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Abstract
The mechanisms underlying a reorientation of neuroscience from a single-brain to a multi-brain frame of reference have

long been with us. These revolve around the evolutionary exaptation of the inevitable second-law ‘leakage’ of crosstalk

between co-resident cognitive phenomena. Crosstalk characterizes such processes as immune response, wound-healing,

gene expression, as so on, up through and including far more rapid neural processes. It is not a great leap-of-faith to infer

that similar phenomena affect/afflict social interactions between individuals within and across populations.
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People are embedded in social interaction that shapes

their brains throughout lifetime. Instead of emerging

from lower-level cognitive functions, social interac-

tion could be the default mode via which humans

communicate with their environment.

— Hari et al. (2015)

The challenge for the study of brain-to-brain coupling

is to develop detailed models of the dynamical

interaction that can be applied at the behavioural

levels and at the neural levels.

— Hasson and Frith (2016)

...[A] deeper understanding of inter-brain dynamics

may provide unique insight into the neural basis of

collective behavior that gives rise to a broad range of

economic, political, and sociocultural activities that

shape society.

— Kingsbury and Hong (2020)

Introduction

A recent elegant study of a bat population by Rose et al.

(2021) finds that bidirectional interbrain activity patterns

are a feature of their socially interactive behaviors, and that

such shared interbrain activity patterns likely play an

important role in social communication between group

members. Sliwa (2021) summarizes that work, and parallel

material by Baez-Mendoza et al. (2021) on macaques.

Kingsbury et al. (2019), in a particularly deep analysis,

studied correlations in brain activity between socially

interacting mice, finding strong structuring by dominance

relations.

Rose et al. are careful to cite the large and growing

human literature on brain-to-brain coupling in social

interaction, including Hasson et al. (2012); Barraza et al.

(2020); Kuhlen et al. (2017); Perez et al. (2017); Stolk

(2014), and Dikker (2017). As Rose et al. put it, a wide

range of species naturally interact in groups and exhibit a

diversity of social structures and forms of communication

involving similarities and differences in neural repertoires

for social communication.

On far longer time scales, Abraham et al. (2020) found

that concordance in parent and offspring cortico-basal

ganglia white matter connectivity varies by parental history

of major depressive disorder and early parental care. As

they put it,
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Social behavior is transmitted cross-generationally

through coordinated behavior within attachment

bonds. Parental depression and poor parental care are

major risks for disruptions of such coordination and

are associated with offspring’s psychopathology and

interpersonal dysfunction... [Study] showed dimin-

ished neural concordance among dyads with a

depressed parent and that better parental care pre-

dicted greater concordance, which also provided a

protective buffer against attenuated concordance

among dyads with a depressed parent... [Such] dis-

ruption may be a risk factor for intergenerational

transmission of psychopathology. Findings empha-

size the long-term role of early caregiving in shaping

neural concordance among at-risk and affected dyads.

Indeed, a broad spectrum of Holocaust studies (Dashorst

et al. 2019) has followed intergenerational transmission of

psycho- and other pathologies, including, but not limited

to, patterns of brain function.

Here, following Wallace (2022a, b), we examine ‘shared

interbrain activity patterns’ from the perspectives of recent

developments in control and information theories, using the

asymptotic limit theorems of those disciplines to develop

probability models that might be converted to statistical

tools of value in future observational and empirical studies

of the phenomena at various time scales. There is, after all,

a very long tradition of using control theory ideas in psy-

chological research. See the review by Henry et al. (2021)

for a deep and cogent summary.

Shared interbrain activity patterns are concrete repre-

sentations – indeed, instantiations – of information trans-

mission within a group, and, as Dretske (1994) indicates,

the properties of any transfer of information are strongly

constrained by the asymptotic limit theorems of informa-

tion theory, in the same sense that the Central Limit The-

orem imposes constraints leading to useful statistical

models of supposedly ‘random’ phenomena.

We begin with ‘simple’ correlation of brain activity

between individuals in social interaction, and then move on

to more complex models of joint cognition across indi-

viduals and/or ‘workgroups’, in a large sense.

Correlation

The elegant paper by Kingsbury et al. (2019) explores

correlated neural activity and the encoding of behavior

across the brains of socially-interacting mice. Two central

findings of that work are shown in Fig. 1, (as adapted from

their Figs. 2 and 8). The top row of Fig. 1 shows time

series of brain activity in two mice, first with, and then

without, direct contact. Correlation between the signals is

much higher during social interaction. The lower part

indicates that correlations rise with difference in status

between animals.

Here, we derive these results using perhaps the simplest

possible dynamic model, one based on a principal

Fig. 1 Adapted from Kingsbury et al. (2019), Figs. 1 and 8. Top:

Correlation between brain activity is much higher during social

interaction. Bottom: Correlation is much higher between discordantly

dominant animals

Fig. 2 Mean distortion \D[ for the Gaussian channel vs. the

dominance index Z. Higher status disjunction implies closer coupling

during social interaction, according to this model
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asymptotic limit theorem of information theory, the Rate

Distortion Theorem.

We adapt the introductory model of Wallace (2020b,

Sec. 1.3), focused on interacting institutions under condi-

tions of conflict analogous to status disjunction.

Suppose we have developed – or been given – a robust

scalar measure of social dominance between pairs of

individuals, Z. How does Z affect ‘correlation’, in a large

sense, during interactions?

