural sound preferred by individuals is desired.

Moreover, the search for individually optimized auditory

stimuli among various types needs to be conducted based

on online BCI operation, rather than other perceptual or

survey-based procedures. This is partly supported by our

observation of the discrepancy between perceptual perfor-

mance and BCI performance. We calculated correlations

between the accuracy of target recognition in the pre-

training session and the accuracy of BCI control in the

online BCI session and found low correlations: - 0.1759,

0.2811, and - 0.1146 for the beeps, voice, and animal

sounds, respectively. Moreover, the perceptual perfor-

mance difference between the two natural sounds was

smaller (13.95%) than that between the natural sound with

lower performance and the beep (28.20%). These results

demonstrated that the performance in the pre-training ses-

sion could not predict online BCI performance. In addition,

the post-survey results showed that only 18 out of 30

subjects responded to the same stimuli as the most suit-

able for real-life device control as the one with the highest

accuracy in their online BCI control.

We compared three types of auditory stimuli, including

beeps, voices, and animal sounds. First, we identified the

differences in the peak amplitude of P300 components

among the three types. These differences were found at 10

channels, including Fz and Cz, where strong P300

responses are usually elicited, and T7 and CP5, where the

left temporal area is related to rapid temporal information

processing of both verbal and nonverbal auditory stimuli

(Katayama and Polich 1996; Zaehle et al. 2004). In con-

trast, no pronounced difference was found in the peak

latency. This was contrary to what we had expected as

some subjects gave verbal feedback that the length of the

stimuli was not perceived equal among the stimulus types

even though they were all the same; they reported that the

beeps were perceived as the shortest and the animal sounds

were the longest. This may imply that the peak latency of

Fig. 7 a Grand averaged waveforms and b topographies showing the

differences in ERP amplitudes of the target and nontarget induced by

visual and auditory BCI systems. c Time-channel maps with t-values

of each feature determined by two-sample t-tests, which were

conducted to identify the features that showed significant differences

between the target and nontarget. The features with positive t-values

represent that the ERPs induced by the nontarget were bigger than the

ones of the targets and they are colored in yellow or red. d Averaged

classification accuracy derived by using the data of each different

time window in each condition with the horizontal dotted lines

representing the mean accuracy of the online tests
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P300 depends on the actual length of the stimuli, not the

perceived length.

Although using artificial sounds as auditory stimuli for

P300-based BCIs resulted in the lowest performance, it

may not rule out the possibility of exploring artificial

sounds because the design with artificial sounds would be

more straightforward and flexible. The analysis of differ-

ences in ERP features between the target and non-target

revealed that the number of features with large differences

was relatively small with the beeps. Moreover, these fea-

tures were mostly observed between 200 and 400 ms after

the stimulus onset. These relatively smaller differences

might be related to low performance using the beeps. One

possible reason for such small differences would be that the

serial presentation of different beeps could unexpectedly

create a stream of notes, like melody, to which the users

could be easily oriented and thus struggled with ignoring

non-target stimuli. Applying the beat and rhythm to the

design of beeps may help the users to focus more easily on

a target stimulus in a stream of different beeps (Schmidt-

Kassow et al. 2016), which will be an interesting topic for

further investigation.

The differences in ERP features between targets and

non-targets appeared to be dependent on sensory modality.

Using visual stimuli, the difference waveform was similar

to the ERP waveform of the target itself (Fig. 7a), indi-

cating relatively larger ERP deflections by target stimuli

compared to non-target ones. On the other hand, using

auditory stimuli, the difference waveform was arc-shaped

(Fig. 6a), indicating smaller differences in ERP waveforms

between target and nontarget. The time-channel t-value

maps of significantly different features between target and

non-target also exhibited dissimilar patterns between visual

and auditory stimuli. The t-value map with the auditory

stimuli showed a single pattern with the opposite polarity

between the anterior and posterior areas and less clear

temporal alignment. On the contrary, the t-value map with

the visual stimuli showed multiple segregated patterns with

the time-varying polarity between the anterior and poste-

rior area, and more precise temporal alignment (Fig. 7c).

