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Abstract
The research on a brain-like model with bio-interpretability is conductive to promoting its information processing ability in

the field of artificial intelligence. Biological results show that the synaptic time-delay can improve the information

processing abilities of the nervous system, which are an important factor related to the formation of brain cognitive

functions. However, the synaptic plasticity with time-delay of a brain-like model still lacks bio-interpretability. In this

study, combining excitatory and inhibitory synapses, we construct the complex spiking neural networks (CSNNs) with

synaptic time-delay that more conforms biological characteristics, in which the topology has scale-free property and small-

world property, and the nodes are represented by an Izhikevich neuron model. Then, the information processing abilities of

CSNNs with different types of synaptic time-delay are comparatively evaluated based on the anti-interference function, and

the mechanism of this function is discussed. Using two indicators of the anti-interference function and three kinds of noise,

our simulation results consistently verify that: (i) From the perspective of anti-interference function, an CSNN with

synaptic random time-delay outperforms an CSNN with synaptic fixed time-delay, which in turn outperforms an CSNN

with synaptic none time-delay. The results imply that brain-like networks with more bio-interpretable synaptic time-delay

have stronger information processing abilities. (ii) The synaptic plasticity is the intrinsic factor of the anti-interference

function of CSNNs with different types of synaptic time-delay. (iii) The synaptic random time-delay makes an CSNN

present better topological characteristics, which can improve the information processing ability of a brain-like network. It

implies that synaptic time-delay is a factor that affects the anti-interference function at the level of performance.
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Introduction

The integration of brain science and brain-like intelligence

can guide developments in the fields of information science

and artificial intelligence. A bio-brain has self-adaptive

abilities, such as self-learning (Luo et al. 2021), self-

organization (Kim et al. 2018) and self-repair (Dale et al.

2018). Learning from the advantages of bio-brains, a brain-

like model that more conforms to bio-interpretability can

enhance the information processing abilities of a model and

promote the development of brain-like intelligence. How-

ever, the bio-interpretability of brain-like models is still

insufficient. The spiking neural networks (SNNs) repre-

sents the latest generation of artificial neural networks (Liu

et al. 2021), which is a kind of brain-like model that can

reflect the electrophysiological activity of the nerves. An

SNN with neuronal dynamics and synaptic weight

dynamics has been necessary theory and model foundation

of computational neuroscience (Li et al. 2020; Nobukawa

et al. 2020; Kim and Lim 2021). Three elements of con-

structing an SNN are the topological structure, the neuron

model and the synaptic plasticity model.
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The network topology reflects the forms of connections

among neurons. Many biological studies have indicated

that a functional brain network has scale-free property and/

or small-world property based on fMRI, PET, EEG, and so

on. Hodkinson et al. (2019) investigated the resting-state

fMRI signal related to spontaneous neural activity. They

discovered that the network had a scale-free property, and

its scaling exponent correlated with regional metabolic

demands of a brain. Kate et al. (2018) investigated the gray

matter networks of cognitively normal elderly based on

PET data. Their results indicated that the brain networks of

these elderly all had small-world property, but these small-

world property declined with age, which were related to the

influence of amyloid plaques in the precuneus. Bin et al.

(2021) established function brain networks of alcohol

addicts and healthy people based on EEG data, and found

that these networks presented scale-free property and

small-world property. And compared with healthy people,

two properties of alcohol addicts declined through the

analysis of clustering coefficient and proportion of nodes

with high degree. According to the theory of complex

networks, networks include regular networks, ER random

graphs, and complex networks from the perspective of

network topology (Barthelemy 2018). The regular net-

works are characterized by high average clustering coeffi-

cient and long average path length (Li et al. 2018).

Whereas, the characteristics of ER random graphs are

opposite to those of the regular networks (Habibulla 2020).

The complex networks include small-world networks and

scale-free networks. The small-world networks, combining

the advantages of regular networks and ER random graphs,

have high average clustering coefficient and short average

path length (Watts and Strogatz 1998). This indicates that

the small-world networks have more compactness of local

connection and higher efficiency of information transmis-

sion. The degree of a scale-free network follows a power-

law distribution (Barrat et al. 2004). This indicates that

scale-free networks have strong fault tolerance due to the

unevenness of the degree distribution. Furthermore,

research into SNNs with a topology of complex network

has been carried out. Zeraati et al. (2021) investigated the

self-organized criticality of an SNN with scale-free prop-

erty. They found that dynamics of the SNN self-organized

to the critical state of synchronization through the change

of the degree distribution regulated by a temporally shifted

soft-bound spike timing dependent plasticity (STDP) rule.

Gu et al. (2019) studied the dynamics of the small-world

SNN (SWSNN) driven by noise. Compared with a regular-

lattice network, they found that the activity of the SWSNN

was perturbed along the continuous attractor and gave rise

to the diffusive waves, which provided insights into the

understanding of the generation of wave patterns. A brain-

like network with only a single topological property is still

insufficient in information processing ability. Inspired by

structural characteristics of functional brain networks, the

brain-like network with a topology of complex network has

not only strong fault tolerance but also compactness of

local connection and high efficiency of information

transmission.

The neuron model is a mathematical model with

dynamic process of spiking firing in SNN. Scholars in

neural computing have carried out works on spiking neuron

models. The Hodgkin-Huxley model (Hodgkin and Huxley

1952), as fourth-order partial differential equation, con-

forms to biological neurons in characteristics of neuronal

firing. However, its inherent computational complexity

imposes a high computational cost. In contrast, the Leaky

Integrate-and-Fire model (Brette and Gerstner 2005) is

first-order linear differential equation. Although it has a

low computational complexity, it cannot closely conform

to the firing characteristics of biological neurons. The

Izhikevich neuron model (Izhikevich 2003), as a second-

order nonlinear differential equation, strikes a good balance

between computational complexity and the firing charac-

teristics of biological neurons, which has been applied in

constructing a large-scale neural network.