A ‘dominant’ partner transmits signals to a ‘subordinate’

in the presence of noise, sending a sequence of signals

Ui ¼ fui1; ui2:::g that, – again, in the presence of noise – is

received as Ûi ¼ fûi1; ûi2; :::g. We take the Ui as sent with

probabilities PðUiÞ, and define a scalar distortion measure

between Ui and Ûi as dðUi; ÛiÞ, defining an average dis-

tortion D as

D �
X

i

PðUiÞdðUi; ÛiÞ ð1Þ

Following Wallace (2020b, Sec. 1.3) closely, it is then

possible to apply a rate distortion argument. The Rate

Distortion Theorem – for stationary, ergodic systems –

states that there is a convex Rate Distortion Function that

determines the minimum channel capacity, written R(D),

that is needed to keep the average distortion below the limit

D. See Cover and Thomas (2006) for details. The theory

can be extended, with some difficulty, to nonergodic

sources via an infimum argument applied to the ergodic

decomposition (e.g., Shields et al. 1978).

The ‘central trick’ is to construct a Boltzmann pseudo-

probability in the dominance measure Z as

dPðR; ZÞ ¼ exp½�R=gðZÞ�dRR1
0

exp½�R=gðZÞ�dR ð2Þ

where the function g(Z) is unknown and must be deter-

mined from first principles.

We have implicitly adopted the ‘worst case coding’

scenario of an analog ‘Gaussian’ channel (Cover and

Thomas 2006). In consequence, the ‘partition function’

integral in the denominator of Eq. (2) has the simple value

g(Z).

For the Gaussian channel using the squared distortion

measure, the Rate Distortion Function R(D), and the dis-

tortion measure, are given as (Cover and Thomas 2006)

RðDÞ ¼ 1

2
log2½r2=D�

D ¼ r22�2R
ð3Þ

If D� r2, then R ¼ 0.

From these relations, using Eq. (2), and after some

manipulation, it is possible to calculate the ‘average aver-

age distortion’ \D[ as

\D[ ¼ r2

logð4ÞgðZÞ þ 1
ð4Þ

For the ‘natural channel’

D ¼ r2

1 þ R

\D[ ¼
r2e

1
gðZÞEi1

1
gðZÞ

� �

gðZÞ

ð5Þ

where Ei1 is the exponential integral of order 1.

What, then, is g(Z)?

Here we abduct more formalism from statistical

mechanics, using the ‘partition function’ in Eq. (2) to

define an ‘iterated free energy’ as

exp½�F=gðZÞ� ¼
Z 1

0

exp½�R=gðZÞ�dR ¼ gðZÞ

F ¼ � log½gðZÞ�gðZÞ

gðZÞ ¼ �FðZÞ
Wðn;�FðZÞÞ

ð6Þ

where W(n, x) is the Lambert W-function of order n solv-

ing the relation Wðn; xÞ exp½Wðn; xÞ� ¼ x and is real-valued

only for n ¼ 0; �1 over limited ranges. These are,

respectively, for n ¼ 0; x[ � exp½�1�, and for

n ¼ �1; � exp½�1�\x\0. These conditions are important

and impose themselves on the expressions for \D[ .

The next step is to define an ‘iterated entropy’ in the

standard manner as the Legendre transform of the ‘free

energy’ analog F, and from it, impose a simple first-order

version of the Onsager treatment of nonequilibrium ther-

modynamics (de Groot and Mazur 1984), in the context of

a nonequilibrium steady state, so that dZ=dt ¼ 0. The

relations are then

SðZÞ � �FðZÞ þ ZdFðZÞ=dZ
dZ=dt / dS=dZ ¼ Zd2F=dZ2 ¼ 0

FðZÞ ¼ C1Z þ C2

ð7Þ

where the Ci are appropriate boundary conditions and

g(Z) is then given by the last expression in Eq. (6).

For the Gaussian channel, taking the Lambert W-func-

tion of order zero, and setting C1 ¼ �1; C2 ¼ 1=10, gives

Fig. 2.

For the ‘natural’ channel, again with the W-function of

order zero, taking the same values for the Ci gives Fig. 3.

Higher status disjunction, in this model, implies closer

coupling between individuals.

Similar results will follow for all possible Rate Distor-

tion Functions that must be both convex in D and zero-

valued for D� r2 (Cover and Thomas 2006).

A fairly elementary model of social interaction under

dominance relations, based on a somewhat counter-
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intuitive dynamic adaptation of the Rate Distortion Theo-

rem, produces results consistent with the empirical obser-

vations of Kingsbury et al. (2019). Extension of the model

to both nonergodic and nonstationary conditions more

likely to mirror real-world conditions, or at least going

beyond the nonequilibrium steady state assumption, will

requires further work.

The model can, in theory, be extended using the ergodic

decomposition of a nonergodic process using the methods

of Shields et al. (1978).

Otherwise, we are constrained to adiabatically, piece-

wise, stationary ergodic (APSE) systems that remain as

close to ergodic and stationary as needed for the Rate

Distortion Theorem to work, much like the Born-Oppen-

heimer approximation of molecular physics in which rapid

electron dynamics are assumed to quasi-equilibrate about

much slower nuclear oscillations, allowing calculations

using ‘simple’ quantum mechanics models.

Cognition

Cognition is not correlation, and requires more general

address. Indeed, cognition has become a kind of shibboleth

in theoretical biology, seen by some as the fundamental

characterization of the living state at and across its essen-

tial scales and levels of organization (Maturana and Varela

1980). In this regard, a central inference by Atlan and

Cohen (1998), in their study of the immune system, is that

cognition, via mechanisms of choice, demands reduction in

uncertainty, implying the existence of information sources

‘dual’ to any cognitive process. The argument is unam-

biguous and direct, and serves as the foundation to our

general approach.

A first step is to view ‘information’ as a biological and

social resource matching the importance of metabolic free

energy and other overtly material agents and agencies.

Information and other resources

Here, we must move beyond ‘simple’ measures of domi-

nance between individuals in social interaction.

