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Abstract
This paper proposes a new automatic method for spike sorting and tracking non-stationary data based on the Dirichlet

Process Mixture (DPM). Data is divided into non-overlapping intervals and mixtures are applied to individual frames rather

than to the whole data. In this paper, we have used the information of the previous frame to estimate the cluster parameters

of the current interval. Specifically, the means of the clusters in the previous frame are used for estimating the cluster

means of the current one, and other parameters are estimated via noninformative priors. The proposed method is capable to

track variations in size, shape, or location of clusters as well as detecting the appearance and disappearance of them. We

present results in two-dimensional space of first and second principal components (PC1-PC2), but any other feature

extraction method leading to the ability of modeling spikes with Normal or t-Student distributions can also be applied.

Application of this approach to simulated data and the recordings from anesthetized rat hippocampus confirms its superior

performance in comparison to a standard DPM that uses no information from previous frames.
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Introduction

There have been many researches studying electrical sig-

nals of neurons to understand brain functionality. Analyz-

ing a single neuron activity leads to a limited view, and

hence, the activities of neuron populations are investigated

instead (Brown et al. 2004). Using Multi-Electrode Arrays

(MEAs) for recording tens or even thousands of channels

simultaneously is one solution (Navratilova et al. 2015),

and the signals recorded by MEAs must be divided into

single neuron activities. In other words, the firing patterns

of each neuron should be extracted. ‘‘Spike sorting’’ is a

procedure that extracts each neuron activity from back-

ground noise and other nearby neurons, working in a

population to form a particular action. Thus, it is an

essential procedure to characterize the firing properties of

individual neurons (Rodrigo Quian Quiroga 2012).

Accordingly, this process is needed to understand the

brain’s electrical circuitry and is also used as the Brian

Machine Interface (BMI) inputs (Gibson et al. 2010) (See

e.g. Lewicki 1998; Lefebvre et al. 2016; Zamani et al.

2020, to review some spike sorting methods).

Basically, spike sorting consists of the following steps

(Huang et al. 2021): first, the recorded signals are band-

pass filtered (Rey et al. 2015). Then, spike occurrence

times are determined by a process called ‘‘detection’’ (See

e.g. Shahid et al. 2010; Yuan et al. 2012; Quiroga et al.

2004, for some detection approaches). In the next step

named ‘‘feature extraction’’, detected spikes are projected

into feature space; and if necessary, dimensionality

reduction is done to make further processes simpler and

faster (some feature extraction methods: Wu and

Swindlehurst 2018; Paraskevopoulou et al. 2013; Zamani

and Demosthenous 2014; Kamboh and Mason 2012;

Soleymankhani and Shalchyan 2021). In the ‘‘Clustering’’

step, similar spikes in terms of their shapes are grouped

into clusters so that each cluster corresponds to an indi-

vidual neuron.

However, spike sorting or in particular, the clustering

step, may be performed in a different way called template-
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matching-based method. In some methods, template

matching is used to save time in the clustering step, e.g. in

‘Wave Clus’ (Quiroga et al. 2004), in which the obtained

templates from the subset of data are used for clustering the

remainder spikes. Some other methods apply a preliminary

clustering step to get initial templates and use them to

reconstruct raw data (Lee et al. 2020; Garcia and Pouzat

2019; Yger et al. 2018). This procedure makes it possible

to find the overlapped spikes that were not detected prop-

erly in the detection step. A similar approach can be per-

formed after the clustering step of the basic methods to

improve the performance. Another interesting method is

proposed in (Pachitariu et al. 2016), in which all the

parameters i.e., spike times, spike amplitudes, templates,

and cluster assignments are optimized via minimization of

a particular cost function. Therefore, this method does not

have the feature extraction step by working with raw data.

In addition, detection and clustering steps are performed

simultaneously.

One of the spike sorting challenges is the variations of

the spike waveforms through time when the duration of

recording becomes long. Different factors like electrode

drifts, variable background noise, and variations of spike

shape characteristics lead to variations in recorded spike

waveforms over time (Bar-Hillel et al. 2006). Moreover,

neuron death or recording the activities of a new neuron

due to electrode drifts is possible (Gasthaus and Wood

2008). Finally, these events may appear in feature space in

different ways: (i) drifts of clusters and change of their

shapes, (ii) split of one cluster or merging two different

clusters into one, (iii) creation of a new cluster or disap-

pearance of one.