Synapses are considered to be the basis of learning and

regulation in the nervous system (Xu et al. 2020). Tang

et al. (2019) investigated an SNN based on excitatory

synapses, and found that this synapse model could accel-

erate the inference speed during the unsupervised learning

process. Biological researches (Du et al. 2016; Dargaei

et al. 2019) have shown that inhibitory synaptic plasticity

can dynamically regulate the information transmission in

the aspects of speed, sensitivity, and stability. The joint

regulation of excitatory and inhibitory synapses forms the

foundation of information transmission and processing in a

brain (Koganezawa et al. 2021). Lin et al. (2019) con-

structed an SNN which combined excitatory and inhibitory

synapses, and found that the excitatory neurons facilitated

synchronization by promoting oscillation mode switching,

and the inhibitory neurons suppressed synchronization by

delaying neuronal excitement. In our previous work (Guo

et al. 2020), we constructed a scale-free SNN (SFSNN)

with excitatory and inhibitory synapses, and verified the

specificity of neural information coding under different

kinds of stimuli from intra-class similarity and inter-class

differences by algorithms. Biological researches (Swadlow

1985, 1988, 1992) have shown that a time-delay of

chemical synapse is in the dynamic range 0.1–40 ms, and

the time-delay varies randomly within this range on

synapses of the rabbit brain cortex. Poo (2018) pointed out

that synaptic time-delays can improve the information

processing abilities of the nervous system, which are an

important factor related to the formation of brain cognitive

functions. Lammertse et al. (2020) investigated STXBP1
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encephalopathy in mice, and found that synaptic time-de-

lay was reduced due to decreasing stability of impaired

mutant protein, which was considered the main underlying

pathogenetic mechanism of intellectual disability and epi-

lepsy. Li et al. (2021) investigated the synapses of Aldh1a1

neurons in Alzheimer’s mice, and found that the synaptic

time-delay was changed due to the decrease in the binding

rate of neurotransmitter and receptor under blue laser light

at 473nm, which could improve self-control skills in

decision. Research into brain-like networks with synaptic

time-delay has been carried out. Shafiei et al. (2019)

investigated the effect of synaptic time-delay on the pattern

of the Izhikevich neuron network, where there were two

types of time-delay in synaptic models: one was fixed time-

delay, and the other was none time-delay. They observed

that the network could switch between synchronous and

asynchronous states by adjusting the ratio of two kinds of

synaptic models, which helped to understand the infor-

mation processing of an SNN. Wang and Shi (2020)

investigated the electrical activities of memristive Hind-

marsh-Rose neurons in H-R neuron network with synaptic

fixed time-delay under white Gaussian noise, where its

synapse was the coupling of magnetic flux. The results

showed that multiple modes in electrical activities of the

neuron could be observed by changing the size of time-

delay, and appropriate time-delay could induce coherent

resonance in electrical activities of the neuron, which could

be associated with memory effect and self-adaption in

neurons. Yu et al. (2020) constructed a cortical neuronal

network with synaptic fixed time-delay, where its synapses

were chemical synapse models. They discovered that the

multiple stochastic resonances reached a peak when

synaptic fixed time-delay was at integer multiples of the

period of input signal, which was conducive to under-

standing the ability of brain-like networks to handle weak

input signals. It can be concluded that synaptic time-delay

has an important influence on the dynamic characteristics

of a brain-like network. However, the time-delay of

chemical synapse is randomly distributed in the range of

0.1–40 ms from biological experiments, and the time-delay

is not fixed. Therefore, the synaptic plasticity models with

time-delay still lack bio-interpretability. In our previous

work (Liu et al. 2020), we investigated the anti-interfer-

ence ability of an SFSNN under the magnetic field stimu-

lation. However, our SFSNN was regulated by the synaptic

plasticity including excitatory and inhibitory synapses

without time-delay. On this basis, the purpose of this study

is to construct a brain-like model with more bio-inter-

pretable synaptic time-delay to evaluate its information

processing abilities based on the anti-interference function.

Therefore, combining excitatory and inhibitory synapses,

we constructed a complex spiking neural network (CSNN)

with synaptic random time-delay, in which the topology

had scale-free property and small-world property, and the

nodes were represented by an Izhikevich neuron model.

Then, we comparatively investigated the information pro-

cessing abilities of CSNNs with different types of synaptic

time-delay based on the anti-interference function under

different interference, and discussed the mechanism of this

function. The main contributions of our work are as

follows.

(1) To improve bio-interpretability of brain-like models,

we construct an CSNN with synaptic random time-

delay, in which the topology has scale-free property

and small-world property, and the nodes are repre-

sented by Izhikevich neurons.

(2) Using two indicators of the anti-interference function

and three kinds of noise, our simulation results

consistently verify an CSNN with synaptic random

time-delay outperforms an CSNN with synaptic fixed

time-delay, which in turn outperforms an CSNN with

synaptic none time-delay. This implies that brain-

like networks with more bio-interpretable synaptic

time-delay have stronger information processing

abilities.

(3) Our discussion indicates that synaptic plasticity is the

intrinsic factor of the anti-interference function of

CSNNs with different types of synaptic time-delay.

The synaptic random time-delay makes an CSNN

present better topological characteristics, which can

improve the information processing ability of a

brain-like network. It implies that synaptic time-

delay is a factor that affects the anti-interference

function at the level of performance.

The rest of this paper is organized as follows: ‘‘Con-

struction of CSNNs’’ section provides a method to con-

struct CSNNs with synaptic time-delay. ‘‘Anti-interference

function of CSNNs with synaptic time-delay’’ section

investigates the information processing abilities of CSNNs

with different types of synaptic time-delay. ‘‘Discussion’’

section discusses the neural information processing in

CSNNs under interference. Finally, the conclusion is pre-

sented in ‘‘Conclusion’’ section.

Construction of CSNNs

The CSNNs are constructed, in which the topology is a

topology of complex network involving scale-free property

and small-world property, the nodes are represented by

Izhikevich neurons, and the edges are represented by

synaptic plasticity with time-delay including excitatory and

inhibitory synapses.
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Generation of a topology of complex network

A topology of complex network with scale-free property

and small-world property is generated based on the Barrat-

Barthelemy-Vespignani (BBV) algorithm.

1. Theory and methodology

(i) BBV algorithm

The BBV algorithm (Barrat et al. 2004) models the

dynamic growth of the local edge weights by adding new

nodes during the generation of a network. An improved

BBV algorithm (Wang and Jin 2012) not only yields the

performance of the original BBV algorithm but also can

adjust the clustering coefficients over a larger range.