At least three resource streams are required by any

cognitive entity facing real-time, real-world challenges.

The first is measured by the rate at which information can

be transmitted between elements within the entity, deter-

mined as an information channel capacity, say C (Cover

and Thomas 2006). The second resource stream is sensory

information regarding the embedding environment – here,

primarily social interaction – available at a rate Q. It is

along this channel that ‘neural representations’ will be

shared.

The third regards material resources, including meta-

bolic free energy – in a large sense – available at a rate M.

These three rates may well – but not necessarily –

interact, a matter characterized as a 3 by 3 matrix analo-

gous to, but not the same as, a simple correlation matrix.

Let us write this as Z.

An n-dimensional square matrix has n scalar invariants

ri defined by the relation

pðcÞ ¼ det½Z� cI� ¼
cn � r1c

n�1 þ r2c
n�2 � :::þ ð�1Þnrn

ð8Þ

I is the n-dimensional identity matrix, det the determinant,

and c a real-valued parameter. The first invariant is usually

taken as the matrix trace, and the last as ± the determinant.

These scalar invariants make it possible to project the

full matrix down onto a single scalar index Z ¼
Zðr1; :::; rnÞ retaining much of the basic structure, analo-

gous to conducting a principal component analysis. The

simplest index might be Z ¼ C� Q�M – the matrix

determinant for a system without crossinteraction. How-

ever, scalarization must be appropriate to the individual

circumstance studied, and there will almost always be

important cross-interactions between resource streams.

Clever scalarization, however, enables approximate

reduction to a one dimensional system.

Taking M out of the equation – equalizing it across the

social structure – might generate two independent

‘orthogonal’ indices, for example the determinant and the

Fig. 3 Mean distortion \D[ for the ‘natural’ channel vs. the

dominance index Z. Again, higher status disjunction implies closer

coupling during social interaction
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trace of the ‘interaction matrix’ separately, so that Z be-

comes a two dimensional vector. General expansion of

Z into vector form leads to difficult multidimensional

dynamic equations (e.g., Wallace 2021c). See the Mathe-

matical Appendix for details.

Cognition and information

Only in the case that cross-sectional and longitudinal

means are the same can information source uncertainty be

expressed as a conventional Shannon ‘entropy’ (Khinchin

1957; Cover and Thomas 2006). Here, we only require that

source uncertainties converge for sufficiently long paths,

not that they fit some functional form. It is the values of

those uncertainties that will be of concern so that we study

‘Adiabatically Piecewise Stationary’ (APS) systems, in the

sense of the Born-Oppenheimer approximation for molec-

ular systems that assume nuclear motions are so slow in

comparison with electron dynamics that they can be

effectively separated, at least on appropriately chosen tra-

jectory ‘pieces’ that may characterize the various phase

transitions available to such systems. Extension of this

work to nonstationary circumstances remains to be done.

This approximation can be carried out via a fairly

standard Morse Function iteration (Pettini 2007).

The systems of interest here are composed of cognitive

submodules that engage in crosstalk. At every scale and

level of organization all such submodules are constrained

by both their own internals and developmental paths and by

the persistent regularities of the embedding environment,

including the cognitive intent of colleagues, in a broad

sense, and the regularities of ‘grammar’ and ‘syntax’

imposed by the embedding social structure.

Further, there are structured uncertainties imposed by

the large deviations possible within that environment, again

including the behaviors of adversaries who may be con-

strained by quite different developmental trajectories and

‘punctuated equilibrium’ evolutionary transitions.

Recapitulating somewhat the arguments of Wallace

(2018, 2020a), the Morse Function construction assumes a

number of interacting factors:

• As Atlan and Cohen (1998) argue, cognition requires

choice that reduces uncertainty. Such reduction in

uncertainty directly implies the existence of an infor-

mation source ‘dual’ to that cognition at each scale and

level of organization. The argument is unambiguous

and sufficiently compelling.

• Cognitive physiological processes, like the immune and

gene expression systems, are highly regulated, in the

same sense that ‘the stream of consciousness’ flows

between cultural and social ‘riverbanks’. That is, a

cognitive information source Xi is generally paired with

a regulatory information source Xi.

• Environments (in a large sense), also have sequences of

very high and very low probability: night follows day,

hot seasons follow cold, and so on.

• ‘Large deviations’, following Champagnat et al. (2006)

and Dembo and Zeitouni (1998), also involve sets of

high probability developmental pathways, often gov-

erned by ‘entropy’ analog laws that imply the existence

of yet one more information source.

Full system dynamics must then be characterized by a

joint, nonergodic information source uncertainty

HðfXi; X
ig;V ; LDÞ ð9Þ

that is defined path-by-path and not represented as an

‘entropy’ function (Khinchin 1957). Consequently, each

path will have it’s own H-value, but the functional form of

that value is not specified in terms of underlying proba-

bility distributions.

The set fXi; X
ig includes the internal interactive cogni-

tive dual information sources of the system of interest and

their associated regulators, V is taken as the information

source of the embedding environment. This may include the

actions and intents of adversaries/symbionts/colleagues, as

well as ‘weather’. LD is the information source of the

associated large deviations possible to the system, possibly

including ‘punctuated equilibrium’ evolutionary transitions.

Again, we are projecting the spectrum of essential

resources onto a scalar rate Z.

The underlying equivalence classes of developmental or

dynamic system paths used to define groupoid symmetries

can be defined fully in terms of the magnitude of individual

path source uncertainties, Hðx jÞ; x j � fx j
0; x

j
1; ::: x

j
n; :::gÞ

alone.

