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Abstract
In recent years, emotion recognition using physiological signals has become a popular research topic. Physiological signal

can reflect the real emotional state for individual which is widely applied to emotion recognition. Multimodal signals

provide more discriminative information compared with single modal which arose the interest of related researchers.

However, current studies on multimodal emotion recognition normally adopt one-stage fusion method which results in the

overlook of cross-modal interaction. To solve this problem, we proposed a multi-stage multimodal dynamical fusion

network (MSMDFN). Through the MSMDFN, the joint representation based on cross-modal correlation is obtained.

Initially, the latent and essential interactions among various features extracted independently from multiple modalities are

explored based on specific manner. Subsequently, the multi-stage fusion network is designed to split the fusion procedure

into multi-stages using the correlation observed before. This allows us to exploit much more fine-grained unimodal,

bimodal and trimodal intercorrelations. For evaluation, the MSMDFN was verified on multimodal benchmark DEAP. The

experiments indicate that our method outperforms the related one-stage multi-modal emotion recognition works.

Keywords Physiological signals � Emotion recognition � Multimodal dynamic fusion � Multi-stage fusion

Introduction

Emotions play an important role in our daily life and can

influence human decisions. The accuracy and efficiency of

human-computer interaction can be improved on emotion

recognition. Emotion recognition using physiological sig-

nals is an upcoming research area in brain-computer

interface (BCI). Physiological signals can express subjects’

emotional states more objectively than other data such as

facial expressions and texts (AlZoubi et al. 2012; Chen

et al. 2015; Shu et al. 2018). Due to the reliability and

objectivity, emotion recognition based on physiological

signals was to be performed in a wider way. Gender-

specific affective responses have been shown base on

neurophysiological signalsGoshvarpour and Goshvarpour

(2019). Electroencephalography brain connectivity patterns

of different emotions can also be used in disorder

researchMehdizadehfar et al. (2020). Signals were used to

investigate the role of basal ganglia network in generating

bipolar oscillationsBalasubramani and Chakravarthy

(2020).

Researchers in the field of BCI have been studying EEG

for many years and proposed five specific features of
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analyzing subjects’ emotional states. They are power

spectral density (PSD), differential entropy (DE), differ-

ential asymmetry (DASM), rational asymmetry (RASM)

and differential causality (DCAU) (Thammasan et al.

2016; Shi et al. 2013; Davidson and Fox 1982; Zheng et al.

2017; Zheng and Lu 2015). Inspired from the results in

image processing and natural language processing, recent

researches have also applied various deep learning models

to recognize emotion state via physiological signals (Hin-

ton et al. 2012). Due to the advantage of recurrent neural

network (RNN) that can extract specific information from

sequences, emotion-related feature in temporal domain is

extracted from EEG by RNN (Kim and Jo 2018). Con-

sidering both complex dependencies between adjacent

signals and sequantial information within chain-like data,

CNN and RNN have also be combined to model a cascade

and parallel network for learning the combined spatial-

temporal information of raw EEG streams (Zhang et al.

2018). Due to the different information in multichannel

EEG signals, GNN (graph neural network) is used to per-

form EEG emotion recognition. Dynamical graph convo-

lutional neural networks (DGCNN) is proposed to

dynamically learn the intrinsic relationship between dif-

ferent EEG channels, which is benefit for more discrimi-

native EEG feature extraction (Song et al. 2018).

Emotion is a complex individual performance that is

comprised of a lot of internal physiological activities. In

other words, emotion-changing leads to different effects on

each modalities. Raw signals among different modalities

always describe different aspect emotions and multimodal

data contain much more complementary information.

