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Abstract
The effect of synaptic plasticity on the synchronization mechanism of the cerebral cortex has been a hot research topic over

the past two decades. There are a great deal of literatures on excitatory pyramidal neurons, but the mechanism of

interaction between the inhibitory interneurons is still under exploration. In this study, we consider a complex network

consisting of excitatory (E) pyramidal neurons and inhibitory (I) interneurons interacting with chemical synapses through

spike-timing-dependent plasticity (STDP). To study the effects of eSTDP and iSTDP on synchronization and oscillation

behaviors emerged in an excitatory–inhibitory balanced network, we analyzed three different cases, a small-world network

of purely excitatory neurons with eSTDP, a small-world network of purely inhibitory neurons with iSTDP and a small-

world network with excitatory–inhibitory balanced neurons. By varying the number of inhibitory interneurons, and that of

connected edges in a small-world network, and the coupling strength, these networks exhibit different synchronization and

oscillation behaviors. We found that the eSTDP facilitates synchronization effectively, while iSTDP has no significant

impact on it. In addition, eSTDP and iSTDP restrict the balance of the excitatory–inhibitory balanced neuronal network

together and play a fundamental role in maintaining network stability and synchronization. They also can be used to guide

the treatment and further research of neurodegenerative diseases.
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Introduction

The brain is the most complex network, composed of a

large number of neurons connected by excitatory and

inhibitory synapses. It can receive and process various

information, including simple perceptual and complex

emotional and thinking activities (Toga and Thompson

2003; Wang Xiao-Jing et al. 2020; Han et al. 2021). To

regulate various adaptive responses, the nervous system

can continuously vary the neural circuits . The presynaptic

neurons produce spikes to the synapses of the postsynaptic

neurons through the low electrical resistance of gap junc-

tions, which is called electrical synapses. The presynaptic

neurons through the release of neurotransmitters conduce

impulses to the postsynaptic neuron synapses, which

known as chemical synapses. Because of the special

structure of the chemical synapses, the information trans-

mission is unidirectional, while the signal transmission in

the electrical synapse is bidirectional. Dynamic changes in

synaptic strength occur when the number of synapses

between neurons in the cortical network or the number of

neurotransmitters released by presynaptic neurons changes,

called synaptic plasticity.

Synaptic plasticity, the principal mechanism of infor-

mation transmission between neurons and information

storage in the brain, is the basis for cognitive abilities, such

as memory and learning (Brunel and Wang 2003; Gautam

et al. 2015; Clawson et al. 2017). It was first proposed by

the psychologist Hebb (Hebb et al. 1949), and has a
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profound influence on the development of neuroscience. In

particular, the experimental evidence for Hebb’s hypothe-

sis was presented in 1997 (Frotscher et al. 1997), and the

coupling between neurons was shown to be slightly

increased when they both fired. Meanwhile, Bi showed that

the changes in synaptic strength between neurons before

and after a synapse, can be strengthened or weakened, and

the effect of prominent plasticity appeared only within 50

ms of the presynaptic release time interval. This kind of

synaptic plasticity which depends on spike time sequence

and interval is called the spike-timing-dependent plasticity

(STDP) (Sen et al. 2000; Bi and Poo 1998, 2001; Markram

et al. 2012). In the past two decades, it has been exten-

sively studied (Haas et al. 2006; Sjöström and Gerstner

2010; Markram et al. 2012; Kim and Lim 2018, 2019;

Santos et al. 2019; D’Amour and Froemke 2015; Khosh-

khou and Montakhab 2019).

In the cerebral cortex, neural activity changes irregularly

and dynamically, as a result of the dynamic balance

between the excitatory and inhibitory neurons. The exci-

tatory neurons mainly transmit information in the brain,

while the inhibitory interneurons in the brain can release

inhibitory neurotransmitters to reduce the excitability of

neurons, and jointly maintain the balance of neural net-

works through their interaction and restriction. This deli-

cate balance is also a key factor affecting the normal

function of the nervous system (Chialvo 2010; Plenz 2014;

Kesheng et al. 2021; Antonio et al. 2021; Han et al. 2021).

Previous observations showed Parkinson’s disease and

focal seizures are related to the dynamic changes of exci-

tatory and inhibitory connection strength in the basal

ganglia (Galati et al. 2008; Oswal et al. 2021; Nambu

2005; Wang et al. 2017). Many studies were conducted

based on the excitatory–inhibitory balanced network

(Vogels et al. 2011; Buzsáki and Wang 2012). In 2018,

Wang et al. found that the neural rhythm is mainly deter-

mined by the ratio of excitatory current to inhibitory cur-

rent and the balance between excitatory and inhibitory

neurons (Wang 2020). These experimental observations

showed that the inhibitory synaptic plasticity is crucial for

understanding the mechanisms involved in neurodegener-

ative diseases.

The excitatory-inhibitory balanced network exists in

many different regions of the brain (such as the CA3 region

of the hippocampus, basal ganglia, and the primary visual

cortex) (Hunt David et al. 2018; Shi et al. 2021; Han et al.