Recall the central conundrum of the ergodic decompo-

sition of nonergodic information sources. It is formally

possible to express a nonergodic source as the composition

of a sufficient number of ergodic sources, much as it is

possible to reduce planetary orbits to a Fourier sum of

circular epicycles, obscuring the basic dynamics. Hoyrup

(2013) discusses the problem further, finding that ergodic

decompositions are not necessarily computable. Here, we

need focus only on the values of the source uncertainties

associated with dynamic paths.

Dynamics

The next step is to build an iterated ‘free energy’ Morse

Function (Pettini 2007) from a Boltzmann pseudoproba-

bility, based on enumeration of high probability develop-

mental pathways available to the system j ¼ 1; 2; ::: so that
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Pj ¼
exp½�Hj=gðZÞ�P
k exp½�Hk=gðZÞ�

ð10Þ

where Hj is the source uncertainty of the path j, which –

again – we do not assume to be given as a ‘Shannon

entropy’ since we are no longer restricted to ergodic

sources.

The essential point is the ability to divide individual

paths into two equivalence classes, a small set of high

probability paths consonant with an underlying ‘grammar’

and ‘syntax’, and a much larger set of vanishingly low

probability, essentially a set of measure zero.

The temperature-analog characterizing the system,

written as g(Z) in Eq. (10), can be calculated – or at least

approximated – via a first-order Onsager nonequilibrium

thermodynamic approximation built from the partition

function, i.e., the denominator of Eq. (10) (de Groot and

Mazur 1984).

We define the ‘iterated free energy’ Morse Function as

exp½�F=gðZÞ� �
X

k

exp½�Hk=gðZÞ� � hðgðZÞÞ

FðZÞ ¼ � log½hðgðZÞÞ�gðZÞ
ð11Þ

where the sum is over all possible high probability devel-

opmental paths of the system, again, those consistent with

an underlying grammar and syntax. Again, system paths

not consonant with grammar and syntax constitute a set of

measure zero that is very much larger than the set of high

probability paths.

Feynman (2000) makes the direct argument that infor-

mation itself is to be viewed as a form of free energy, using

Bennett’s ‘ideal machine’ that turns a message into work.

Here, we invoke an iterated – rather than a direct – free

energy construction.

F, taken as a free energy, then becomes subject to

symmetry-breaking transitions as g(Z) varies (Pettini

2007). These symmetry changes, however, are not as

associated with physical phase transitions as represented by

standard group algebras. Cognitive phase changes involve

shifts between equivalence classes of high probability

developmental pathways to be represented as groupoids, a

generalization of the group concept where a product is not

necessarily defined for every possible element pair (Brown

1992; Cayron 2006; Weinstein 1996). See the Mathemat-

ical Appendix for an outline of the theory.

The disjunction described above – into high and low

probability equivalence classes representing paths conso-

nant with, or discordant from, underlying grammar and

syntax – should be seen as the primary ‘groupoid phase

transition’ affecting cognitive systems. It is essentially the

biological ‘big bang’ of Maturana and Varela (1980).

Think about this carefully.

Dynamic equations follow from invoking a first-order

Onsager approximation akin to that of nonequilibrium

thermodynamics (de Groot and Mazur 1984) in the gradi-

ent of an entropy measure constructed from the ‘iterated

free energy’ F of Eq. (11):

SðZÞ � �FðZÞ þ ZdFðZÞ=dZ
oZ=ot � dS=dZ ¼ f ðZÞ

f ðZÞ ¼ Zd2F=dZ2

g Zð Þ ¼

�C1Z �
R f Zð Þ

Z dZ
� �

Z þ C2 þ
R
f Zð ÞdZ

RootOf eQ � h � C1Zþ
R

f Zð Þ
Z dZ

� �
Z�C2�

R
f Zð ÞdZ

� �

Q

� �� �

ð12Þ

where the last relation follows from an expansion of the

third part of Eq. (12) using the second expression of

Eq. (11). C1 and C2 are two constants in the indefinite

integral of the second derivative of F(Z), and Q is the

independent variable of the function being taken roots.

Three important – and somewhat subtle – points:

(1) The ‘RootOf’ construction actually generalizes the

not-so-well-known Lambert W-function (e.g., Yi

et al. 2010; Mezo and Keady 2015). This leads to

deep waters: since ‘RootOf’ may have complex

number solutions, the temperature analog g(Z) enters

the realm of the ‘Fisher Zeros’ characterizing phase

transition in physical systems (e.g., Dolan et al.

2001; Fisher 1965; Ruelle 1964 Sec. 5).

(2) Information sources are not microreversible, that is,

palindromes are highly improbable, e.g., ‘ eht ’ has

far lower probability than ‘ the ’ in English. In

consequence, there are no ‘Onsager Reciprocal

Relations’ in higher dimensional systems. The

necessity of groupoid symmetries appears to be

driven by this directed homotopy.

(3) Typically, it is necessary to impose a delay in

provision of Z, so that, for example, dZ=dt ¼ f ðZÞ ¼
b� aZðtÞ and Z ! b=a at a rate determined by a.

Suppose, in the first of Eq. (11), it is possible to approxi-

mate the sum with an integral, so that

exp½�F=gðZÞ� �
Z 1

0

exp½�H=gðZÞ�dH ¼ gðZÞ ð13Þ

g(Z) must be real-valued and positive. Then

FðZÞ ¼ � log½gðZÞ�gðZÞ
gðZÞ ¼ �FðZÞ=WL½n;�FðZÞ�

ð14Þ

Again, WL is the ‘simplest’ Lambert W-function that sat-

isfies WL½n; x� exp½WL½n; x�� ¼ x. It is real-valued only for

n ¼ 0; �1 and only over limited ranges of x in each case.
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In theory, specification of any two of the functions

f, g, h permits calculation of the third. h, however, is

determined – fixed – by the internal structure of the larger

system. Similarly, ‘boundary conditions’ C1; C2 are

externally-imposed, further sculpting dynamic properties

of the ‘temperature’ g(Z), and f determines the rate at

which the composite essential resource Z can be delivered.