Multimodal data is more effective for model robust emo-

tion recognition structure. Physiological signals include

electroencephalography (EEG), electrooculography

(EOG), electromyography (EMG), temperature (T), gal-

vanic skin response (GSR), respiration (RSP), etc. To

improve the stability and reliability of emotion recognition,

multimodal physiological signal has been used to extract

rich representations. High-level coordinated representation

based on EEG and eye movement data is extracted by

maximizing the canonical correlation via jointly learned

parameters of two view’ non linear transformations (Qiu

et al. 2018). Multimodal residual LSTM network

(MMResLSTM) is proposed to investigate the dependency

among multiple modalities and high-level temporal-fea-

ture, which contains both the spatial shortcut paths pro-

vided by the residual network and temporal shortcut paths

provided by LSTM for efficiently learning emotion-related

high-level features (Ma et al. 2019). Huang proposed an

Ensemble Convolutional Neural Network (ECNN) model,

which is used to automatically mine the correlation

between multi-channel EEG signals and peripheral physi-

ological signals in order to improve the emotion

recognition accuracy (Huang et al. 2019). However, the

current fusion frameworks based on multimodal signals are

mostly one-stage fusion which are unable to explicitly

model the interaction between model-pair. In contrast, we

decomposed multimodal fusion as a multi-stage procedure

by which cross-modal interactions are explored and intra-

modal messages are still reserved.

This paper absorbs a strong inspiration from ARGF to

decomposed the one-stage fusion problem into multiple

stages (Mai et al. 2020). However, ARGF model unimodel,

bimodal and trimodal interactions independently before

fusion procedure that makes fusion architecture too com-

plicated. According to the characteristic of physiological

signal, we simplified ARGF to decrease the burden on

multimodal fusion and avoid model over-fitting. MSMDFN

disintegrate fusion problem into multiple stages, each of

them focused on the specialized fusion of selected two

modalities. Multimodal interaction are obtained build upon

the representation learned from previous stage. In other

words, MSMDFN decompose the multi-stage fusion as a

recurrent system.

In this article, we proposed a multi-stage multimodal

dynamic fusion network (MSMDFN) to sequentially model

the joint representation based on cross-modal correlation.

First of all, the high-level local feature within each

modalities are extracted separately. The multimodal

dynamic fusion procedure is split into multiple stages

according to the cross-modality dynamic correlation coef-

ficient. The MSMDFN decomposed the one-stage fusion

into multiple recursive stages, which allows each stage to

concentrate on more specialized and fine-grained inter-

correlations. The ablation study which attend to the effect

of various modalities demonstrates that raw signals include

multiple modalities are more effective for emotion recog-

nition task. Moreover, the comparative experiment illus-

trates the effectiveness of the proposed multi-stage fusion

mechanism. We evaluate MSMDFN on multimodal

benchmark DEAP and achieves state-of-the-art

performance.

Related work

In recent years, emotion recognition using physiological

signal has become a popular research topic which objec-

tively reflect the real emotional state of individuals. Most

of the current studies focus on EEG and have achieved

relatively impressive results. Vernon proposed EEGNet

(Lawhern et al. 2018), a compact convolutional neural

network model that consists of deepwise convolution and

separable convolution (Chollet 2017). The experimental

results confirm that EEGNet can achieve excellent exper-

imental results on EEG datasets of different paradigms.
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However, EEG-based emotion recognition overlooks the

complementarity and consistency among modalities, lead-

ing to the great drop of performance. Multimodal emotion

analysis combines multiple physiological signal, which

improves the stability and reliability compared to single

EEG signal. Chen selected significant multimodal features

respectively by two comparative feature selection methods

(Fisher Criterion Score and Davies-Bouldin index) and

used hidden Markov models (HMMs) to performed emo-

tion recognition (Chen et al. 2015). Liu extracted high level

representation features by the Bimodal Deep AutoEncoder,

that contain complementary information of EEG and eye

features (Liu et al. 2016). Tang introduced Bimodal-LSTM

model to take temporal information into account for

emotion recognition with multimodal signals (Tang et al.

2017). Most of the physiological signals-based methods

use well-designed classifiers with hand-crafted features to

recognize human emotions. Inspired by the breakthroughs

in the image domain using deep convolutional neural net-

work, Lin present an approach to perform emotional states

classification by end-to-end learning of deep convolutional

neural network (CNN) (Lin et al. 2017). Shabnam inves-

tigated time-varying functional connectivity derived from

the Jackknife Correlation method to recognize emo-

tionsGhahari et al. (2020). Qiu adopt Deep Canonical

Correlation Analysis (DCCA) for high-level coordinated

representation to make feature extraction from EEG and

eye movement data (Qiu et al. 2018). Ma proposed a

multimodal residual LSTM (MMResLSTM) network to

learn the correlation between the EEG and other physio-

logical signals, which contains both the spatial shortcut

paths provided by the residual network and temporal

shortcut paths provided by LSTM for efficiently learning

emotion-related high-level features (Ma et al. 2019). Yil-

maz propose a multimodal fusion method between elec-

troencephalography (EEG) and electrooculography (EOG)

signals for emotion recognition (Yilmaz and Kose 2021).