2021; Xing et al. 2012). Most of the former studies were

abstracted it as a kind of universal network model. Based

on the excitatory-inhibitory balanced network, the influ-

ence on network synchronization from different aspects

were studied (Rich et al. 2018; Zhang and Liu 2019; Kim

and Lim 2020; Zhang and Liu 2019; Batista et al. 2010;

Sun and Yang 2010; Yao et al. 2019; Liliia and Shchur Lev

2018). Sang Yoon Kim and Woochang Lim conducted a

series of research on synchronization of networks based on

synaptic plasticity (Kim and Lim 2021, 2019, 2018, 2020;

Khoshkhou and Montakhab 2018, 2020). In particular, a

recent research result comprehensively considered the

effect of the synaptic plasticity learning mechanism on the

rhythm transition of cluster neural networks by establishing

neural networks with complex topology including excita-

tory and inhibitory clusters (Kim and Lim 2020).

Numerous research on network topology are based on

the small-world network, scale-free network and random

network, and the difference of the network structure has

little influence on synchronization characteristics (Watts

and Strogatz 1998; Kim and Lim 2015; Yoon and Woo-

chang 2018; Liliia and Shchur Lev 2018; Kim and Lim

2018; Clawson et al. 2017; Batista et al. 2010; Khoshkhou

and Montakhab 2020; Sun et al. 2019). The above factors

inspire this paper. A complex network consisting of exci-

tatory (E) pyramidal neurons and inhibitory (I) interneu-

rons was studied, and the effects of the interaction between

spike-timing-dependent plasticity and chemical synapses

on network synchronization and oscillation behaviors were

investigated. Our results will complement and improve the

mechanism of neurodegenerative diseases from the theo-

retical level to providing guidance for their treatments.

The oscillation behaviors also play different functional

roles in the synaptic plasticity, and different oscilla-

tion frequency bands may correspond to different behav-

ioral states, cognitive capabilities, or human brain locations

and information processing. Especially, the c band rhythm

is related to different functions for information integration

in a large-scale network model for the primary visual

cortex (V1) (Brunet Nicolas et al. 2014; Alina et al. 2021;

Stauch et al. 2021; Han et al. 2021). Researching about the

effects of spike-timing-dependent plasticity on the syn-

chronization mechanism and oscillation behaviors provide

a new insight into the role of synaptic plasticity for the

information processing and transmission in human brain.

Accordingly, the outline of this paper is organized as

follows: the following ‘‘Mathematical model and methods’’

section introduces the Izhikevich neuron model and

methods used in this study. The ‘‘Numerical results’’ sec-

tion explores the effects of many key parameters on syn-

chronization and oscillation behaviors of the excitatory and

inhibitory neuronal networks with different types of

synaptic plasticity. The numerical results and relevant

analysis are presented. Finally, ‘‘Conclusion and discus-

sions’’ section gives a brief discussion and conclusion of

this study.

716 Cognitive Neurodynamics (2023) 17:715–727

123



Mathematical model and methods

With the advantages of the Izhikevich neuron model, that

is, the computational is inexpensive, and rich complex

spiking and bursting properties of a biological neuron can

be exhibited by appropriate parameters selection (Izhike-

vich Eugene 2003, 2004; Izhikevich 2007), we chose it in

this work. The network model consists of Izhikevich neu-

rons, therefore, the different dynamical properties of bio-

logical neural networks can be analyzed more efficiently

and deeply. As mentioned above, our study mainly uses

excitatory and inhibitory neurons, and more details are

described below.

Single-cell model and its dynamics

Excitatory cells and Inhibitory cells

We model excitatory neurons by the excitatory regular

spiking pyramidal neurons that can fire in trains of single

action potentials. For the inhibitory cortical neurons, we

use the fast spiking ðFSÞ Izhikevich interneurons. The

single neuron dynamics is described by a two-dimensional

system of ordinary differential equations and can be given

as follows.

dvi
dt
¼ 0:04v2

i þ 5vi þ 140� ui þ IDCi þ Isyni ; ð1Þ

dui
dt
¼ aðbvi � uiÞ; ð2Þ

if vi�Vpeakðþ30mVÞ; then
vi  c;

ui  ui þ d:

�
ð3Þ

In the above equations, vi denotes the membrane

potential and ui is the recovery current of each neuron i

(i ¼ 1; � � � ;N). IDCi represents the external current injected

into ith neuron in the network determining the intrinsic

firing rate of uncoupled neurons. To observe the synchro-

nization characteristics of the mixed excitatory and inhi-

bitory neural networks in the paper, the values of IDCi are

chosen randomly from a uniform distribution in the range

of [9, 10]. The periodic firing frequency of excitatory

neurons is 22Hz as shown in Fig. 1(a, b), while for the

inhibitory neurons, it is 136Hz which is shown in Fig. 1(c,

d). The term Isyni is the sum of all incoming synaptic cur-

rents to neuron i, described in more detail below.

According to the formula (3), when the membrane poten-

tial vi reaches the maximum voltage, Vpeak ¼ þ30mV, it is

reset to c, and the recovery variable ui is added by d. The

parameters a, b, c and d are dimensionless, and the values

of RS neurons or FS neurons are set to be different. In our

simulations, we set aex ¼ 0:02, bex ¼ 0:2, cex ¼ �65mV,

dex ¼ 8 for the excitatory RS pyramidal neurons and

ain ¼ 0:1, bin ¼ 0:2, cin ¼ �65mV, din ¼ 2 for the inhibi-

tory FS interneurons, as described in the 1st and 2nd item

of Table 1. The two typical properties of the neurons are

illustrated in Fig. 1, and the frequency-current curves

(f � I curve, the periodic firing frequency f as a function of

input current density I) of the two typical neurons are

plotted. The comparison of the characteristics of the two

types of neurons shows a great difference in firing
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Fig. 1 Typical types of the Izhikevich model correspond to different

values of the parameters (a, b, c, d) and the input current IDC ¼ 10.