Both information and metabolic free energy resources are

rate-limited.

Cognition rate

For phase transitions in physical systems, there is generally

a minimum temperature for punctuated activation of the

dynamics associated with given group structure – under-

lying symmetry changes associated with the transitions of

ice to water water to steam, and so on. For cognitive pro-

cesses, following the arguments of Eq. (5), there will be a

minimum necessary value of g(Z) for onset of the next in a

series of transitions. That is, at some T0 � gðZ0Þ, having a

corresponding information source uncertainty H0, a second

groupoid phase transition becomes manifest.

Taking a reaction rate perspective from chemical

kinetics (Laidler 1987), we can write an expression for the

rate of cognition as

LðZÞ ¼
P

Hj [H0
exp½�Hj=gðZÞ�P

k exp½�Hk=gðZÞ�
ð15Þ

If the sums can be approximated as integrals, then the

system’s rate of cognition at resource rate index Z can be

written as

LðZÞ �
R1
H0

exp½�H=gðZÞ�dH
R1

0
exp½�H=gðZÞ�dH

¼ exp½�H0=gðZÞ�

¼ exp½H0WLðn;�FÞ=F�
ð16Þ

where WLðn;�FÞ is the Lambert W-function of order n in

the free energy index F ¼ � log½gðZÞ�gðZÞ.
Figure 4 shows L(F)vs.F, using Lambert W-functions of

orders 0 and �1, respectively real-valued only on the

intervals x[ � exp½�1� and � exp½�1�\x\0.

The Lambert W-function is only real-valued for orders 0

and �1, and only for F\ exp½�1�. However, if

0\F\ exp½�1�, then a bifurcation instability emerges,

with a transition to complex-valued oscillations in cogni-

tion rate at higher values.

This development recovers what is essentially an analog

to the Data Rate Theorem from control theory (Nair et al.

2007 and the Mathematical Appendix), in the sense that the

requirement H[H0 in Eqs.(15) and (16) imposes stability

constraints on F, the free energy analog, and by inference,

on the resource rate index Z driving it.

An example

We again approximate the sum in Eq. (11) by an integral –

so that hðgðZÞÞ ¼ gðZÞ – and make a simple assumption on

the form of dZ=dt ¼ f ðZÞ, say f ðZÞ ¼ b� aZðtÞ. Then

gðZÞ ¼ � 2 ln Zð ÞZb� Z2aþ 2C1Z � 2Zbþ 2C2

2WL n;� ln Zð ÞZbþ Z2a
2
� C1Z þ Zb� C2

� �

ð17Þ

with, again, L ¼ exp½�H0=gðZÞ�, depending on the rate

parameters a and b, the boundary conditions Ci, and the

degree of the Lambert W-function. Proper choice of

boundary conditions generates a classic ‘inverted-U’ signal

transduction Yerkes-Dodson Law analog (e.g., Wallace

2020a, 2021c; Diamond et al. 2007). That is, since

Z ! b=a, we look at the cognition rate for fixed a and

boundary conditions Cj as b increases. The result is shown

in Fig. 5, for appropriate boundary conditions.

Similar results follow if

exp½�F=gðZÞ� ¼ hðgðZÞÞ / AmgðZÞm

that is, if the function h(g(Z)) has a strongly dominant term

of order m[ 0.

Fig. 4 Rate of cognition from Eq. (16) as a function of the iterated

free energy measure F, taking H0 ¼ 1. The Lambert W-function is

only real-valued for orders 0 and �1, and only if F\ exp½�1�.
However, if 0\F\ exp½�1�, then a bifurcation instability emerges,

with a transition to complex-valued oscillations in cognition rate at

higher values. Since F is driven by Z, there is a minimum resource

rate for stability
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It is complicated – but not difficult – to incorporate

stochastic effects into cognition rate dynamics based on

Eq. (17), via standard methods from the theory of

stochastic differential equations (e.g., Wallace 2021a, b, c).

See the Mathematical Appendix for an example based on

Fig. 5, fixing b ¼ 3.

Cooperation: multiple workspaces

Individual brains – and indeed, even individual cells – are

composed of interacting (often spatially distributed) cog-

nitive submodules. Social groups are constituted by inter-

acting individuals, separated by space, time, and/or social

distance. Institutions are made up of dispersed but inter-

acting ‘workgroups’, in a large sense. A critical phe-

nomenon in all such examples is that the joint uncertainty

of the dual information source associated with the partic-

ular level of cognition is less than or equal to the sum of the

uncertainties of independent components – the information

theory chain rule (Cover and Thomas 2006). To invert the

argument, preventing crosstalk between cognitive sub-

modules requires more investment of free energy or other

resources than allowing interaction, as the electrical engi-

neers often lament. From this lemon, evolution has made

lemonaide (e.g., Wallace 2022).

More specifically for the work here, the emergence of a

generalized Lambert W-function in Eq. (12), reducing to a

‘simple’ W-function if hðgðZÞÞ ¼ gðZÞ, is particularly

suggestive. Recall that the fraction of network nodes in a

giant component of a random network of N nodes with

probability P of linkage between them can be given as

(Newman 2010)

WLð0;�NP exp½�NP�Þ þ NP

NP
ð18Þ

where, again, the Lambert W-function emerges.

This expression has punctuated onset of a giant com-

ponent of linked nodes only for NP[ 1. See Fig. 6. In

general, we might expect P to be a monotonic increasing

function of g(Z).