Before the feature extraction stage, different angle-ampli-

tude transformations are applied to EEG-EOG signals that

take arbitrary time domain signals and convert them two-

dimensional images named as Angle-Amplitude Graph

(AAG). Then, image-based features are obtained by using a

scale invariant feature transform method. Liao used con-

volutional neural network to learn the spatial representa-

tions of multi-channel EEG signals and the Long Short-

term Memory network to learn the temporal representa-

tions of peripheral physiological signals (Liao et al. 2020).

Then two representations are combined for emotion

recognition and classification. However, above methods all

adopted one-stage fusion strategy that ignore the detailed

interaction of every modality pair, resulting in un-detailed

fusion in subset modalities and inadequate cross-modal

knowledge.

Methodology

In this part, multi-stage multimodal dynamic fusion net-

work (MSMDFN) is described to perform fusion to modal

cross-modal feature that is used for emotion recognition.

Give three modalities EEG(e), EOG(o), EMG(m), the

signal from each modality is represented as xe 2 RCe�Fs,

xo 2 RCo�Fs and xm 2 RCm�Fs, where Ce, Co and Cm refers

to the number of channels of three modalities, Fs is rep-

resented as the number of data points. As shown in Fig. 1,

the modal is mainly composed of two blocks, extracting

block and fusion block. In extracting block, EEG extractor

is mainly composed of convolutional neural network

(CNN). Additionally, EOG extractor is composed of

wavelet transform and CNN as well as EMG extractor. The

feature of three modalities are pre-extracted separately,

which denotes as fe, fo and fm. Then, three features are

projected into the space where features have same length

and Pearson correlation coefficients are derived for deter-

mining the dynamic order of multi-stage fusion. After

multi-stage fusion, an emotion feature which contained

trimodal information is obtained.

Extractor

For EEG extractor, a compact CNN framework is used to

modal EEG feature contain temporal and spatial repre-

sentation, which is consisting of temporal, depthwise and

separable convolution. First of all, the input samples xe are

passed into a 2D convolutional layer containing N temporal

kernels of size 1; Fs
2

� �
. The convolution operation is exe-

cuted along the temporal domain and the stride is set to 1.

N temporal feature maps in the size of Ce;Fs½ � are obtained,
which contain specific time-representation on each chan-

nel. Then, feature maps are fed into the depthwise convo-

lution to learn spatial feature of each temporal map

independently. The depthwise convolutional layer contains

N � D spatial kernels of size Ce; 1½ �. D denotes the number

of spatial kernels specialized for different temporal map.

Additionally, the generated N � D feature contained tem-

poral and spatial feature are down sampled to size 1; Fs
4

� �

via average pooling layer. Separable convolution consists

of depthwise layer and point-wise convolution, which can

be used to obtain the interaction among temporal feature

maps. Feature maps obtained from depthwise convolution

are subsequently fed into depthwise layer with kernels of

size 1; Fs
8

� �
and N � D point-wise kernels. Batch normal-

ization, activation ELU and dropout layer are employed

after each convolution block to avoid model over-fitting.

Finally, fe 2 R1�N�D�Fs
32 are obtained after down-sampled

operation and flatten layer. Separable convolution not only

significantly reduces the number of parameters compared
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to normal convolution, but also explicitly decouples the

relationships within and between the feature maps.