Time series of the membrane potential of two typical neurons (The

left column) and the corresponding f � I curves illustrating properties

of the Izhikevich model used in this study (The right column). a,

b A excitatory regular spiking (RS) pyramidal neuron, and c,

d A inhibitory fast spiking (FS) interneuron. In this simulation, the

time step is 0.01 ms and the time length is 200 ms

Table 1 Parameter values used in our computations

(1) Regular Spiking neurons (RS)

aex ¼ 0:02 bex ¼ 0:2 cex ¼ �65mV dex ¼ 8.

(2) Fast Spiking neurons (FS)

ain ¼ 0:1, bin ¼ 0:2 cin ¼ �65mV din ¼ 2.

(3) Synaptic current:

sr ¼ 0:2 sd ¼ 1:7 Vsyn
ex ¼ 0 Vsyn

in ¼ �75

(4) Network structure:

N ¼ 250 Ne ¼ 1� að Þ � N Ni ¼ N � a
a ¼ 0 for the purely excitatory network

a ¼ 1 for the purely inhibitory network

a ¼ 0:2 for the mixed excitatory–inhibitory network

(5) eSTDP rule:

Aþex ¼ 3:5 A�ex ¼ 4 sþex ¼ 10 s�ex ¼ 10

(6) iSTDP rule:

Aþin ¼ 4 A�in ¼ 8 sþin ¼ 4:1 s�in ¼ 3:3
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frequency between them, and the firing frequency of FS

neurons is much higher than that of RS neurons under the

same input current.

Network architecture

As mentioned above, the Izhikevich model was considered

as the local node in the system, and the Watts-Strogatz

(WS) small-world network as the underlying structure

(Watts and Strogatz 1998). The algorithm for constructing

the WS small-world is shown as follows. It was started as a

regular ring with N nodes for the rewiring probability

p ¼ 0, where each node is coupled to its k (an even num-

ber) nearest neighbors. Then each edge in the network was

rewired randomly with probability p, without multiple

edges and self-loops. When the probability p is rewired as

1, it evolves into a completely random network.

We have run simulations of 100 6 N 6 1000 for many

times and found that our results are independent of the size

of the neural network. Therefore, the results of N ¼ 250 is

used to improve computational efficiency, which is con-

sistent with the model used in the work of Christoph

Börgers’ book (Börgers 2017). The symbolic depiction of

the excitatory (E) and inhibitory (I) network was shown in

Fig. 2. The lines of black arrows represent that the con-

nections of presynaptic neurons is E, and the lines of black

circles denote that the connections of presynaptic neurons

is I.

This study emphasizes the influence of STDP on net-

work dynamics. To compare the effects of eSTDP and

iSTDP on network synchronous transition, we consider the

following different network structures of N: a small-world

network of purely excitatory neurons (a ¼ 0), in other

words, the number of excitatory neurons is Ne ¼ N; a

small-world network of purely inhibitory neurons (a ¼ 1),

that is, the number of inhibitory neurons is Ni ¼ N and a

small-world network of mixed excitatory and inhibitory

neurons (a ¼ 0:2). Based on the anatomy of a mammalian

cortex, the ratio of excitatory to inhibitory neurons is set as

4 : 1, which means Ne ¼ 200 and Ni ¼ 50. All the simu-

lations were coded using MATLAB vR2020b.

Synaptic currents and plasticity

Neural information is transmitted mainly through the

synaptic connections between neurons. In cultures of dis-

sociated rat hippocampal neurons, Bi and Poo found that

both LTP and LTD depended on the activation of NMDA

receptors (Bi and Poo 1998). Further research showed that

both GABA and AMPA receptors affect the frequency of

the neural network oscillations (Brunel and Wang 2003). In

general, the major factors that affect the membrane

potential of the postsynaptic neurons are neurotransmitters

released by chemical synapses, which diffuse through the

synaptic cleft to the postsynaptic membrane and bind to

specialized receptors. Thus, the ion channels are opened,

and then the membrane potential of the neuron is changed.

Therefore, in our network, neurons are connected by

chemical synapses, and the effect of the pre-synaptic

neurons on the post-synaptic neurons can be expressed as

Isyni (Brunel and Wang 2003; Roth and Van Rossum 2009).

Isyni ¼
1

Din
i

XN
j¼1;j 6¼i

gjiwjisjðtÞðVsyn � viÞ ð4Þ

sjðtÞ ¼
exp � t�tj

sd

� �
� exp � t�tj

sr

� �
sd � sr

ð5Þ

Here, the connectivity matrix ðwjiÞN�N can be defined

according to the structure of the complex network. If the

neuron j is the presynaptic to the neuron i (i 6¼ j), then

wji ¼ wij ¼ 1; otherwise, wji ¼ 0 and wii ¼ 0 for all i.