In order to track these variations in the clustering step,

different solutions have been proposed. Some previous

Bayesian researches assume data to be stationary for a

certain interval, Normal mixture model is considered for

the period (Bar-Hillel et al. 2006; Wolf and Burdick 2009;

Calabrese and Paninski 2011; Gasthaus et al. 2009) and

then, a clustering method is applied to track some of the so-

called variations. In (Bar-Hillel et al. 2006) and (Wolf and

Burdick 2009), in order to recognize the true number of

clusters, a few candidate models with different neurons are

assumed. After dividing data into frames with specified

duration by Bar-Hillel et al., some candidate mixture

models are computed for each interval. Then, based on the

considered Bayesian network model for data generation,

transition probabilities between candidate mixtures are

computed, and eventually, the best models for the whole

data are obtained as the MAP solution of the final proba-

bilistic model. Unlike this approach which cannot be

implemented in real-time, Wolf et al. use just the previous

frame information for the current interval. Indeed, priors of

cluster means in frame (t ? 1) are considered to have the

distribution of Normal mixture, centered at cluster means

of frame (t) plus uniform distribution. With this definition

for mean priors, it would be possible to track changes in

cluster numbers. However, this method has a relatively

large complexity in some steps, such as the adjustment of

cluster numbers in expectation–maximization (EM) initial

states with their number in the previous frame.

A more simple method is proposed in (Calabrese and

Paninski 2011), which assumes the mean of cluster ‘g’ in

the time (t ? 1) equals the mean of that cluster in the

previous time step plus Gaussian noise. Therefore, cluster

center changes are modeled via Normal distribution with

the conservative assumption that the number of clusters is

known initially and does not change through time.

Another method (Gasthaus et al. 2009) uses Dirichlet

process mixture instead of applying candidate models with

different cluster numbers, and therefore, it estimates the

number of mixture components as well as their parameters.

In this model, the parameters are shared during time steps

and results show a high False Negative rate when data is

stationary. In addition, in this approach, the amount of the

Dirichlet process concentration parameter is selected under

supervision. Therefore, there is no guarantee that the

algorithm works well when is applied to other real data.

Table 1 reviews the comparison among the above-

mentioned methods. This table actually has two parts; the

first part compares the features and the second part com-

pares the capabilities of different methods.

On the first part Different distributions can be assumed

for observed data but the most common one is the Normal

distribution (Bar-Hillel et al. 2006; Wolf and Burdick

2009; Calabrese and Paninski 2011; Gasthaus et al. 2009).

In (Wolf and Burdick 2009) and (Calabrese and Paninski

2011) cluster drifts are modeled by assuming Normal dis-

tribution for the prior of current cluster means. These

Normal Distributions are centered at the cluster means of

the previous time. This assumption is not used in (Bar-

Hillel et al. 2006) and (Gasthaus et al. 2009). Data is

divided into shorter intervals in (Bar-Hillel et al. 2006) and

(Wolf and Burdick 2009) so that the interval stationarity

assumption becomes reasonable. But the other two meth-

ods (Calabrese and Paninski 2011; Gasthaus et al. 2009),

process the data after a new spike is detected. In (Calabrese

and Paninski 2011), the number of clusters is estimated first

and it is assumed to be fixed through time. Methods in

(Bar-Hillel et al. 2006) and (Wolf and Burdick 2009),

select the cluster number of each frame from some candi-

date models with different numbers of clusters which adds

more complexity to the model. On the other hand, the

Dirichlet process mixture is used to estimate the number of

clusters in (Gasthaus et al. 2009).

On the second part The possibility of real-time imple-

mentation is an important capability of an algorithm.
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Except (Bar-Hillel et al. 2006) which finds the best mixture

model of all frames after processing the whole data, other

approaches have the potential of being implemented in

real-time or with a delay equal to frame duration. All

methods track variations in cluster numbers except (Cal-

abrese and Paninski 2011) that assumes a fixed cluster

number through time. All approaches have the possibility

of tracking cluster drifts and shape variations.

In this paper, we propose a new method based on the

Dirichlet process mixture that utilizes the previous frame

information for the current one. Leveraging Dirichlet pro-

cess mixture properties, the proposed method estimates the

number of clusters as well as their parameters, and due to

the use of the clustering results of the previous frame, the

proposed method performs better than the approaches that

cluster frames independently. Therefore, the number of

clusters is not required to be known initially and is

simultaneously estimated with cluster parameters as well as

the concentration parameter of the Dirichlet process,

without the need for several candidate models, and try and

error procedures, which are considered in the so-called

previous approaches. In addition, if there is any change in

the number, size, shape, or location of clusters, the pro-

posed method can track them over time.