According to the improved BBV algorithm, the probability

of adding a new node in the network is p, where p 2 ð0; 1�.
The networks with different topological characteristics can

be obtained by adjusting p.

(ii) Scale-free property

The research (Barrat et al. 2004) has shown that the

degree distribution of a scale-free network follows a

power-law distribution, and power-law exponent c is

between two and three. The probability that a node is

connected to other k nodes is defined as follows:

PðkÞ� k�c ð1Þ

(iii) Small-world property

Combining the advantages of regular networks and ER

random graphs, a network presents the small-world prop-

erty when the average clustering coefficient is high, and the

average shortest path length is short (Watts and Strogatz

1998). The small-world property r can be quantitatively

analyzed as follows:

r ¼ Creal=Crandom

Lreal=Lrandom
ð2Þ

where Creal and Crandom are the average clustering coeffi-

cient of the real network and its corresponding random

network, respectively; Lreal and Lrandom are the average

shortest path length of the real network and its corre-

sponding random network, respectively. When r[ 1, the

network presents the small-world property.

The average clustering coefficient C reflects the com-

pactness of connection in the network, which is defined as

follows:

C ¼ 1

N

XN

i¼1

2ui
eiðei � 1Þ ð3Þ

where ei is the degree of node i; ui is the number of con-

nected edges between node i and its adjacent nodes; and

N is the total number of nodes.

The average shortest path length L reflects the efficiency

of information transmission of the network, which is

defined as follows:

L ¼ 1

NðN � 1Þ
X

i;j2V ;i6¼j
dij ð4Þ

where dij is the shortest path length between node i and

node j.

2. Parameters setting and simulation results

In the BBV algorithm, an appropriate selection of the

parameter p is required for our topology of complex net-

work by observing scale-free property and small-world

property. To select p, we performed simulations of the

network characteristics for different p. p was increased

from 0.1 to 1.0 with steps of 0.1. For each p , we performed

five realizations since the network generated by the BBV

algorithm was stochastic in the form of connection under

different probabilities of adding a new node p . Thus, we

presented the averages of five simulation results in this

paper. The power-law exponent c and the small-world

property r of these networks were calculated according to

Equations 1 and 2, respectively. The averages and standard

deviations of five results are shown in Table 1.

Biological studies (Eguiluz et al. 2005; He et al. 2010)

reported that the power-law exponent was about two for a

functional brain network of humans. From Table 1, the

power-law exponent c ¼ 2:15 is most consistent with bio-

logical conclusions, and the network has small-world

property r ¼ 1:2032 when p ¼ 0:3. However, we also

observe that the network has the highest small-world

property r ¼ 1:3954 when p ¼ 0:8. Furthermore, we con-

sider the anti-interference function as an indicator to select

an appropriate p. According to the simulation results,

CSNNs with p ¼ 0:3 outperform CSNNs with p ¼ 0:8 in

terms of the anti-interference function. The detailed sim-

ulations can be seen in ‘‘Anti-interference function with

different probabilities of adding a node’’ section. Thus, we

select p ¼ 0:3 for our study.

Table 1 Topological property of complex networks for different p

p c r

0.1 1.55 ± 0.01 1.0343 ± 0.0011

0.2 1.81 ± 0.04 1.1796 ± 0.0018

0.3 2.15 ± 0.01 1.2032 ± 0.0019

0.4 2.38 ± 0.08 1.2077 ± 0.0072

0.5 2.51 ± 0.01 1.2632 ± 0.0015

0.6 2.74 ± 0.04 1.2509 ± 0.0021

0.7 2.84 ± 0.05 1.2371 ± 0.0036

0.8 2.86 ± 0.03 1.3954 ± 0.0020

0.9 2.95 ± 0.04 1.2157 ± 0.0010

1.0 3.19 ± 0.07 0.9611 ± 0.0024
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Izhikevich neuron model

In this study, we use Izhikevich (Izhikevich 2003) neuron

model as the nodes of the network concerning its advan-

tages of good bio-interpretability and low computational

complexity. The model can be described as follows:

dv

dt
¼ 0:04v2 þ 5vþ 140� uþ Iext þ Isyn;

du

dt
¼ aðbv� uÞ;

if v� 30; then
v c

u uþ d

(
ð5Þ

where v represents the neuronal membrane potential; u

represents the recovery variable for the membrane voltage;

Iext represents external current; Isyn represents the sum of

synaptic currents; and a, b, c, and d are four dimensionless

parameters. Each neuron can be modeled as excitatory or

inhibitory by controlling these dimensionless parameters.

In this study, we use regular spiking (RS) and low-

threshold spiking (LTS) firing patterns as the excitatory

and inhibitory neurons in our CSNNs, respectively

(Izhikevich 2004). For excitatory neuron: a ¼ 0:02,

b ¼ 0:2, c ¼ �65, and d ¼ 8. For inhibitory neuron:

a ¼ 0:02, b ¼ 0:25, c ¼ �65, and d ¼ 2. The different

firing patterns of the neurons are shown in Fig. 1.

Synaptic plasticity model with time-delay

Combining excitatory and inhibitory synapses, a chemical

synaptic plasticity model with time-delay is introduced.

The model can be described as follows:

Isyn ¼ gsynrðVsyn � VpostÞ;
dr

dt
¼ aTð1� rÞ � br;

T ¼ 1

1þ expð�Vpreðt � sÞÞ

ð6Þ

where Isyn is the synaptic current; gsynðtÞ is the synaptic

conductance; Vpost is the membrane potential of the post-

synaptic neuron; Vsyn is the reversible synaptic potential;

Vpre is the membrane potential of the presynaptic neuron; r

is the fraction of receptor binding; T is the concentration of

the neurotransmitter; a and b are the forward and reverse

rate constants of neurotransmitter binding, respectively;

and s is the time-delay in synaptic transmission. The

excitatory and inhibitory synaptic plasticity regulate the

information transmission among neurons through synaptic

conductance, for which the rules are as follows:

(i) If a postsynaptic neuron j does not receive the action

potential of a presynaptic neuron i, the excitatory and

inhibitory synaptic conductance is exponentially decreased

as follows:

sex
dgex
dt
¼ �gex; sin

dgin
dt
¼ �gin ð7Þ

where gex and gin are the synaptic conductance; and sex and
sin are the decay constants of the synaptic conductance.