Before obtaining abstract EOG feature, raw physiolog-

ical signals xo are pre-processed via wavelet transform to

get high-resolution information in time-frequency domain

with size RS�Co�Fs, where S refers to scale. Subsequently,

new-obtained signals are fed into CNN framework to

extract feature contained both temporal and inter-channel

information. There are mainly two modules. Firstly, con-

volution layer is performed with M 2D-kernals of size

Co; 1½ �to observe spatial information followed by down-

sample operation. After that, M feature maps in the size of

1; Fs
4

� �
are obtained. Next, the feature maps are fed into the

second one, which is composed of 2D-kernels of size

1; Fs
8

� �
and M point-wise kernels. Above two modules are

both followed by batch normalization, ELU activation and

dropout layer for avoiding overfit. Finally, EOG feature is

obtained after an average pool layer and a flatten layer,

fo 2 R1�M�Fs
32 . EMG extractor is similar to EOG one.

Multi-stage fusion

Three features are projected into the space applying a

linear transformation to make features have same length

that is for later multi-stage fusion:

f e ¼ tanh Wefe þ beð Þ ð1Þ

f o ¼ tanh Wofo þ boð Þ ð2Þ

f m ¼ tanh Wmfm þ bmð Þ ð3Þ

We 2 RL�N�D�Fs
32 , Wo 2 RL�M�Fs

32 and Wm 2 RL�M�Fs
32 are mas-

sive weight matrixes, L is the new vector length, and be, bo
and bm are the bias vectors. The length of linear transfor-

mation output f e, f o and f m are L.

Subsequently, Pearson correlation are derived for

determining the dynamic order of multi-stage fusion.

MSMDFN focuses on the relative values of the correlation

coefficient between the modalities. The Pearson correlation

coefficient formula is shown below, where E �ð Þ denotes

expectation:

Fig. 1 An implementation for multi-stage multimodal dynamic fusion

network (MSMDFN). The left part is extracting block and right one is

fusion block. TK, SK, DK are represented as temporal kernels, spatial

kernels and depthwise kernels. For illustration purpose, D was set as

1. Additionally, coefficient between fe and fo is maximum so the first

fusion stage selects and creates an intermediate representation fe�o.
The second fusion stage select fm to be fused with intermediate vector

fe�o obtained in the previous stage
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qXY ¼ E XYð Þ � E Xð ÞE Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E X2ð Þ � E2 Xð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Y2ð Þ � E2 Yð Þ

p ð4Þ

For each sample, fusion order is dynamically determined

by the value of cross-modal correlation. After calculating

the correlation coefficients between every two modalities,

the order of fusion is determined based on the value of the

correlation coefficients and then multi-stage fusion is

performed.

Firstly, the module selects a subset of multimodal fea-

ture from f e; f o; f m
� �

base on cross-modality correlation

that will be used for current stage of fusion. As shown in

Fig. 2, we assume the correlation between f e and f o is

relatively high, so the first fusion stage selects them.

Afterwards, f e�o is obtained that is observed fine-grained

information within each feature and exploited inter-modal

interaction. � is element-wise production, W 2 R L� L�3ð Þð Þ.

Subsequently, f e�o and f m are fed into the second fusion

stage:

f e�o ¼ tanh W1 f e; f e � f o; f o
� �

þ b1
� �

ð5Þ

f e�o�m ¼ tanh W2 f m; f m � f e�o; f e�o
� �

þ b2
� �

ð6Þ

As a final step, the multimodal representation obtained

from the second stage is fed into a fully connected layer for

classification. Wclass 2 Rclass�L, class is number of candi-

date answers. pclass represents the probability over the

candidate answers:

pclass ¼ Softmax Wclassf e�o�m þ bclass
� �

ð7Þ

Experiments

Dataset

To evaluate the performance of MSMDFN, the multimodal

emotion dataset DEAP (Koelstra et al. 2011) is adopted.

DEAP records EEG, EOG, EMG and other peripheral

physiological signal from 32 participants while watching

40 one-minutes long music videos. The 32-channel EEG

signal was collected using an EEG cap designed according

to the 10–20 international lead standard. After viewing a

video, each subject rated the current clip on a scale of 1–9

in terms of validity, arousal, dominance, and liking. The

dataset used in the following experiments is a pre-pro-

cessed version that has down sampled the signal to 128 Hz.