Small world neural network is our main network structure.

In addition, ðwjiÞN�N is an asymmetric and irreducible

matrix. And Din
i denotes the in-degree of the ith neuron,

which is given by Din
i ¼

PN
j¼1;j 6¼i wji. The function 5 rep-

resents the synpatic gating varible of neuron j at time t,

where sd and sr are the synaptic rise time and decay time,

respectively. tj is the last spiking time of the pre-synaptic

neuron j. Vsyn represents the reversal potential of the sy-

napse with Vsyn
ex ¼ 0 for excitatory connections and Vsyn

in ¼
�75 for inhibitory connections, which are listed in the 3rd

item of Table 1. The term ðgjiÞN�N describes the coupling

strength of the synapse from neuron j to neuron i, when

firing of the jth neuron instantaneously changes the value vi
by gji, which is a variable in our simulations, and

gji ¼ gji þ Dgji.
Neuroscientific studies have found that the synapses of

neurons are plastic, and their connections strength changes

over time. The changes in the strength of numerous

synapses generate the brain’s memory function. Therefore,

we consider the spike-timing-dependent plasticity based on

the Hebbian rule. the synapses coupling strength g is

Excitatory
(200)

Inhibitory
(50)

E-I

I-E

I-IE-E

Fig. 2 Symbolic depiction of the excitatory (E) and the inhibitory

(I) network. (Color online) Lines with black solid arrows represent the

E to E and E to I connections. The connections of I to E and I to I are

represented by the lines with black solid circles
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adjusted based on the relative timing between the spikes of

pre-synaptic and post-synaptic neurons.

According to the nearest-spike mechanism, a pair of

spikes was selected between the presynaptic neuron firing

instant and the postsynaptic neuron firing instant. The

synaptic weights between presynaptic and postsynaptic

neurons were modified by the time difference Dt ¼ tpost �
tpre between the pre-neuron and post-neuron firing time. Dt
is a key variable that regulates the weight of connections

between presynaptic and postsynaptic neurons, and the

specific model expression is as follows (Haas et al.

2006, Field et al. 2020, Kim and Lim 2019, Khoshkhou

and Montakhab 2019).

Dgeij ¼
Aþ expð�Dtij=sþÞ; Dtij� 0

�A� expðDtijs�Þ Dtij\0:

�
ð6Þ

Dgiij ¼
�Aþ expð�Dtij=sþÞ Dtij� 0

�A�
Dtij
s�

expð�Dtijs�Þ Dtij\0

8<
: ð7Þ

Here Dt ¼ ti � tj ¼ tpost � tpre, tpre and tpost are the last

spiking time of the presynaptic and the postsynaptic neu-

rons, respectively. Only the difference in the spiking time

of the most recent spike is recorded here. Aþ and A�
represent the maximum synaptic increment and inhibition

parameters. The temporal parameters of synaptic

enhancement and inhibition are represented by symbols sþ
and s�. The specific marking calculation method is shown

in Fig.3. Figure 4 shows the time window of eSTDP and

iSTDP for geij and giij. All the parameters used for Izhike-

vich neurons, synaptic current and STDP rules are given in

Table 1.

Synchrony measure

To explore the effect of synaptic plasticity on the neural

network, the Kuramoto order parameter is used to quantify

the degree of synchronization activity in the neural popu-

lation (Kuramoto 1975, 1984). We begin with an instan-

taneous phase to each neuron expressed by (Pikovsky and

Osipov 1997):

/jðtÞ ¼ 2p
t � tmj

tmþ1
j � tmj

: ð8Þ

where tmj represents the instant when a spike mðm ¼
0; 1; 2; � � �Þ of a neuron j occurs ðtmj \t\tmþ1

j Þ. Then the

population average order parameter is given by:

RðtÞ ¼ 1

N

XN
j¼1

ei/jðtÞ; ð9Þ

and the global instantaneous order parameter R defined as:

R ¼ � � �h it¼
1

tfin � tini

Z tfin

tini

RðtÞdt ð10Þ

where R is computed by average temporal length of

tfin � tini ¼ 5s. R is bounded between 0 and 1. In particular,

R ¼ 1 indicates complete synchronization, while R ¼ 0

means asynchronization.

In our simulations, all the equations were numerically

integrated using the Fourth-Order Runge-Kutta Method

Fig. 3 Schematic diagram of the nearest spike mechanism. Blue and

black lines refer to the firing time of pre-synaptic and post-synaptic

neurons in simulated time, respectively

Fig. 4 Plasticity as a function of the postsynaptic and presynaptic

temporal window. Dgij ¼ FðDtÞ. a excitatory (eSTDP) and b in-

hibitory (iSTDP)
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with a time-step size equaling to 10�2 ms. The simulations

of the neuronal network have been improved and after 10 s

from random initial conditions, the network reaches a

statistically stable state. In this paper, the spatio-temporal

patterns of the neuronal network are plotted. The excitatory

cells are given the lowest neuron index toward the bottom

of the y-axis while the inhibitory cells are given the highest

neuron index towards the top of the y-axis.