Within broadly ‘social’ groupings, interacting cognitive

submodules – individuals – can become linked into shift-

ing, tunable, temporary, workgroup equivalence classes to

address similarly rapidly shifting patterns of threat and

opportunity. These might range from complicated but rel-

atively slow multiple global workspace processes of gene

expression and immune function to the rapid – hence

necessarily stripped-down – single-workspace neural phe-

nomena of higher animal consciousness (Wallace 2012).

More complicated approaches to such a phase transition

– involving Kadanoff renormalizations of the Morse

Function free energy measure F and related measures – can

be found in Wallace (2005; 2012; 2022).

By contrast here, while multiple workspaces are most

simply invoked in terms of a simultaneous set of the gjðZjÞ,
individual workspace tunability emerges from exploring

equivalence classes of network topologies associated with

Fig. 5 Classic ‘inverted-U’ signal transduction for the cognition rate

based on Eq. (17), setting a ¼ 1; C1 ¼ �2; C2 ¼ �2; H0 ¼ 1.

Increase in b is taken as the ‘arousal’ measure

Fig. 6 Fraction of an N-node random network within the giant

component as determined by the probability of contact between nodes

P. The essential point is the punctuated accession to ‘global

broadcast’ if and only if NP[ 1 (e.g., Baars 1989; Dehaene and

Changeux 2011). We might expect P to be a monotonic increasing

function of g(Z)
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a particular value of some designated gjðZjÞ. Central mat-

ters then revolve around the equivalence class decompo-

sitions implied by the existence of the resulting

workgroups, leading again to dynamic groupoid symmetry-

breaking as they shift form and function in response to

changing patterns of threat and opportunity. See Wallace

(2021a, Sec. 12) for a parallel argument from an ergodic

system perspective. Here, the g(Z) substitute for the

‘renormalization constant’ x in that development. For

brevity, we omit a full discussion here.

Network topology is important

We can, indeed, calculate the cognition rate of a single

‘global workspace’ as follows.

Suppose we have N linked cognitive submodules –

individuals – in a social ‘giant component’, i.e., we operate

in the upper portion of Fig. 6. The free energy Morse

Function F can be expressed in terms of a full-bore parti-

tion function as

exp½�F=gðZÞ� ¼
XN

k¼1

XM

j¼1

exp½�Hk;j=gðZÞ�

�
XN

k¼1

Z 1

0

exp½�Hk=gðZÞ�dHk ¼
XN

k¼1

gðZÞ ¼ NgðZÞ

F ¼ � log½NgðZÞ�gðZÞ; gðZÞ ¼ �F

WLðn;�NFÞ
ð19Þ

The sum over j represents available states within individual

submodules, and the sum over k is across submodules, and

WL is again the Lambert W-function. Note, however, the

appearance of the factor NF in the last expression.

The rate of cognition of the linked-node giant compo-

nent can be expressed as

L ¼
PN

k¼1

R1
Hk

0

exp½�Hk=gðZÞ�dHk

PN
k¼1

R1
0

exp½�Hk=gðZÞ�dHk

¼ gðZÞ
P

k exp½�Hk
0=gðZÞ�

NgðZÞ

¼
X

k

exp½�Hk
0=gðZÞ�

 !
=N � \Lk [

ð20Þ

where, not entirely unexpectedly, \Lk [ represents an

averaging operation. More sophisticated averages might

well be applied – at the expense of more formalism.

If we impose the approximation of Onsager nonequi-

librium thermodynamics, i.e., defining

SðZÞ ¼ �FðZÞ þ ZdF=dZ, and assume dS=dZ ¼ f ðZÞ, we

again obtain f ðZÞ ¼ Zd2F=dZ2, and can calculate

g(Z) from the last expression in Eq. (19).

The appearance of N in expressions for g(Z) and L is of

some note. In particular, groupthink – high values of Hk
0 –

may result in failure to detect important signals.

Such considerations lead to a fundamentally different

picture that is not just possible, but often observed, i.e., a

transmission model. Consider something like a colony of

prairie dogs under predation by hawks. A ‘sentinel’ pattern

emerges, rather than the average system of Eq. (20),

through the ‘bottleneck’ of a single, very highly-optimized,

‘subcomponent’ of the larger social structure. This involves

a hypervigilant individual – or a small number of such

appropriately dispersed – whose special danger signal or

signals can be imposed rapidly across the entire population

– postures, vocalizations, or both. Then

L ¼ max
k

fLk ¼ exp½�Hk
0=gðZÞ�g ð21Þ

where max is the maximization across the set fLkg.

However, Dore et al. (2019) show that, while brain activity

in humans can track information sharing, there are likely to

be important individual differences. That is, not everyone

may respond the same to an ‘alert’ message.

Other network topologies are clearly possible. For

example, in a rigidly hierarchical linear-chain business,

military, or political setting, L will often be given by the

minimization of cognition rates across the Lk, that is, by a

bottleneck model.

The critical dependence of a system’s cognitive

dynamics on its underlying ‘social topology’ has profound

implications for theories of the ‘extended conscious mind’

(Clark 2009; Lucia Valencia and Froese 2020). A particular

expression of such matters involves failures of institutional

cognition on wickedly hard problems (Wallace 2021b).

Time and resource constraints are important

Multiple workspaces, however, can also present a singular

– and independent – problem of resource delivery, taking

the scalar Zj and time itself as essential resources. That is,

not only are the Zj both limited and delayed, in most cases,

there will be a limit on possible response times, for both

‘predator’ and ‘prey’, so to speak.