In our experiment, raw data include 36 channels(32

EEG-channels, 2 EOG-channels and 2 EMG-channels)

were selected to validate MSMDFN. As shown in Fig. 3,

The two dimensions (Valence, Arousal) were selected for

binary-classification and four-classification. The binary-

classification was divided into high valence (HV)/low

valence (LV) or high arousal (HA)/low arousal (LA) using

5 as the threshold. The four-classification is based on both

Valence and Arousal dimensions. Four categories HAHV,

HALV, LAHV and LALV are set using 5 as the threshold

in two dimensions independently. A ten-fold cross-valida-

tion method was used for the experiments.

Preprocessing and training setup

There are totally 36-channel physiology signals involve

three modalities(EEG, EOG and EMG). In the data

Fig. 2 The multi-stage fusion in MSMDFN. Multi-Stage fusion

begins with the extracted features. For illustration purpose, coefficient

between fe and fo is maximum so the first fusion stage selects and

creates an intermediate representation fe�o. The second fusion stage

select fm to be fused with intermediate vector fe�o obtained in the

previous stage

Fig. 3 The four-classification Arousal-Valence: LALV, HALV,

LAHV and HAHV
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acquisition experiments, each video clip was acquired for

63 seconds. The first 3 seconds were the resting-state signal

before viewing the clip, and the rest 60 seconds were the

task-state signal. Each 63 second-long trial was cut into 1

second-long samples. In this way, the signal of each subject

can be transformed to the size of 40; 36; 63; 128½ �. In order

to reduce the interference of external factors such as

experimental environment, the resting-state mean matrix

was obtained by averaging the first 3 seconds signal, and

the resting-state mean matrix was subtracted from the task-

state signal in the 60 seconds. The final data can be

obtained in 2400; 36; 128½ � format. The model was trained

with a learning rate of 0.001, batchsize is 32 and patience is

20. For avoiding over-fitting, the dropout is set to 0.25.

Parameters of MSMDFN are set as follows: D=2, N=8, and

M=16. The wavelet transform used the Python wavelet

analysis library Pywavelets (Lee et al. 2019), and the

wavelet type used for the experiments was ’cgau8’. To

verify the effectiveness of the fusion method, the experi-

ments were finalized using a fully connected layer and a

Softmax activation function layer for emotion classifica-

tion. The loss function used for model training was the

cross-entropy loss function and the optimizer was Adam.

Result and discussions

Comparison with dxisting models

Firstly, we compared the proposed method with multi-

modal physiological signal fusion methods that have been

proposed in recent years. Table. 1 shows the performance

of various models for different classification tasks. For a

more detailed comparison, we pointed out the modalities

used in each method. The bottom row of table 1 shows that

the framework we proposed has better performance in the

classification task on multimodal physiological signals. On

multimodal signal DEAP dataset, MSMDFN exceeded the

existing best method MM-ResLSTM and CNN ? LSTM.

In valence dimension, MSMDFN exceeded the previous

best model MM-ResLSTM by a margin of 6:55%. Addi-

tionally, MSMDFN improved 5:71% compared with best

model CNN?LSTM in Arousal dimension. It is interesting

to see that performance of some existing manners is sig-

nificantly different under various tasks. The results of

MSDMDFN obviously reveal that the large discrepencies

under diverse tasks have been shrunk.

Improvement of wavelet transformers

Due to the low signal-to-noise ratio of the original EOG

and EMG, a round of noise reduction can be performed on

the signal through wavelet transform. Table. 2 shows the

improvement of wavelet transformers in EMG and EOG

extractors according to the comparison with CNN frame-

work contains time-frequency maps which is specially used

for EEG-based analysis. The experimental results show

that the wavelet transformer can improve the signal-to-

noise ratio of the data so that the subsequent feature

extraction model can extract more effective emotional

information. Additionally, the performance of wavelet

transformer is more evident in arousal binary-classification.

Performance on multiple modalities

In order to explore the effectiveness of multimodal physi-

ological signal, the features obtained by the MSMDFN

method were firstly compared with the single model EEG,

Table 1 Comparison of

performance for emotion

classificaiton accuracy on

DEAP using various models.