Numerical results

This section presents the numerical results and relevant

analyses. We mainly focus on how the effect of synaptic

plasticity on the synchronization transitions of different

populations. Therefore, three different networks: a network

of purely excitatory neurons with eSTDP ða ¼ 0Þ, a net-

work of purely inhibitory neurons with iSTDP ða ¼ 1Þ and

a network of excitatory and inhibitory neurons with eSTDP

and iSTDP ða ¼ 0:2Þ.

A network of purely excitatory neurons
with eSTDP

The first focus is the effect of excitatory spike-timing-de-

pendent plasticity (eSTDP) on the synchronization of the

purely excitatory neuron network.

In the first case, based on the excitatory complex net-

work, the spiking behaviors of two coupled neurons were

observed by changing the coupling strength gee between

excitatory synapses and the number of the nearest neurons

k. First of all, a pair of mutually coupled neurons are

randomly selected and denoted as g12 and g21, and they are

opposite to each other. The initial value of the coupling

strength is gee ¼ 0:15, and the number of the nearest

neighbor coupled neurons in the small-world network is

k ¼ 10. As shown in Fig. 5a, when the coupling strength of

g12 increases, the coupling strength of g21 decreases, but

the interaction between them is not completely symmetric.

Figure 5d shows that the coupling strength of the whole

network gradually increases from the initial value of 0.15

to 0.3. In Fig. 5b, e, when the number of the nearest

neighbor neurons in the small-world network is increased,

and k value is 50, g12 ¼ 0:15 quickly decreases to 0, while

g21 increases from 0.15 to 0.6, and continues to increase

after g12 ¼ 0. Therefore, the coupling strength of the

overall network tends to increase gradually, which is

consistent with Fig. 5e. When the initial value of the

coupling strength is gee ¼ 0:45, the value of g12 rapidly

increases from 0.45 to 0.6, while that of g21 is decreased

from 0.45 to 0, and the average coupling strength of the

overall network decreases rapidly. Only 1000 ms was used

when the average coupling strength decreased from 0.45 to

0.3, while 3000 ms was adopted for that from 0.15 to 0.3

for the first two cases, as shown in Fig. 5f. Therefore, both

the coupling strength between synapses and the number of

the nearest neighbor coupling neurons in the small-world

network affect the average coupling strength of the

network.

Next, to study the synchronization dynamics of the

overall neural network, the raster plots of the network and

the change curve of the synchronization degree of the

network are made, which are shown in Fig. 6. When the

values of the coupling strength gee and the number of the

nearest neighbor neurons k are small, the network shows

irregular discharge behavior, as shown in Fig. 6a. As k

increases to 50 (Fig. 6b) and gee to 0.45 (Fig. 6c), the

whole network becomes stable, with regular firing syn-

chronization. In addition, the value of the synchronization

parameter R increases rapidly with these two variables.

Figure 6e shows that R fluctuates and rises in the initial

stage, and finally stabilizes in complete synchronization. It

can be found in Fig. 6f that R is stabilizes around 0.9, and

the whole network is always in a stable and completely

synchronous state.

Both coupling strength gee and the number of the nearest

neighbor neurons k can promote network synchronization

without eSTDP, as shown in Fig. 7a (Wang et al. 2020). To

this end, the synchronous changes in the state combined

with eSTDP are shown in Fig. 7b. DRee ¼ ReSTDP � Ree is

defined as the difference of influence on synchronization

parameters after eSTDP is combined, and the specific

change diagram is given in Fig. 7c. The observation shows

that with the increase of gee and k, the degree of syn-

chronization R gradually strengthens. When gee is less than

0.3, the network is in a state of chaos with small changes in

R. When gee is between 0.3 and 0.4, k obviously influences

synchronization. When g� 0:4, the network is completely

synchronous. When gee is greater than 0.2 and is combined

with eSTDP, complete synchronization can be achieved,

and the value of k is insensitive to the effects of synchro-

nization. Finally, it can be concluded from Fig. 7c that the

addition of synaptic plasticity in the excitatory neural

network can greatly promote network synchronization.

According to the equation (6), Dgeij adjusts based on the

different firing time between neurons to promote network

synchronization, and the restraining effect of eSTDP makes

the network gradually stable.

A network of purely inhibitory neurons
with iSTDP

The effect of inhibitory spike-timing-dependent plasticity

was considered in the same way when the study of the

720 Cognitive Neurodynamics (2023) 17:715–727
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synchronous dynamic mechanism of the inhibitory neural

network is studied.

Firstly, we randomly selected a pair of mutually coupled

inhibitory neurons and their interaction was observed by

changing the coupling strength gii between them, as shown

in Fig. 8a. When the initial coupling strength is gii ¼ 0:15

and the number of the nearest neighbor neurons is k ¼ 50;

g12 and g21 show symmetrical periodic changes, with low

variation frequency and continuous changes between 0.3

and 0.6 (Fig. 8a). When the coupling strength gii is

increased to 0.45, the fluctuation frequency of g12 and g21

is significantly increased (as Fig. 8b). When the initial

value of gii is 0.15 and 0.45, the average coupling strength

can increase to 0.54, and finally stabilize, which is com-

pletely different from that in the excitatory neural network.

Figure 9 shows the raster plots and the change curve of

the synchronization degree R of the network. The raster

plots of the neural network are in the chaotic state of high

firing frequency, and the synchronization order parameter

R fluctuates irregularly below 0.4, indicating that the

irregular firing synchronization characteristics of the

network.