(ii) If a postsynaptic neuron j receives the action

potential of a presynaptic neuron i, the excitatory and

inhibitory synaptic conductance is generated by STDP

modification as follows:
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Fig. 1 Firing patterns for Izhikevich neurons. a Excitatory firing pattern. b Inhibitory firing pattern
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gexðtÞ ! gexðtÞ þ �gex

�gex ! wij � gmax

(
;

ginðtÞ ! ginðtÞ þ �gin

�gin ! mij � gmax

(

ð8Þ

where �gex and �gin are the increments of the synaptic con-

ductance, respectively; gmax is the upper limit on the

synaptic weight; wij and mij are the synaptic correction

functions as follows:

wij ¼
Aþ expðDt=sþÞ; Dt\0

�A� expðDt=s�Þ; Dt� 0

�
;

mij ¼
�Bþ expðDt=sþÞ; Dt\0

B� expðDt=s�Þ; Dt� 0

� ð9Þ

where Dt is the neuronal firing interval; sþ and s� are the

time interval of neuron firing before and after synaptic

strengthening and synaptic weakening, respectively; Aþ
and A� are the maximum and minimum correction values

of the excitatory synaptic conductance, respectively; and

Bþ and B� are the maximum and minimum correction

values of the inhibitory synaptic conductance, respectively.

In our simulation, we use the total correction value divided

by the logarithm to determine the parameters (Song et al.

2000): Aþ ¼ 0:1, A� ¼ 0:105, Bþ ¼ 0:02, B� ¼ 0:03, and

sþ ¼ s� ¼ 20 ms.

Biological researches showed that the dynamic range of

the synaptic time-delay is 0.1–40 ms (Swadlow

1985, 1988, 1992). Hence, the synapses with random time-

delay are introduced into our synaptic plasticity model, in

which random time-delay follows a Poisson distribution.

The details are presented in ‘‘Anti-interference function of

CSNNs with synaptic random time-delay’’ section.

Construction process of CSNNs

The construction and analysis of CSNNs were carried out

on a PC with a 2.50 GHz CPU and 8 GB RAM. The

construction process was as follows.

1. We constructed CSNNs with 500, 800, and 1000

nodes, and investigated their anti-interference function.

Our simulation results showed that their anti-interfer-

ence function was almost the same. Thus, we selected a

complex network with 500 nodes as the topology of

our CSNNs.

2. We constructed an CSNN using 500 excitatory or

inhibitory Izhikevich neuron models as the nodes, and

they were randomly distributed according to the ratio

4:1 from the biological result (Vogels et al. 2011).

3. We introduced random time-delay into the synaptic

plasticity model which combined excitatory and

inhibitory synapses, and this model represented the

edges of connected nodes.

Anti-interference function of CSNNs
with synaptic time-delay

The information processing abilities of CSNNs with dif-

ferent types of synaptic time-delay are evaluated based on

the anti-interference function under different interference.

External interference and indicators of the anti-
interference function

Three kinds of external interference are introduced to

verify the anti-interference function. Two indicators of the

anti-interference function are introduced to evaluate the

anti-interference function.

External interference

We use three kinds of noise including white Gaussian

noise, impulse noise, and electric field noise to verify the

anti-interference function of CSNNs.

1. White Gaussian noise

The amplitude of white Gaussian noise follows a

Gaussian distribution, which is described as follows:

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

r
exp�ðx� lÞ2

2r2
ð10Þ

In our simulation, this noise as current interference was

applied to all of neuronal current Iext according to Equa-

tion 5 throughout the simulation.

2. Impulse noise

Impulse noise is an irregular and discontinuous signal

composed of impulse peaks, which is described as follows:

sðtÞ ¼ As; t 2 ½T0; T0 þ T �
0; else

�
ð11Þ

In our simulation, this noise as current interference was

applied to all of neuronal current Iext according to Equa-

tion 5 throughout the simulation.

3. Electric field noise

An external low-frequency alternating electric field is

described as follows:

MVðtÞ ¼ w
A

x
sinðxtÞ ð12Þ

In our simulation, this noise as voltage interference was

applied to all of neuronal membrane potential v according

to Equation 5 throughout the simulation.

Indicators of the anti-interference function

We use two indicators of the relative change in the firing

rate and the correlation between membrane potentials to

evaluate the anti-interference function of CSNNs.
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1. The relative change in the firing rate

The firing rate refers to the firing frequency per unit time

of a neuron. The relative change in the firing rate represents

the degree of change in the firing rate before and after

interference. The mean relative change in the firing rate

across the network d is defined as:

d% ¼ j fq � fp j
fp

� 100% ð13Þ

where fp and fq represent the mean firing rates in the net-

work before and after interference, respectively. The

smaller the value of d, the smaller the change in the neu-

ronal firing rate before and after interference, and the

stronger the anti-interference ability of the network.

2. The correlation between membrane potentials

The correlation between membrane potentials reflects

the similarity between the membrane potentials of the

neurons before and after interference. The mean correlation

between membrane potentials across the network q is

defined as:

qðsÞ ¼

Pt2�sþ1

t¼t1
xpðtÞxqðt þ sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pt2�sþ1

t¼t1
x2pðtÞ

Pt2�sþ1

t¼t1
x2qðt þ sÞ

s ð14Þ

where xp and xq are the mean membrane potentials of

neurons in the network before and after interference,

respectively; ½t1; t2� is the experimental period. The larger

the value of q, the smaller the change in the membrane
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Fig. 2 Comparison of d for CSNNs with different k under different interference. a White Gaussian noise. b Impulse noise. c Electric field noise
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potential before and after interference, and hence the

stronger the anti-interference ability of the network.

Anti-interference function of CSNNs
with synaptic random time-delay

The anti-interference function of CSNNs with synaptic

random time-delay are investigated based on two indica-

tors. And the optimal mean of random time-delay distri-

bution k and an appropriate probability of adding a node

p are obtained through comparative analysis.

Anti-interference function with different means of random
time-delay distribution

We investigate the anti-interference function of CSNNs

with different means of random time-delay distribution

under different interference based on two indicators d and

q for the probability of adding a node p ¼ 0:3.