Valence and Arousal are binary-

classifications, V-A(Valence-

Arousal) is four-classification

Method Signal DEAP

Valence Arousal V-A

HMMChen et al. (2015) All 83.98. 85.63 –

KNN?RFChen et al. (2016) All – – 70.04

BDAELiu et al. (2016) EEG, EOG 85.2 80.5 –

Bimodal-LSTMTang et al. (2017) All 83.82 83.23 –

CNNLin et al. (2017) All 85.5 87.3 –

DCCAQiu et al. (2018) EEG, EOG 85.62 84.33 85.51

MM-ResLSTMMa et al. (2019) All 92.3 92.87 –

AAGYilmaz and Kose (2021) EEG, EOG 90.31 91.53 –

CNN ? LSTMLiao et al. (2020) All 91.95 93.06 –

NASLi et al. (2021a) EEG 97.74 97.94 –

ASTG-LSTMLi et al. (2021b) EEG 98.71 98.71 98.28

MSMDFN (ours) EEG, EOG, EMG 98.85 98.77 98.14
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and then compared with the feature obtained by bimodal

fusion.

The EEG uni-modal feature extractor is the corre-

sponding modal in MSMDFN. The performance of EEG

feature and multimodal feature are shown in Table 3. As

can be seen from table, the mean accuracy of unimodal

EEG signals in the emotion recognition classification task

was 96:39%, 94:88% and 91:01% with standard deviations

of 3:48%, 3:26% and 4:74% respectively. The mean

accuracy of MSMDFN was 98:85%, 98:77% and 98:14%

with standard deviations of 0:7%, 0:84% and 1:06%

respectively. It is known from the experimental result that

the multimodal feature fused from three modalities(EEG,

EOG and EMG) is significantly better than EEG unimodal

in the emotion recognition task. On the mean classification

accuracy of 32 subjects, the valence binary-classification

task improved by 2:46%, the arousal binary-classification

task improved by 3:89%, and the validity-arousal four-

classification task improved by 7:13%. By comparing with

the EEG unimodal emotion-based features, it can be veri-

fied that the proposed method is more effective in the

emotion recognition task. After using MSMDFN, the

classification results of individuals have been improved

significantly. In addition, when comparing the emotion

recognition ability of the proposed method in this paper for

signals collected from the same subject in different tasks, it

can be found that the classification performance improve-

ment of this method is more obvious in the four-classifi-

cation task than in the binary-classification task.

In order to ensure the rigor of the experiment, the bi-

modal feature firstly uses the feature extraction method

corresponding to the modal in MSMDFN to extract the

features, and then uses the stage fusion method to fuse the

features of the two modalities. Fig. 4 shows the emotion

recognition results of 32 subjects with different modalities.

EEG had poorer results under all three tasks, which indi-

cates that EEG uni-modal does not yet have well general-

ization ability on the emotion recognition task and has poor

performance capability on some subjects. From Fig. 4, it

can be found that the emotion recognition effect of the

features extracted by the bi-modal fusion method is better

than that of the EEG uni-modal, but worse than the three-

modality emotion feature. The experimental comparison

between uni-modal and bi-modal features shows that the

emotional information contained in the three-modality

features is more sufficient. Multimodal data can make up

for the shortcomings of certain subjects’ EEG uni-modal

data in emotion recognition tasks. Emotion recognition

methods that incorporate multimodal features have a wider

application range and more generalization than EEG

emotion recognition. In addition, when comparing the

emotion recognition ability of the method proposed in this

paper on the signals collected by the same subject in dif-

ferent tasks, it can be found that the classification perfor-

mance of this method in the four-classification task is more

obvious than in the binary-classification task.

Performance on different fusion strategies

In order to validate the effectiveness of the multi-stage

architecture, we also perform a comparison of one-stage

fusion manner by using multimodal features extracted from

the same extractors in MSMDFN. After obtaining the

features of three modalities, the three one-dimensional

feature vectors are concatenated into a new one-dimen-

sional vector as a multimodal feature vector. The fused

multimodal features are fed into the fully connected layer

for classification task. The classification accuracy of one-

stage fusion method was respectively 97:91%, 97:93% and

94:1% under Valence, Arousal and Valence-Arousal tasks.

From the classification results, it can be seen that the

performance of one-stage fusion is higher than the results

of uni-modal, which indicates that the multimodal physi-

ological signals contain more representations of emotion.