If we assume an overall limit to available resources

across a multiple workspace system j ¼ 1; 2; ::: as

Z ¼
P

j Zj, and available time as T ¼
P

j Tj, then it is

possible to carry out a simple Lagrangian optimization on

the rate of system cognition 	
P

j exp½�H0
j =gjðZjÞ� as
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L �
X

j

exp½�H0
j =gjðZjÞ�þ

k Z �
X

j

Zj

 !
þ l T �

X

j

Tj

 !

oL=oZj ¼ 0; oL=oTj ¼ 0

ð22Þ

where we assume dZj=dt ¼ fjðZjðtÞÞ ¼ bj � ajZjðtÞ.
This leads, after some development, to a necessary

expression for individual subsystem resource rates as

Zj ¼ f�1
j ðl=kÞ ¼

bj � l=k

aj
[ 0 ð23Þ

l and k are to be viewed in economic terms as shadow

prices imposed by ‘environmental constraints’, in a large

sense (e.g., Jin et al. 2007; Robinson 1993).

The essential point is that cognitive dynamics – the rates

of cognition driven by the rate of available resources Zj and

time – in this model, are strongly determined by the sha-

dow price ratio l=k. The shadow price ratio is to be

interpreted as an environmental signal. A sufficiently large

shadow price ratio, according to Eq. (23), can starve

essential components, driving their cognition rates to

failure.

Further theoretical development

Following the arguments of Wallace (2021a), the cognition

models can be extended in a number of possible directions,

much as is true for ‘ordinary’ regression theory.

Perhaps the simplest next step is to replace the relation

dZ=dt ¼ f ðZðtÞÞ with a stochastic differential equation

having the form dZt ¼ f ðZtÞdt þ rgðZtÞdBt, where dBt

represents ordinary white noise.

A next ‘simple’ generalization might be replacing the

scalar index Z with a multidimensional vector quantity, Z,

leading to an intricate set of simultaneous partial differ-

ential equations requiring, at best, Lie symmetry address.

See the Mathematical Appendix for an outline.

Further development could involve expanding the

‘Onsager approximation’ in terms of a ‘generalized

entropy’ S ¼
P

k �kZ
k�1Fk�1, where F j � d jF=dZ j. Then

the dynamics might also be generalized, at least for a scalar

Z, as oZ=ot �
P

j ljd
jS=dZ j ¼ f ðZÞ, and so on toward

multidimensional models.

As with regression equations much beyond Y ¼ mX þ b,

matters can rapidly become complicated indeed.

Discussion

Hasson et al. (2012), in a widely-cited foundational study,

call for a reorientation of neuroscience from a single-brain

to a multi-brain frame of reference:

Cognition materializes in an interpersonal space. The

emergence of complex behaviors requires the coor-

dination of actions among individuals according to a

shared set of rules. Despite the central role of other

individuals in shaping our minds, most cognitive

studies focus on processes that occur within a single

individual. We call for a shift from a single-brain to a

multi-brain frame of reference. We argue that in

many cases the neural processes in one brain are

coupled to the neural processes in another brain via

the transmission of a signal through the environment.

Brain-to-brain coupling constrains and simplifies the

actions of each individual in a social network, leading

to complex joint behaviors that could not have

emerged in isolation.

Kingsbury et al. (2019), Rose et al. (2021) and Baez-

Mendoza et al. (2021) extend this perspective to interacting

non-human populations, while Abraham et al. (2020), for

humans, extend the time scale across generations.

Here, we outline something of the formal developments

needed to implement such reorientation, based on groupoid

symmetry-breaking within longstanding paradigms of

information and control theories, as affected and afflicted

by network topologies and their dynamics. This, it can be

argued, is very much a ‘rocket science’ problem, since the

difficulty lies not in the individual components of a pos-

sible comprehensive approach, which are all well-studied,

but in using the building blocks to construct a theoretical

enterprise that accounts well for observational and exper-

imental data. Very similar conundrums confront contem-

porary theories of consciousness (e.g., Wallace 2022),

albeit, in this case, without the hindrance of quite so many

longstanding philosophical and de-facto theological

presuppositions.

Application of the approach developed here to stochastic

systems is straightforward if somewhat complicated, as is

extension to higher approximation ‘Onsager-type’ entropy

gradient models, the analog of moving from y ¼ mxþ b to

y ¼ mx2 þ b, and so on (Wallace 2021a, b).

In a deep-time sense, the underlying mechanisms have

long been with us, i.e., the evolutionary exaptation of the

inevitable second-law ‘leakage’ of crosstalk between co-

resident cognitive processes (e.g., Wallace 2012). Crosstalk

characterizes the immune system, wound-healing, tumor

control, gene expression, and so on, up through and

including far more rapid neural processes. It is not a great
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leap-of-faith to infer that similar dynamics instantiate

social interactions between individuals within and across

populations.

Mathematical appendix

Groupoids

We follow Brown (1992) closely. Consider a directed line

segment in one component, written as the source on the left

and the target on the right.


 �! 


Two such arrows can be composed to give a product ab if

and only if the target of a is the same as the source of b


�!a 
 �!b 


Brown puts it this way,

One imposes the geometrically obvious notions of

associativity, left and right identities, and inverses.

Thus a groupoid is often thought of as a group with

many identities, and the reason why this is possible is

that the product ab is not always defined.

We now know that this apparently anodyne relaxation

of the rules has profound consequences... [since] the

algebraic structure of product is here linked to a

geometric structure, namely that of arrows with

source and target, which mathematicians call a

directed graph.

Cayron (2006) elaborates this as follows,

A group defines a structure of actions without

explicitly presenting the objects on which these

actions are applied. Indeed, the actions of the group G

applied to the identity element e implicitly define the

objects of the set G by ge = g; in other terms, in a

group, actions and objects are two isomorphic enti-

ties. A groupoid enlarges the notion of group by

explicitly introducing, in addition to the actions, the

objects on which the actions are applied. By this

approach, many identities may exist (they correspond

to the actions that leave an object invariant).