The t-value map with the visual stimuli also displayed

more dynamic patterns than that with the auditory stimuli,

presumably reflecting more distinct spatiotemporal ERP

patterns in response to target stimuli compared to those to

non-target stimuli. This indicates that cortical processing of

the target and non-target stimuli might be different between

visual and auditory stimuli, at least in the stimulation

paradigm employed in this study. Referring to the obser-

vation that the difference waveform was similar to the

target response waveform when using visual stimuli, the

design of auditory stimuli should consider enhanced sup-

pression of responses to non-target, so that enhanced

selective attention to target can lead to an increase in

differences of ERPs between target and non-target, thus

increasing the performance of the auditory BCI system.

Among the three types of auditory stimuli, the one

resulting in the best BCI performance on the first-day

experiment was always natural sounds and selected as an

auditory stimulus type on the second-day experiment.

However, the performance with the selected auditory

stimulus type on the second day (54.67%) was worse than

that on the first day with the individually best auditory

stimuli 64.22% (p\ 0.05, paired t-test). Twenty subjects

exhibited decreased accuracy on the second day, among

whom seven subjects showed the best performance with the

human voice and seven subjects conducted pre-training

tasks on the second day. It indicates that the decrease in

accuracy on the second day was not coupled with a specific

auditory stimulus type and that additional pretraining on

the second day did not lead to an increase in the perfor-

mance. Moreover, a correlation between the interval

between the days of the two experiments and the decrease

in accuracy was not significant (0.105). Although it is still

elusive whether such a decrease in performance of auditory

BCIs is simply incidental or signs an unknown effect of the

repeated use of auditory BCIs, it may indicate that other

factors such as the motivation of the users should be con-

sidered in the use of BCIs over multiple days (Baykara

et al. 2016).

In our study, the auditory stimuli were presented through

a single channel using earphones, considering cases where

using multiple auditory channels for communication or

device control is limited. Thus, this study designed audi-

tory BCI systems with no spatial auditory information.

However, some previous studies used headphones to pre-

sent spatially localized stimuli for auditory BCIs (Belitski

et al. 2011; Höhne et al. 2011; Ferracuti et al. 2013; Simon

et al. 2015; Baykara et al. 2016). In addition, the behavioral

study by Belitski et al. demonstrated that the error rates

were lower when the stimuli were presented from spatially

distributed locations, compared to the condition when the

stimuli were presented from a single location (Belitski

et al. 2011). Schreuder et al. (2010) also showed that the

BCI performance was higher with the stimuli presented

from different speakers, compared to the one with the

stimuli all played by a single speaker. Although the present

study explores individual optimal auditory stimuli without

using multiple locations, if spatial information can addi-

tionally be provided to the subjects, higher BCI perfor-

mance is expected with the enhancement of selective

attention. Our follow-up studies will pursue the develop-

ment of auditory BCIs embedding such spatial information.

In sum, this study investigated the design of auditory

stimuli for P300-based BCIs and revealed that the selection

of natural sounds should be optimized for individual users.

As there has been no study that considered individual
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preference of auditory stimuli, this study is the first that

demonstrated that individually preferred auditory stimuli

should be considered to design a P300-based auditory BCI

system. It also showed differences in ERP waveforms

between visual and auditory stimuli, particularly in the

context of the spatiotemporal dynamics of ERPs. Even

though the stimuli were presented in an identical way with

the same stimulus duration and same inter-stimulus inter-

val, these marked differences in ERP patterns between two

modalities were found. These new findings may imply that

the characteristics of ERP responses induced with the

auditory BCI systems should be examined differently from

those with the visual BCI system, such as developing new

stimulation paradigms to provoke more dynamical spa-

tiotemporal ERP patterns. We anticipate that ongoing

efforts to improve auditory BCIs to be on par with visual

BCIs will broaden the opportunities to apply BCIs to our

daily life especially when visual processing is limited.
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