The classification accuracy of the multimodal features

obtained by MSMDFN are higher than the results of one-

stage fusion method. The comparison results exhibited that

Table 2 Performance of models with/without wavelet transformer in

EOG and EMG extracotr

Valence Without With

Precision 96.79 ± 1.95 98.29 ± 0.81

Sensitivity 96.66 ± 1.91 98.23 ± 0.83

Accuracy 97.06 ± 1.37 98.85 ± 0.70

Specificity 95.68 ± 3.59 97.97 ± 1.00

Arousal Without With

Precision 89.53 ± 1.73 98.28 ± 0.96

Sensitivity 90.30 ± 1.46 98.13 ± 0.95

Accuracy 95.09 ± 4.64 98.77 ± 0.84

Specificity 83.94 ± 3.01 97.70 ± 1.21

Table 3 Performance of different modalities under Valence (binary-

classification), Arousal (binary-classification) and Valence-Arousal

(V-A, four-classification) emotion recognition tasks

Modalities Valence Arousal V-A

EEG 96.39 ± 3.48 94.88 ± 3.26 91.01 ± 4.74

EEG?EOG 98.15 ± 1.17 98.11 ± 1.10 97.05 ± 1.62

EEG?EMG 98.33 ± 1.00 98.33 ± 1.16 97.47 ± 1.31

EOG?EMG 97.62 ± 0.92 97.65 ± 1.15 96.15 ± 1.57

EEG?EOG?EMG 98.85 ± 0.70 98.77 ± 0.84 98.14 ± 1.06
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the multimodal features extracted by MSMDFN observed

more cross-modal interaction information. Consequently,

MSMDFN is more superior on emotion recognition task.

After compared multi-stage fusion manner with one-

stage, we also investigated the influence of multi-stage

fusion order on MSMDFN. For comparison, experiments

were performed according to the correlation coefficient in

ascending/descending order. The experiment result illus-

trated that it is to fuse subset modalities in descending. The

performance of two fusion orders demonstrated that

descending order is able to maintain the essential cross-

modal interaction and inter-modal messages between two

more correlated modalities. Additionally, the relatively

large redundant information among them is discarded.

(a)

(b)

(c)

Fig. 5 Classification accuracy of different fusion manners under

Valence(binary-classification), Arousal(binary-classification) and

Valence-Arousal(four-classification) three emotion recognition tasks.

High/low means the dynamic multi-stage fusion order is ascent/

descent

(a)

(b)

(c)

Fig. 4 Classification accuracy of multiple modalities under

Valence(binary-classification), Arousal(binary-classification) and

Valence-Arousal(four-classification) three emotion recognition tasks
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Performance on different subjects

In addition, this paper has also investigated the differences

exhibited by different multimodal fusion methods of

emotion recognition on different subjects. For effective

comparison, the classification results in 32 subjects under

one-stage and multi-stage were used as indicators to

observe the differences. Fig. 5 shows, under the same task,

the emotion recognition ability performed by the different

fusion method on the data of different subjects. As can be

seen from the three figures, the variances in the classifi-

cation performance of one-stage fusion for different sub-

jects’ physiological signal performance is relatively large.

However, under the multi-stage fusion method, the emo-

tion recognition results of multimodal signals of different

subjects are more stable and have a higher accuracy rate.

All the above results can indicate that the proposed method

is more generalizable and shows excellent emotion recog-

nition ability for different subjects.

Conclusion

In this paper, we investigate the effectiveness of different

modalities and find that multimodal signals has better

performance for emotion recognition. Then, we propose

multi-stage multimodal dynamic fusion network

(MSMDFN) which sequentially models the joint repre-

sentation based on cross-modal correlation. MSMDFN uses

three different extractors which are trained jointly to learn

intra-modal features and then obtains inter-modal interac-

tive information by multi-stage multimodal fusion which is

based on bi-modal correlation. Extensive experiments

based on DEAP reveal that MSMDFN has better ability in

multimodal emotion recognition. MSMDFN effectively

exploits much more fine-grained and comprehensive

intercorrelations among multimodal signals. However, this

model currently adopts element-wise product to fuse

bimodal signals, which lacks more adaptable fusion

method. In future work, we are interested in fusing bimodal

data onto more complicated method of self-attention.
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