In the excitatory neural network mentioned above, we

found that the coupling strength, the number of the nearest
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Fig. 5 a, b, c The variation trend of coupling strength of two

excitatory neurons under the action of eSTDP. d, e, f The variation

trend of average coupling strength of the whole neural network under
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Fig. 6 The raster plots of the network and the change curve of the synchronization degree of the network. In this simulation, the time step is 0.01

ms and the time length is 3000 ms. a, d gee ¼ 0:15; k ¼ 10; b, e gee ¼ 0:15; k ¼ 50; c, f gee ¼ 0:45; k ¼ 50
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neighbor neurons and the synaptic plasticity all promoted

synchronization. However, in the inhibitory network, no

obvious changes were found. Thus, we combine these three

factors to consider the overall synchronous dynamic

mechanism, as shown in Fig. 10.

The color of Fig. 10a and b changes slightly, the syn-

chronization order parameter is always lower than 0.4, so

the network is considered in a chaotic state. Just to clarify

our results, similarly, DRii ¼ RiSTDP � Rii is defined as the

difference of influence on synchronization parameters after

iSTDP is combined, and the specific change diagram is

given in Fig. 10c. Its variation is less than 0.3, which

means that the synchronization effect of the inhibitory

neural networks is insensitive to the iSTDP.

A network of excitatory and inhibitory neurons
with mixed eSTDP and iSTDP

The first two sections discuss the effects of the synaptic

plasticity on a purely dynamic characteristic network. It

can be found that the influence of the synaptic plasticity

on the excitatory and inhibitory networks is quite differ-

ent. The role of the synaptic plasticity in the excitatory–

inhibitory balanced neural network should be clarified.

First, a pair of neurons coupled by excitatory synapses

and a pair of neurons coupled by inhibitory synapses were

randomly selected to observe the interaction between them.

Figure 11a, b shows a pair of excitatorily coupled neurons,

and the initial coupling strength is 0.15 and 0.45, respec-

tively. The number of the nearest neighbor neurons k is 50.

It was found that the coupling strength of two neurons

fluctuated periodically under the action of mixed STDP

compared with that in the purely excitatory neural network

(Fig. 5). However, the frequency of generating cycles was

much smaller than that of the network composed of purely

inhibitory neurons (Fig. 8). The coupling strength curve of

a pair of inhibitory synaptic coupling neurons was shown

in Fig. 11c, d. It was found that the change frequency of
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Fig. 7 a Synchrony measure R (color bar) as a function of

the coupling strength gee and the number of the nearest neighbor

neurons k without eSTDP. b Synchrony measure R (color bar) as a

function of the coupling strength gee and the number of the nearest

neighbor neurons k combined with eSTDP. c The difference of

influence on synchronization parameters DRee(color bar) as a function
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Fig. 9 The raster plots of the network and the change curve of the

synchronization degree of the network. In this simulation, the time

step is 0.01 ms and the time length is 3000 ms. a, c
gee ¼ 0:15; k ¼ 50; b, d gee ¼ 0:45; k ¼ 50
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the coupling strength of two neurons also fluctuates with

the increase of the coupling strength value g. In addition,

the frequency of the coupling strength fluctuation was

faster than that of the neural network with purely inhibitory

coupling (Fig. 8a, b). Mixed STDP is the result of two

learning rules, eSTDP and iSTDP, which exert balanced

traction on the synaptic coupling of excitatory neurons,

leading to periodic fluctuations in the coupling strength.

The variation curves of the four average synaptic cou-

pling strengths of the neural network, including the cou-

pling strengths of excitatory and excitatory neuron

connections gEE, the coupling strengths of excitatory and

inhibitory neuron connections gEI , the coupling strengths of

inhibitory and excitatory neuron connections gIE, and the

coupling strengths of inhibitory and inhibitory neuron

connections gII , are shown in Fig. 11e, f. Observations

indicate that when the initial coupling strength is 0.15, with

the addition of synaptic plasticity , the coupling strength of

the stable network tends to 0.3. However, when it is 0.45,

the coupling strength gradually decreases to 0.3, which

means the trend of gEE is consistent with Fig.5d, e, f. For

gEI , gIE and gII , the coupling intensity of gEI , gIE and gII
accords with the case of purely inhibitory neural network in

Fig. 8. In other words, under the mutual restriction of

mixed synaptic plasticity, the average coupling strength of

excitatory and excitatory neurons (gEE) keeps the overall

trend of excitatory spike-timing-dependent plasticity and

makes the average coupling strength fluctuate periodically.

When at least one of the two coupling neurons is inhibi-

tory, the effect of inhibitory spike-timing-dependent plas-

ticity (iSTDP) is manifested. That means, if RS and FS

neurons are coupled with each other, the iSTDP between

them will promote the firing frequency.