The remainder of this paper is organized as follows:

Method section presents the design procedure of the pro-

posed method. Results of applying proposed method to the

simultaneous intra-extra cellular recording as well as sim-

ulated data are given in the Results section. In addition,

some diagrams showing the performance of our approach

are presented. In the last section, concluding remarks are

provided.

Method

In this article, our focus is on the clustering step of spike

sorting. Therefore, it is assumed that spikes are first

detected in a particular way, and then are projected into

feature space. We used the first and second principal

components (PC1, PC2) as features, but any other feature

extraction method can be used instead. Consequently, in

the remainder of this paper, we call the points in the feature

space as ‘‘spikes’’. These spikes are the input for the

clustering step. Our emphasis is on Bayesian clustering as

well as tracking the non-stationarity nature of spikes

through time. If we show spike points with mif gLi¼1, with L

be the number of spikes, in the structure of model-based

clustering we use the following mixture distribution:

p mið Þ ¼
XK

k¼1

pkf ðmijhkÞ ð1Þ

in which K denotes the number of clusters or equivalently,

the number of individual neurons, pk’s (k ¼ 1; . . .;Kf g)

denote mixture probabilities with
PK

k¼1

pk ¼ 1; pk � 0 for all

k, and f is a probability density function with H ¼ hkf gKk¼1

as its parameters. Most of the time f is assumed to be a

Normal distribution and hence hk is lk and Rk, mean vector

and covariance matrix of the kth component of the mixture,

respectively. It must be mentioned that using other distri-

butions such as the t-Student distribution is also possible

for f , as in Shoham et al. (2003). In the case of using the t-

Student distribution, we have: hk ¼ lk;Rk; #kf g, where lk,
Rk and #k are respectively the location, scale, and the shape

parameter of the distribution. We used both Normal and t-

Student distributions for f , and for t-Student distribution,

Table 1 Comparison among some of the most important bayesian methods of spike sorting

Properties Bar-Hillel et al.

(2006)

Wolf and Burdick

(2009)

Calabrese and Paninski

(2011)

Gasthaus et al.

(2009)

Normal distribution for data 9 9 9 9

t-Student distribution for data

Normal cluster mean drifts 9 9

Dividing data into frames 9 9

Selecting number of clusters among some

candidate models

9 9

Selecting number of clusters using Dirichlet

process mixture

9

Possibility of real-time implementation 9 9 9

Possibility to track changes in cluster numbers 9 9 9

Possibility to track cluster drifts 9 9 9 9

Possibility to track changes in cluster shapes 9 9 9 9
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the hierarchical representation was applied, i.e. the relation

between t-Student, Normal and Gamma distributions as

follows:

t mijlk;Rk; #kð Þ ¼ r
1

0

Nðmijlk;Rk=wÞGðwj#k=2; #k=2Þdw

ð2Þ

where t, N and G are t-Student, Normal and Gamma dis-

tributions, respectively.

In Bayesian point of view, model parameters

(H ¼ hkf gKk¼1) are random variables having probability

density functions with parameters hHk
, called ‘‘hyper-

parameters’’:

hk � g hHk
ð Þ ð3Þ

Here, K should be determined a priori, that is an issue

for complex or real data.

One approach to estimate the cluster parameters is using

the Dirichlet process mixtures (DPM). DPM uses the

Dirichlet process (DP) as priors for mixture parameters,

thus the result is estimating parameters as well as the

number of mixture components. In the spike sorting

problem, where knowing the true number of clusters is very

important, DPM has been used in (Wood and Black 2008).

But variations of clusters through time is another challenge

that should be considered.

The main point of using the Dirichlet process mixture is

finding the true number of K which best fits the data.

Therefore, if h�i
� �L

i¼1
indicate the parameters correspond-

ing to the data points mif gLi¼1, we have:

mijh�i � f ðmijh�i Þ

h�i jG�G

Gja;G0 �DP a;G0ð Þ ð4Þ

where G is a discrete distribution (thus multiple h�i ’s can

take on the same value simultaneously), G0 is the base

distribution and a is the concentration parameter of the DP.

Actually, G0 is the mean of the Dirichlet process and a has

an inverse relationship with the variance of the DP. This

means that the concentration of mass around G0 is con-

trolled by a (Teh 2011).