1. Anti-interference function based on d
Concerning that the dynamic range of biological

synaptic time-delay is 0.1–40 ms, we investigate the anti-

interference function of CSNNs, in which synaptic random

time-delay follows a Poisson distribution, and its mean is

represented by the parameter k ranged from 5 to 35 ms with

steps of 5 ms. Three kinds of noise with different intensities
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Fig. 3 Under the same simulation conditions as d, the averages of five
results for q of CSNNs with different k under different interference

are shown in Fig. 3. Comparison of q for CSNNs with different k

under different interference. aWhite Gaussian noise. b Impulse noise.

c Electric field noise
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were applied to CSNNs: the intensity range of white

Gaussian noise was [0, 24] dBW with steps of 3dBW, the

amplitude range of impulse noise was [0, 8] mA with steps

of 1mA, and the strength range of electric field noise was

[0, 48] mV with steps of 6mV. The averages of five results

for d of CSNNs with different k under different interfer-

ence within 1000 ms are shown in Fig. 2.

We analyze the simulation results shown in Fig. 2 from

two perspectives.

(i) From the perspective of noise intensity, we can see

that the values of d gradually increase as the

intensities of three kinds of noise gradually

increase. When the intensity of white Gaussian

noise is in the range [0, 6] dBW, the impulse

amplitude is in the range [0, 3] mA, and the

strength of electric field is in the range [0, 24] mV,

the values of d for different CSNNs are less than

20%. When the intensities of three kinds of noise

exceed the above ranges, the values of d increase

quickly. These results indicate that CSNNs with

different k have their own anti-interference function
against different interference, which decrease grad-

ually with an increase in the noise intensity.

(ii) From the perspective of the distribution of synaptic

random time-delay, when the k of an CSNN with

synaptic time-delay is 20 ms, the d is lower than

Table 2 Comparison of the anti-

interference function of CSNNs

with different p under white

Gaussian noise

Intensity (dBW) d(%) q

p ¼ 0:3 p ¼ 0:8 p ¼ 0:3 p ¼ 0:8

3 0.6828 ± 0.0018 3.6178 ± 0.0010 0.9681 ± 0.0019 0.9634 ± 0.0015

6 3.2736 ± 0.0015 7.7720 ± 0.0011 0.9124 ± 0.0017 0.8929 ± 0.0005

9 8.0427 ± 0.0023 15.8325 ± 0.0009 0.8022 ± 0.0021 0.7745 ± 0.0014

12 15.4569 ± 0.0055 28.1112 ± 0.0026 0.7349 ± 0.0016 0.7165 ± 0.0013

15 27.4331 ± 0.0019 47.3632 ± 0.0015 0.7347 ± 0.0013 0.7189 ± 0.0024

18 47.4226 ± 0.0071 80.2436 ± 0.0009 0.7362 ± 0.0009 0.7055 ± 0.0010

21 77.9588 ± 0.0059 130.2576 ± 0.0007 0.6971 ± 0.0008 0.6664 ± 0.0006

24 126.4958 ± 0.0028 207.1357 ± 0.0012 0.5870 ± 0.0014 0.5729 ± 0.0022

Table 3 Comparison of the anti-

interference function of CSNNs

with different p under impulse

noise

Amplitude(mA) d(%) q

p ¼ 0:3 p ¼ 0:8 p ¼ 0:3 p ¼ 0:8

1 4.5636 ± 0.0021 4.9473 ± 0.0006 0.8355 ± 0.0023 0.8005 ± 0.0036

2 8.8731 ± 0.0026 9.6533 ± 0.0022 0.7961 ± 0.0019 0.7244 ± 0.0017

3 14.2726 ± 0.0004 15.4846 ± 0.0037 0.7840 ± 0.0035 0.7633 ± 0.0020

4 19.5844 ± 0.0017 21.6141 ± 0.0029 0.7875 ± 0.0024 0.7568 ± 0.0022

5 23.4748 ± 0.0031 24.9343 ± 0.0011 0.7769 ± 0.0012 0.7201 ± 0.0003

6 28.3932 ± 0.0013 30.5558 ± 0.0030 0.7351 ± 0.0027 0.7035 ± 0.0017

7 36.4562 ± 0.0029 39.5341 ± 0.0025 0.7161 ± 0.0032 0.6864 ± 0.0012

8 40.2432 ± 0.0016 42.6745 ± 0.0033 0.6918 ± 0.0012 0.6279 ± 0.0004

Table 4 Comparison of the anti-

interference function of CSNNs

with different p under electric

field noise

Strength(mV) d(%) q

p ¼ 0:3 p ¼ 0:8 p ¼ 0:3 p ¼ 0:8

6 0.0446 ± 0.0012 0.1357 ± 0.0004 0.9445 ± 0.0008 0.9118 ± 0.0011

12 1.4723 ± 0.0007 1.9466 ± 0.0015 0.7971 ± 0.0010 0.7237 ± 0.0016

18 3.5722 ± 0.0004 5.2635 ± 0.0006 0.5869 ± 0.0003 0.5388 ± 0.0019

24 7.9884 ± 0.0005 9.8669 ± 0.0011 0.3908 ± 0.0008 0.3051 ± 0.0021

30 13.1852 ± 0.0019 16.2566 ± 0.0008 0.2737 ± 0.0015 0.1929 ± 0.0013

36 17.7763 ± 0.0008 21.6055 ± 0.0002 0.2831 ± 0.0009 0.2239 ± 0.0014

42 25.5142 ± 0.0014 27.8429 ± 0.0010 0.2413 ± 0.0011 0.1964 ± 0.0012

48 35.8674 ± 0.0009 38.4309 ± 0.0018 0.2224 ± 0.0013 0.1153 ± 0.0004
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those of the other six CSNNs with their corre-

sponding k under three kinds of noise. This

indicates that an CSNN with k ¼ 20 ms can yield

the best performance in the anti-interference func-

tion. In addition, the more the k is far from 20 ms,

the larger the d is, the anti-interference function of

CSNNs is correspondingly worse.

2. Anti-interference function based on q
We also analyze the simulation results shown in Fig. 3

from two perspectives.