Then, the effect of mixed spike-timing-dependent plas-

ticity on the synchronization dynamics of the whole net-

work is observed through the variation curve of the

synchronization degree of the whole network. When the

initial coupling strength of neurons was g ¼ 0:15, the

synchronization order parameters R showed a fluctuating

rise and exceeded 0.5 for a time, but the network still did

not produce regular synchronous characteristics, as shown

in Fig. 12a. In addition, when the coupling strength of

initial neurons was increased to g ¼ 0:45, the synchro-

nization degree R remained below 0.5 with the changes of

time, which is shown in Fig. 12b. It does not like a purely

excitatory network that makes the whole network to
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Fig. 11 a, b The variation trend of the coupling strength of two

excitatory neurons under the action of mixed spike-timing-dependent

plasticity. c, d The variation trend of the coupling strength of two

inhibitory neurons under the action of mixed spike-timing-dependent

plasticity. e, f The variation trend of the average coupling strength of

the whole neural network under mixed spike-timing-dependent

plasticity. In this simulation, the time step is 0.01 ms and the time

length is 3000 ms. a, c, e gii ¼ 0:15; k ¼ 50; b, d, f gee ¼ 0:45; k ¼ 50
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achieve complete synchronization and also in the purely

inhibitory network on the basis of promoting effect on the

degree of synchronization. Therefore, the stimulative effect

of eSTDP and the inhibitory effect of iSTDP jointly

maintain the balance of the E-I network.

The effects of the synaptic coupling strength and mixed

spike-timing-dependent plasticity on network synchro-

nization are discussed. In the study of purely excitatory

neural network and purely inhibitory neural network, the

effect of the number of the nearest neighbor coupling

neurons k on the synchronization of the whole neural net-

work is also considered. Then, the synchronization and

balance of the excitatory–inhibitory balanced network

under the joint action of these two factors is studied.

The change of synchronization order parameter R with

the coupling strength g and the number of nearest coupling

neurons k of the small-world network is shown by the color

diagram in Fig. 13. The synaptic plasticity is not included

in the subgraph of Fig. 13a, and the color of R is always

blue. That means in the excitation-inhibitory balanced

network, no matter how the parameters g and k change, the

network is always in a chaotic state, where R is lower than

0.5. Then, eSTDP and iSTDP were added into the excita-

tory–inhibitory balanced network. Although the color in

Fig. 12b became light, R was still lower than 0.5. This is

consistent with the result in Fig. 12. The synchronization

difference of DR with and without synaptic plasticity

fluctuated less than 0.2.

Conclusion and discussions

In this section, we mainly consider the synchronous tran-

sition mechanism of the excitatory and inhibitory neural

networks with spike-timing-dependent plasticity (STDP).

By changing the initial coupling strength of the network,

the number of the nearest neighbor coupling neurons of the

small-world network, and combined with the STDP of the

excitatory and inhibitory impulses, we conducted in-depth

exploration based on different network structures.

The research in this section is mainly analyzed and

discussed in three different situations.

First, a purely excitatory network composed of RS

neurons was constructed, and excitatory spike- timing-de-

pendent plasticity (eSTDP) was added to the network. By

changing the initial coupling strength of the network, it is

found that the final coupling strength of the network tends

to be 0.3, and the synchronization degree is obviously

improved. Changing the number of the nearest coupling

neurons of the small-world network, that is, the number of

connecting edges of the network increases. For a single

neuron, the increase in the number of synapses connected

to it will lead to an increase in the value of coupling terms,

so the synchronization degree of the network will be

enhanced. In addition, the STDP of the excitatory pulse

adjusted and stabilized the coupling strength at the inter-

mediate strength of 0.3. Finally, the network evolves to

complete synchronization and remaines stable.

Then, a purely inhibitory small-world network com-

posed of inhibitory neurons in fast spiking (FS) firing mode

is used to add inhibitory spike-timing-dependent plasticity
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Fig. 12 The change curve of the synchronization degree of the

network. In this simulation, the time step is 0.01 ms and the time

length is 3000 ms. a, c gee ¼ 0:15; k ¼ 50; b, d gee ¼ 0:45; k ¼ 50
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Fig. 13 a Synchrony measure R (color bar) as a function of

the coupling strength gii and the number of the nearest neighbor

neurons k without iSTDP. b Synchrony measure R (color bar) as a

function of the coupling strength gii and the number of the nearest

neighbor neurons k combined with iSTDP. c The difference of

influence on synchronization parameters DRii(color bar) as a function
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(iSTDP) into the network. There are no similar results

between purely excitatory and purely inhibitory neural

networks. The initial coupling strength of the network has

no effect on the coupling strength of the steady state of

the neural networks, and it eventually tends to a large

value of 0.55, and the upper bound of the coupling strength

is 0.6. However, the interesting finding is that the coupling

strength fluctuates periodically, and the frequency of fluc-

tuation increases with the increase of the initial coupling

strength. The effect of the number of nearest neighbor

coupling neurons on the degree of network synchronization

is also negligible. Of course, the most important concern is

that the spike-timing-dependent plasticity of inhibitory

impulses did not produce desirable results either.

The two extremes are analyzed above, but the main

purpose is to study the role of synaptic plasticity in the

excitatory–inhibitory balanced network. Therefore, in the

last part, RS neurons and FS neurons jointly constitute the

excitatory–inhibitory balanced network at the ratio of 4 : 1.

In this network, eSTDP and iSTDP are also added. Under

their joint action, the synchronization behaviors of the

network are different.

For the coupling strength in the network, when the

coupling strength is lower, the enhancement effect keeps

the coupling strength curve to fluctuate in low range. When

the coupling strength is higher, the coupling strength will

be reduced within the scope of the lower curve fluctuations.