Based on the clustering property of the DP, finite sam-

ples of G, i.e., h�i
� �L

i¼1
’s, will share repeated values with

positive probability. We define these unique values of

h�1; . . .; h
�
L as u1; . . .;uK .

Using the ‘‘Stick-Breaking’’ (SB) representation of the

Dirichlet process (Sethuraman 1994), sampling from G

distribution becomes feasible. Therefore, if uif gKi¼1 are the

shared values of h�i ’s, then in the SB representation of the

DP, we have:

G h�i
� �

¼
X1

j¼1

pjduj
h�i
� �

ð5Þ

;

uj �G0

pj ¼ Vj

Qj�1

r¼1

1� Vrð Þ;Vj �Beta 1; að Þ

8
<

: ð6Þ

where d is the Dirac delta function and Beta is the Beta

distribution with the probability density function of (7),

having shape parameters of b; a[ 0:

Beta x; b; að Þ ¼ xb�1 1� xð Þa�1

r
1
0 u

b�1 1� uð Þa�1du
; ð9Þ

For the base distribution, G0 we have:

• When using Normal distribution for data with cluster

parameters lj’s and Rj’s (cluster means and covariance

matrices, respectively), we assume that the parameters

are independent and therefore:

G0 ¼ G
lj
0 �G

Rj

0 ð8Þ

whereG
lj
0 andG

Rj

0 are the prior distributions of lj’s and

Rj’s respectively. Here we setG
lj
0 as Normal andG

Rj

0 as

inverse-Wishart distributions.

• When using t-Student distribution, with parameters lj’s,

Rj’s, and #j’s (location, shape, and scale parameters,

respectively), with the assumption of parameter inde-

pendence, we have:

G0 ¼ G
lj
0 �G

Rj

0 �G
#j

0 ð9Þ

Here we set Normal, inverse-Wishart and Gamma dis-

tributions for G
lj
0 , G

Rj

0 , and G
#j

0 , respectively.

In addition, the Gamma distribution (Gamma(1,1) as in

(Wood et al. 2006)) is considered as prior distribution of a.
Tracking the cluster locations is the most important task

in neuron tracking, thus our emphasis is on lj and its prior

(G
lj
0 ). We use DPM for each individual time interval of

data and the main point is using the result of the previous

frame for the current one. G
lj
0 is assumed to be Normal and

hence its hyper-parameters are the mean vector and the

covariance matrix. We propose to use lj’s of the previous

frame as the mean vector hyper-parameter of the current

frame mean base distribution. Therefore, tracking spike

waveform variations through time becomes possible.

Consequently, our method has one form for t = 1 and

another form for t[ 1:

For t[ 1, three different cases would happen:

A. If the number of clusters does not change in frame

(t) with respect to frame (t-1):

There are three possible cases: 1) One or more
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clusters of frame (t) change their size, shape or location

in the feature space, in comparison to frame (t-1), 2)

Clusters do not change in comparison to the previous

frame, and 3) a new cluster (neuron) is found while

another cluster (neuron) is lost.

In the first two cases, the cluster mean of frame (t)

can be assumed to be the mean of the previous frame

plus a Gaussian noise; therefore, ltj’s (cluster means of

frame (t)) can be generated with a normal distribution

centered at lt�1
j ’s with compressed support in

comparison to data dispersion according to SB repre-

sentation of the DP (Eq. (6)).

In fact, the cluster mean drifts are modeled via

Gaussian noise and the cluster shape and size varia-

tions are also trackable with the estimated covariance

matrix of data. Therefore we can generate ltj’s withG
lj
0

(Eq. (8)).

The third case is involved in the following condi-

tions, simultaneously.

B. If new clusters are generated:

The means of new clusters can be generated using

wide supported Normal distribution providing non-

informative prior, in order to let new clusters to be

located anywhere in the feature space. Therefore, ltj’s

of new clusters can be generated using G
lj
0 with zero

mean vector and a covariance matrix leading to a wide

supported distribution (compared with data dispersion)

according to (6) and (8).

C. If some neurons have lost:

When generating pj’s (Eq. (6)), those corresponding to

the lost neurons would be very small that they should be

neglected; that is the sign of disappearance of the relevant

clusters.

We define the maximum possible number of clusters in

the tth frame to be Kt. In each frame, the true number of

clusters is estimated using the Dirichlet process mixture.