(i) From the perspective of noise intensity, we can see

that the values of q show downward trend as the

intensities of three kinds of noise gradually

increase. When the intensity of white Gaussian

noise is in the range [0, 12] dBW, the impulse

amplitude is in the range [0, 6] mA, and the

strength of electric field is in the range [0, 6] mV,

the values of q for different CSNNs are larger than

0.7. When the intensities of three kinds of noise

exceed the above ranges, the values of q decrease

quickly. These results indicate that CSNNs with

different k have their own anti-interference function
against different interference, which decrease grad-

ually with an increase in the noise intensity.

(ii) From the perspective of the distribution of synaptic

random time-delay, when the k of an CSNN with

synaptic time-delay is 20 ms, the q is larger than

those of the other six CSNNs with their corre-

sponding k under three kinds of noise. This

indicates that an CSNN with k ¼ 20 ms can yield

the best performance in the anti-interference
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Fig. 4 Comparison of d for CSNNs with different types of synaptic time-delay. a White Gaussian noise. b Impulse noise. c Electric field noise
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function. In addition, the more the k is far from 20

ms, the smaller the q is, the anti-interference

function of CSNNs is correspondingly worse.

According to the analysis of d and q above, it can be

concluded that an CSNN with k ¼ 20 ms has the best anti-

interference performance. Hence, an CSNN with k ¼ 20

ms is the optimal in this study.

Anti-interference function with different probabilities
of adding a node

We have analyzed the probabilities of adding a node p in

‘‘Generation of a topology of complex network’’, and

shown that the scale-free property of an CSNN conforms to

biological conclusions when p ¼ 0:3, and the small-world

property of an CSNN is highest when p ¼ 0:8. Here, we

further investigate an appropriate p based on the anti-in-

terference function. Under the same simulation conditions

as d and k ¼ 20 ms, the averages and standard deviations

of five results of d and q of CSNNs with p ¼ 0:3 and

p ¼ 0:8 under different interference are shown in Tables 2,

3, and 4.

From Tables 2, 3, and 4, under different interference, the

values of d in CSNNs with synaptic random time-delay for

p ¼ 0:3 are smaller than that for p ¼ 0:8. The values of q
in CSNNs with synaptic random time-delay for p ¼ 0:3 are

larger than that for p ¼ 0:8. These results indicate that an

CSNN with p ¼ 0:3 outperforms an CSNN with p ¼ 0:8 in
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Fig. 5 Comparison of q for CSNNs with different types of synaptic time-delay. a White Gaussian noise. b Impulse noise. c Electric field noise
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terms of the anti-interference function. Hence, a complex

network with p ¼ 0:3 is an appropriate topology of CSNNs

in this study.

Anti-interference function of CSNNs
with different types of synaptic time-delay

Three types of synaptic time-delay including random time-

delay, fixed time-delay, and none time-delay are introduced

to further investigate the effect of synaptic time-delay on

the anti-interference function in our study.

1. Anti-interference function based on d
The probabilities of adding a node of all CSNNs with

different types of synaptic time-delay are p ¼ 0:3. The k of

synaptic random time-delay of an CSNN is 20 ms, the

synaptic fixed time-delay of an CSNN is 20 ms, and an

CSNN is without synaptic time-delay. Under the same

simulation conditions as d above, the averages of five

results for d of CSNNs with different types of synaptic

time-delay under different interference are shown in Fig. 4.

We analyze the simulation results shown in Fig. 4 from

two perspectives.

(i) From the perspective of noise intensity, we observe

that the values of d gradually increase as the

intensities of three kinds of noise gradually

increase. When the intensity of white Gaussian

noise is in the range [0, 6] dBW, the impulse

amplitude is in the range [0, 3] mA, and the

strength of electric field is in the range [0, 30] mV,

the values of d for different CSNNs are less than

20%. When the intensities of three kinds of noise

exceed the above ranges, the values of d increase

gradually. These results indicate that CSNNs with

different types of synaptic time-delay have their

own anti-interference function against different

interference, which decrease gradually with an

increase in the noise intensity.

(ii) From the perspective of different types of synaptic

time-delay, the d of an CSNN with synaptic random

time-delay is lower than that of an CSNN with

synaptic fixed time-delay under three kinds of

noise, and the d of an CSNN with synaptic fixed

time-delay is lower than that of an CSNN with

synaptic none time-delay. These results indicate

that an CSNN with synaptic random time-delay

outperforms an CSNN with synaptic fixed time-

delay, which in turn outperforms an CSNN with

synaptic none time-delay in terms of the anti-

interference performance.

2. Anti-interference function based on q
Under the same simulation conditions as d, the averages

of five results for q of CSNNs with different types of

synaptic time-delay under different interference are shown

in Fig. 5.

We analyze the experimental results shown in Fig. 5

from two perspectives.

(i) From the perspective of noise intensity, we can see

that the values of q show downward trend as the

intensities of three kinds of noise gradually

increase. When the intensity of white Gaussian

noise is in the range [0, 9] dBW, the impulse

amplitude is in the range [0, 5] mA, and the

strength of electric field is in the range [0, 12] mV,

the values of q are larger than 0.7. When the

intensities of three kinds of noise exceed the above

ranges, the values of q decrease gradually. These

results indicate that CSNNs with different types of

synaptic time-delay have their own anti-interfer-

ence function against three kinds of noise, which

decrease gradually with an increase in the noise

intensity.

(ii) From the perspective of different types of synaptic

time-delay, the q of an CSNN with synaptic

random time-delay is larger than that of an CSNN

with synaptic fixed time-delay, and the q of an

CSNN with synaptic fixed time-delay is lower than

that of an CSNN with synaptic none time-delay.

These results indicate that an CSNN with synaptic

random time-delay outperforms an CSNN with

synaptic fixed time-delay, which in turn outper-

forms an CSNN with synaptic none time-delay in

terms of the anti-interference performance.

From the simulation results from ‘‘Anti-interference func-

tion of CSNNs with synaptic time-delay’’ section, our

simulations using two indicators and three kinds of noise

consistently verify that: (1) The optimal k is 20 ms, and an

appropriate p is 0.3 for our study. (2) All CSNNs with

synaptic plasticity have the anti-interference function. (3)

An CSNN with synaptic time-delay outperforms an CSNN

with synaptic none time-delay in terms of the anti-inter-

ference function. (4) An CSNN with synaptic random time-

delay that conforms to the characteristics of distribution of

biological synaptic time-delay has the best anti-interfer-

ence function. It implies that synaptic time-delay with bio-

interpretability can improve information processing abili-

ties. Also, we verify biological conclusions in reverse from

the perspective of a brain-like model.