It is of particular importance that equivalence class

decompositions permit construction of groupoids in a

highly natural manner.

Weinstein (1996) and Golubitsky and Stewart (2006)

provide more details on groupoids and on the relation

between groupoids and bifurcations.

An essential point is that, since there are no necessary

products between groupoid elements, ‘orbits’, in the usual

sense, disjointly partition groupoids into ‘transitive’

subcomponents.

The data rate theorem

Real-world environments are inherently unstable. Organ-

isms, to survive, must exert a considerable measure of

control over them. These control efforts range from

immediate responses to changing patterns of threat and

affordance, through niche construction, and, in higher

animals, elaborate, highly persistent, social and sociocul-

tural structures. Such necessity of control can, in some

measure, be represented by a powerful asymptotic limit

theorem of probability theory different from, but as fun-

damental as, the Central Limit Theorem: the Data Rate

Theorem, first derived as an extension of the Bode Integral

Theorem of signal theory.

Consider a reduced model of a control system as

follows:

For the inherently unstable system of Fig. 7, assume an

initial n-dimensional vector of system parameters at time t,

as xt. The system state at time t þ 1 is then – near a pre-

sumed nonequilibrium steady state – determined by the

first-order relation

xtþ1 ¼ Axt þ But þWt ð24Þ

In this approximation, A and B are taken as fixed n-di-

mensional square matrices. ut is a vector of control infor-

mation, and Wt is an n-dimensional vector of Brownian

white noise.

Fig. 7 The reduced model of an inherently unstable system stabilized

by a control signal Ut
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According to the DRT, if H is a rate of control infor-

mation sufficient to stabilize an inherently unstable control

system, then it must be greater than a minimum, H0,

H[H0 � log½k det½Am�k� ð25Þ

where det is the determinant of the subcomponent Am –

with m� n – of the matrix A having eigenvalues � 1. H0 is

defined as the rate at which the unstable system generates

‘topological information’ on its own.

If this inequality is violated, stability fails.

Stochastic analysis for Fig. 5

Here, we apply the Ito Chain Rule (Protter 2005) to the

expression LðZÞ ¼ exp½�1=gðZÞ�, as based on Eq. (17) for

g(Z). We set a ¼ 1; b ¼ 3; C1 ¼ C2 ¼ �2 and numeri-

cally calculate the solution set for the relation \dLt [ ¼
0 based on the underlying stochastic differential equation

dZt ¼ ðb� aZtÞdt þ rZtdBt ð26Þ

where dBt is assumed to be ordinary white noise, as

associated with Brownian motion.

Figure 8 shows the result, the solution equivalance class

fr; Zg for b ¼ 3, just to the left of the peak in Fig. 5. Note

that, at r � 0:278, the system becomes susceptible to a

bifurcation instability, well before the ‘standard’ instability

expected from a second-order Ito Chain Rule analysis

based on Eq. (26). More specifically, the nonequilibrium

steady state (nss) conditions associated with Eq. (26) are

the relations \Zt [ ¼ b=a and

Var½Zt� ¼ b=ða� r2=2Þð Þ2�ðb=aÞ2
, so that variance in Z

explodes as r !
ffiffiffiffiffi
2a

p
, here,

ffiffiffi
2

p
.

Similar analyses to Fig. 8 across increasing values of b
produce increasingly complicated equivalence classes

fr; Zg, as constrained by the nss conditions on Zt.

Higher dimensional systems

Above, we have viewed systems as sufficiently well char-

acterized by the single scalar parameter Z, mixing material

resource/energy supply with internal and external flows of

information. The real world, however, may often be far

more complicated. That is, invoking techniques akin to

Principal Component Analysis, there may be more than one

independent composite entity irreducibly driving system

dynamics. It may then be necessary to replace the scalar Z

with an n-dimensional vector Z having orthogonal com-

ponents that, together, account for a good portion of the

total variance in the rate of supply of essential resources.

The dynamic equations are then in vector form:

FðZÞ ¼ � log hðgðZÞÞð ÞgðZÞ
S ¼ �F þ Z � rZF

oZ=ot � l̂ � rZS ¼ f ðZÞ
�rZF þrZðZ � rZFÞ ¼

l̂�1 � f ðZÞ � f �ðZÞ
o2F=oziozj
� �� �

� Z ¼ f �ðZÞ
o2F=oziozj
� �� �

jZnss
� Znss ¼ 0

ð27Þ

Here, F, g, h, and S are scalar functions, and l̂ is an n-

dimensional square matrix of diffusion coefficients. The

matrix ððoF=oziozjÞÞ is the obvious n-dimensional square

matrix of second partial derivatives, and f ðZÞ is a vector

function. The last relation imposes a nonequilibrium steady

state condition, i.e. f �ðZnssÞ ¼ 0.

For the ‘simple’ Rate Distortion approach,

hðgðZÞÞ ! gðZÞ, while, again, we assume ZðtÞ ! Znss.

For n� 2, this is an overdetermined system of partial

differential equations (Spencer 1969). Indeed, for a general

f �ðZÞ the system is inconsistent, resulting in as many as n

different expressions for FðZÞ, and hence the same number

of ‘temperature’ measures as determined by the relation

F ¼ � logðgÞg.
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Fig. 8 Numerical solution equivalence class fr; Zg for the relation

\dLt [ ¼ 0 from Fig. 5, taking b ¼ 3, just to the left of the peak.

Again, a ¼ 1; C1 ¼ C2 ¼ �2. While, in this model, Zt becomes

unstable in variance at r[
ffiffiffi
2

p
, the cognition rate can suffer a

bifurcation instability for r[ � 0:278
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