In addition, in the excitatory–inhibitory balanced network,

the mean coupling intensity tends to inhibit the STDP of

the inhibitory impulse as long as the inhibitory neurons are

involved. Although the proportion of inhibitory neurons is

only 25%, the inhibitory effect of iSTDP was dominant.

In recent years, several papers on the emergence of the

oscillation and synchronization in the compuational mod-

els showed some of the oscillation like gamma band

rhythm had stochastic property (Hunt David et al. 2018;

Brunet Nicolas et al. 2014; Xing et al. 2012; Chariker et al.

2018, 2016; Saraf and Young 2021). In our simulating

results, we did not find the existence of stochastic property

which may be due to the lack of complexity of network

model structure. We will consider the stochastic property in

the follow-up work with specific brain regions.

In terms of network synchronization, in the excitatory–

inhibitory balanced network, there is no completely syn-

chronous behavior as in the purely excitatory network, nor

is it like the completely chaotic state in the pure inhibitory

network. The synchronization degree is balanced around

0.5. That means as eSTDP promots network synchroniza-

tion, mixed synaptic plasticity inhibites it by iSTDP to

maintain network balance. The weight of eSTDP and

iSTDP in this paper is the same, and iSTDP has played a

strong leading role. More complex situations in this aspect

will be studied in the future.

There also have been many researches about not only

neuronal synchronization, but also the effects of the

synaptic delay on a neuronal network with STDP (Xie

et al. 2016; Mojtaba et al. 2017; Lameu et al. 2018). They

showed that the neuronal plasticity and synaptic delay are

closely linked to the intensity of excitatory couplings.

Increasing the time delay, the synchronous behavior of the

neural network is suppressed. However, these studies have

mainly focused on the effect of time delays on excitatory

synapses, and inhibitory synaptic plasticity remains to be

further discussed. That’s what we’re going to do next.

Excessive synchronization will lead to neurodegenerative

diseases, such as seizures and Parkinson’s disease (Schwab

et al. 2013; Cian et al. 2018). This study found the joint

restriction of eSTDP and iSTDP, which can be used to

guide the treatment and further research of the neurode-

generative diseases.

Acknowledgements This work was supported by the National Natural

Science Foundation of China (No. 11772069), the National Key

Research and Development Program of China (No.

2018YFB1003804) and the National Key Research and Development

Program (2019YFA0 709503).

References

Alina P, Johannes SB, Katharine S, Kleopatra K, Tapani SJ, Liane K,

Johanna K-L, Robert DJ, Louise SM, Martin V et al (2021)

Stimulus-specific plasticity of macaque v1 spike rates and

gamma. Cell Rep 37(10):110086

Antonio PSJ, Ricardo PP, Luiz VR, Marcos BA (2021) Effects of

burst-timing-dependent plasticity on synchronous behaviour in

neuronal network. Neurocomputing 436:126–135

Batista CAS, Lopes SR, Viana Ricardo L, Batista Antonio M (2010)

Delayed feedback control of bursting synchronization in a scale-

free neuronal network. Neural Netw 23(1):114–124

Brunel N, Wang X-J (2003) What determines the frequency of fast

network oscillations with irregular neural discharges? i. synaptic

dynamics and excitation-inhibition balance. J Neurophysiol

90(1):415–430

Börgers C (2017) An introduction to modeling neuronal dynamics.

Texts Appl Math 66

Brunet Nicolas M, Bosman Conrado A, Martin V, Mark R, Robert O,

Robert D, Peter DW, Pascal F (2014) Stimulus repetition

modulates gamma-band synchronization in primate visual cor-

tex. Proc Natl Acad Sci 111(9):3626–3631

Chariker L, Shapley R, Young L-S (2016) Orientation selectivity

from very sparse lgn inputs in a comprehensive model of

macaque v1 cortex. J Neurosci 36(49):12368–12384

Chariker L, Shapley R, Young L-S (2018) Rhythm and synchrony in a

cortical network model. J Neurosci 38(40):8621–8634

Chialvo DR (2010) Emergent complex neural dynamics

Cian MC, François D, Marcello V, L}orincz Magor L, Francis D, Zoe

A, Gregorio R, Gergely O, Lambert Régis C, Giuseppe DG et al

(2018) Cortical drive and thalamic feed-forward inhibition

control thalamic output synchrony during absence seizures. Nat

Neurosci 21(5):744–756

Clawson Wesley P, Wright Nathaniel C, Ralf W, Shew Woodrow L

(2017) Adaptation towards scale-free dynamics improves

Cognitive Neurodynamics (2023) 17:715–727 725

123



cortical stimulus discrimination at the cost of reduced detection.

Plos Comput Biol 13(5):e1005574

D’Amour JA, Froemke RC (2015) Inhibitory and excitatory spike-

timing-dependent plasticity in the auditory cortex. Neuron

86(2):514–528

Field RE, D’Amour JA, Tremblay R, Miehl C, Froemke RC (2020)

Heterosynaptic plasticity determines the set point for cortical

excitatory-inhibitory balance. Neuron 106(5):842–854

Frotscher M, Sakmann B, Markram H, Lübke J (1997) Regulation of
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