Discussion

To explore the mechanism by which synaptic time-delay

affects information processing ability, we discuss the

neural information processing in CSNNs under an example
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of white Gaussian noise, which involves the evolution of

neuronal firing rate, synaptic weight, and topological

characteristics.

Firing rate

To analyze the effect of external noise on the firing rate of

neurons, we reveal the changes of firing rate of a single

neuron and the evolution process of the entire CSNN under

external noise.

Firing rate under white Gaussian noise with 12dBW

White Gaussian noise with 12dBW as an example is

applied to CSNNs, and the firing sequences of a neuron

after interference are shown in Fig. 6.

Compared Fig. 6 with Fig. 1, we can see that the

interspike intervals of neurons are obviously changed under

interference, which indicates that noise affects the firing

activity of neurons. The average firing rate of an CSNN

within a time window of 100 ms is taken to represent the

firing rate at a given moment. According to the averages of

five results, the evolution of the average firing rate in

CSNNs with different types of synaptic time-delay with the

simulation time from 100 to 1000 ms with steps of 100 ms

is shown in Fig. 7.

It can be seen from Fig. 7 that the evolution of average

firing rate in CSNNs with different types of synaptic time-

delay is different. However, three CSNNs show similar

evolutionary trends. In the first 200 ms, the average firing

rate of CSNNs with different types of synaptic time-delay

decreases significantly. The reason is that noise interfer-

ence strongly affects neuronal firing at the beginning of the

simulation. After 200 ms, the average firing rate gradually

stabilizes due to the regulation of CSNNs.

Note that: Actually, we run all the simulations for 1400

ms. However, the simulation results during [1000, 1400]

ms remain almost unchanged. Thus, all simulation results

during [0, 1000] ms are presented in this paper.

Evolution of firing rate and its change under different
intensities of white Gaussian noise

To reveal the effect of different intensities of noise on the

firing rate and its d of CSNNs, we simulate the evolution

process of firing rate and its d of an CSNN with synaptic

random time-delay under different intensities of white

Gaussian noise, and present the averages of five results in

Fig. 8. The k of synaptic random time-delay of an CSNN is

20 ms. The intensity range of white Gaussian noise was [0,
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Fig. 6 Firing sequences of Izhikevich neurons under interference. a Excitatory firing. b Inhibitory firing
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24] dBW with steps of 6dBW. The duration of the simu-

lation was 1000 ms. The simulation results during [0, 1000]

ms are presented.

It can be seen from Fig. 8a that the evolution of all

average firing rate shows the same trend. In the first 200

ms, the average firing rate of an CSNN decreases signifi-

cantly. After 200 ms, the average firing rate gradually

stabilizes. Also, we can observe the average firing rate

increases as the increase of noise intensity during the

stable phase of [300, 1000] ms. It can be seen from Fig. 8b

that the evolution of all d shows the same trend. In the first

200 ms, the d increases intensely. After 200 ms, the d
gradually stabilizes. Also, we can observe the d decreases

as the increase of noise intensity during the stable phase of

[300, 1000] ms.

Synaptic weight

The changes in neuronal firing rate can cause changes in

synapse weight according to Equation 8, in which Mt relies

on the neuronal firing rate of the presynaptic and postsy-

naptic. The average synaptic weight is the mean of the

weights of all synapses in CSNNs. According to the

averages of five results, the evolution of the average

synaptic weight in CSNNs with different types of synaptic

time-delay under white Gaussian noise is shown in Fig. 9.

It can be seen from Fig. 9 that the evolution of average

synaptic weight in CSNNs with different types of synaptic

time-delay is different. However, three CSNNs show

similar evolutionary trends. In the first 400 ms, the average

synaptic weight of CSNNs with different types of synaptic

time-delay decreases significantly. After 400 ms, the

average synaptic weight gradually stabilizes. Fig. 9 pre-

sents the regulation process of synaptic plasticity.

Relationship between the synaptic plasticity
and the anti-interference function

To explore the mechanism of information processing

abilities of brain-like models, we conduct an association

analysis to establish the relationship between the regulation

of synaptic plasticity and the anti-interference function.

Evolution of the anti-interference function

Under the interference of white Gaussian noise with

12dBW, the evolution of the anti-interference function

including d and q within 1000 ms based on the averages of

five results is shown in Fig. 10.
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It can be seen from Fig. 10 that an CSNN with synaptic

random time-delay outperforms an CSNN with synaptic

fixed time-delay, which in turn outperforms an CSNN with

synaptic none time-delay in terms of the anti-interference

function from an evolutionary perspective, which is con-

sistent with the conclusions of ‘‘Anti-interference function

of CSNNs with different types of synaptic time-delay’’

section. However, three CSNNs show similar evolutionary

trends. In the first 300 ms, the values of d and q in CSNNs

with different types of synaptic time-delay increase sig-

nificantly. After 300 ms, the stable anti-interference func-

tion is gradually formed.

Correlation analysis based on the Pearson correlation
coefficient

We establish the relationship between the regulation of

synaptic plasticity and the anti-interference function of

CSNNs with different types of synaptic time-delay using a

Pearson correlation. The Pearson correlation coefficient

can reveal a statistical correlation between two samples X

and Y. The correlation coefficient rXY is defined as follows:

rXY ¼

Pn

i¼1
ðXi � XÞðYi � YÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi � XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðYi � YÞ2

q ð15Þ

The degree of correlation is significant when the absolute

value of coefficient is close to one, and the opposite is the

case when it is close to zero.

A t-test is used to determine the significance of a sample

r and the totality, which is defined as follows:

t ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ=ðn� 2Þ

p ð16Þ

If the significance level is 0.05, it is marked with ‘‘*’’ ; if

the significance level is 0.01, it is marked with ‘‘**’’.

In this study, X represents the averages of five results of

the average synaptic weight in CSNN, recorded every 100

ms, Y represents the averages of five results of d or q,
recorded every 100 ms, n ¼ 10 represents the total number

of samples, and the duration of the simulation was 1000

ms. The results of the correlation analysis between the

average synaptic weight and the values of d or q of CSNNs

with different types of synaptic time-delay within 1000 ms

are shown in Table 5.

From Table 5, it can be seen that the average synaptic

weight and the values of d and q are significantly correlated

at the level of 0.01 (two-sided t-test) for all CSNNs with

different types of synaptic time-delay. Our simulation

results indicate a significant correlation between the regu-

lation of synaptic plasticity and the anti-interference

function. This implies that the synaptic plasticity is the
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Fig. 10 Evolution of the anti-interference function. a Evolution of d. b Evolution of q

Table 5 Pearson correlation

coefficients for the average

synaptic weight, d and q for

CSNNs

Types of synaptic time-delay Random time-delay Fixed time-delay None time-delay

d - 0.845** - 0.887** - 0.892**

q - 0.982** - 0.975** - 0.994**
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intrinsic factor of the anti-interference function of CSNNs

with different types of synaptic time-delay.

Effect of synaptic time-delay on the information
processing ability

We further investigate the effect of different types of

synaptic time-delay on the information processing abilities

of CSNNs under interference using the analysis of topo-

logical characteristics. Our CSNNs present scale-free

property and small-world property in which the degree

distribution follows a power-law distribution with power-

law exponent c ¼ 2:15, and small-world property is related

to the average clustering coefficient and the average

shortest path length. During the dynamic process of sim-

ulation, the degree distribution maintains a power-law

distribution, while the average clustering coefficient and

the average shortest path length vary with time.

The clustering coefficient ~Ci in a weighted network

(Barrat et al. 2004) is defined as follows:

~Ci ¼
1

siðki � 1Þ
X

j;k

ðwij þ wikÞ
2

aijajkaki ð17Þ

where gij and gik are the synaptic weights; ki and si are the

degree and strength of the node i, respectively; and aij is

the adjacency matrix. The average clustering coefficient

can be used to describe the clustering coefficients of all the

neurons in CSNNs.

The shortest path length Lij in a weighted network

(Antoniou and Tsompa 2008) is defined as follows:

Lij ¼ min
!ði;jÞ2Cði;jÞ

X

m;n2!ði;jÞ

1

gmn

2
4

3
5 ð18Þ

where gmn is the synaptic weight. The average shortest path

length can be used to describe the shortest path length all

between pairs of nodes in CSNNs.

From Eqs. 17 and 18, the changes of synaptic weight can

lead to changes in topological characteristics of the net-

work. According to the averages of five results, the evo-

lution of the average clustering coefficient and the average

shortest path length in CSNNs with different types of

synaptic time-delay under white Gaussian noise with

12dBW is shown in Fig. 11.

It can be seen from Fig. 11 that CSNNs with different

types of synaptic time-delay have different evolution of

topological characteristics under noise interference.

Fig. 11a shows that the average clustering coefficient of an

CSNN with synaptic random time-delay is higher than that

of an CSNN with synaptic fixed time-delay, which in turn

is higher than an CSNN with synaptic none time-delay.

Fig. 11b shows that the average shortest path length of an

CSNN with synaptic random time-delay is shorter than that

of an CSNN with synaptic fixed time-delay, which in turn

is shorter than an CSNN with synaptic none time-delay. It

implies that time-delay is a factor that affects the anti-

interference function at the level of performance. Accord-

ing to the theory of complex networks, a network with high

average clustering coefficient and short average shortest

path length can yield the advantages of more compactness

of local connection and higher efficiency of information

transmission. Therefore, our simulation results indicate that

the synaptic time-delay that more conforms to bio-inter-

pretability can improve the information processing ability

of a brain-like network.
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Fig. 11 Evolution of topological characteristics. a Average clustering coefficient. b Average shortest path length
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Conclusion

The CSNNs with neuronal dynamics regulated by chemical

synaptic plasticity were constructed, in which the topology

was a topology of complex network including the scale-

free property and small-world property, the nodes were

represented by an Izhikevich neuron model, and the edges

were represented by a synaptic plasticity model with time-

delay including excitatory and inhibitory synapses. The

information processing abilities of CSNNs with different

types of synaptic time-delay were investigated based on the

anti-interference function under interference, and the

mechanism of this function was discussed. Using two

indicators of the anti-interference function and three kinds

of noise, our simulation results consistently verify that:

(i) From the perspective of anti-interference function, an

CSNN with synaptic random time-delay outperforms an

CSNN with synaptic fixed time-delay, which in turn out-

performs an CSNN with synaptic none time-delay. The

results imply that brain-like networks with more bio-in-

terpretable synaptic time-delay have stronger information

processing abilities. (ii) The relationship between the reg-

ulation of synaptic plasticity and the anti-interference

function is established using a Pearson correlation. Our

simulation results indicate that the synaptic plasticity and

the anti-interference function are significant correlation. It

implies that synaptic plasticity is the intrinsic factor of the

anti-interference function of CSNNs with different types of

synaptic time-delay. (iii) Using the analysis of topological

characteristics, our simulation results show that an CSNN

with synaptic random time-delay outperforms an CSNN

with synaptic fixed time-delay, which in turn outperforms

an CSNN with synaptic none time-delay, which has more

compactness of local connection and higher efficiency of

information transmission. This indicates that synaptic time-

delay that more conforms to the bio-interpretability can

improve the information processing ability of a brain-like

network. Also, it implies that synaptic time-delay is a

factor that affects the anti-interference function of a brain-

like network at the level of performance. Our founding

indicates that brain-like networks with more bio-inter-

pretable synaptic time-delay have stronger information

processing abilities. Thus, we verify biological conclusions

in reverse from the perspective of a brain-like model. Our

research results can improve the ability of a brain-like

model to process complex temporal-spatial information,

and provide a theoretical foundation to develop computing

power of the artificial intelligence. In this study, we com-

paratively investigate the effects of different types of

synaptic time-delay on the information processing abilities

of SNNs with the same type of topology based on the anti-

interference function. In our future work, we will further

investigate the effects of different types of topologies on

the information processing abilities of SNNs with synaptic

random time-delay. In addition, we will further investigate

the effects of bio-rationally distributed Izhikevich neurons

with different parameters on the information processing

abilities of SNNs.
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