We recall the true number of clusters asMt (Mt �Kt). Now

for estimating the cluster means of the current frame, for

Fig. 1 A schematic of clustering procedure for successive frames.

Starting from K-means clustering of the first frame, the result is used

for clustering of frame 1 via the proposed method. Utilizing the

obtained result, clustering of frame 2 is accomplished, and this

procedure continues till the last frame

Fig. 2 Properties of the proposed method. Any change in the number of clusters, normal drifts as well as variations in the covariance matrix (or in

other words, cluster shapes) are identified via the proposed method
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neuron numbers from 1:Mt�1 (Mt�1 is the number of pre-

vious frame neurons) we use Normal distributions centered

at cluster means of frame (t-1), and in order to find newly

generated neurons, Kt �Mt�1 wide supported Normal

distributions are used. Finally, our model for frame

t[ 1will be:

ltj �N lt�1
j ;Rt

j

� �
for j ¼ 1 : Mt�1

ltj �N 0;R
0t
j

� �
for j ¼ Mt�1 þ 1 : Kt

8
<

: ð10Þ

;
pj ¼ Vj

Qj�1

r¼1

1� Vrð Þ

Vj �Beta 1; að Þ

8
<

: for j ¼ 1 : Kt ð11Þ

According to the dispersion of data, Rt
j should be chosen

in such a way that in (10), the Normal distribution

G
ltj
0 ¼ N lt�1

j ;Rt
j

� �
, has compressed support. But, R

0t
j

should lead to a wide supported distribution in G
ltj
0 ¼

N 0;R
0t
j

� �
providing non-informative prior. Moreover, the

inverse-Wishart distribution is used for priors of covariance

matrices.

Finally, for frame t = 1, there is no previous frame, so

we use the results of K1-means clustering with a large

enough K1 (we used 7), as priors for l1j

n oK1

j¼1
. Figure 1

shows a schematic of the clustering procedure for succes-

sive frames.

Using this model, the information of the previous frame

is used only for cluster means of the current frame; and for

covariance matrices, the model is free to find the best

amounts according to current frame data by using nonin-

formative priors. The outcome would be the possibility to

track changes in the number of clusters as well as varia-

tions in size, shape, or location of them. Figure 2 sum-

marizes our method properties.

Results

In the first subsection, we show the properties of our pro-

posed method by applying it to our generated two-dimen-

sional data. Then in the next two subsections, we evaluate

our suggested approach by applying it to two datasets, one

real and one simulated data.

Investigating properties of the proposed method

In order to demonstrate the properties of the proposed

method, we have generated two-dimensional data as

depicted in Fig. 3. Arrows in Fig. 3b show the direction of

cluster drifts, and it is clear that there has been a cluster

generation in frame 4, and neuron loss is happened in

frame 6 compared to frame 5. Clusters have different

covariance matrices in a frame, and the covariance matrix

of cluster 3 changes from frame1 to frame 4. Moreover,

cluster 2 moves and gradually overlaps with cluster 1. We

have applied the proposed method with Normal data dis-

tribution (we call it DP-N) to the generated data. Results

showed only 0.3% error in the whole data, together with

true cluster number estimation, and well-tracking drift and

covariance variations. Table 2 summarizes the results of

clustering this data using DP-N.

Clustering of partially labeled data

Models were applied to a subset of simultaneously intra-

extra cellular recording. These data are publicly available

at http://crcns.org/data-sets/hc/hc-1 and are described in

(Henze et al. 2009). The data consist of recordings from a

tetrode, containing extracellular (EC) data and an intra-

cellular (IC) electrode simultaneously. This dataset is

called ‘‘partially labeled’’ because the only neuron having

label in EC channels is the one that is also recorded by the

IC electrode. Data from tetrode include action potentials of

labeled or identified neuron, as well as other neurons sur-

rounding EC electrodes.

The detection step is done according to (Calabrese and

Paninski 2011). That is, EC spikes were detected as the

local maxima near which the signal exceeds 6 median

absolute deviations in magnitude and, IC spikes as the local

maxima near which the first derivative of the signal

exceeds a certain threshold. Action potentials of the iden-

tified neuron in the EC channels were determined as the

spikes that occur within 0.1 ms of the IC channel spikes.

Each spike is extracted as a vector of 40 samples (19

samples before and 20 samples after the peak). We used

PC1 and PC2 as features, therefore each spike is a point in

the two-dimensional space of PC1-PC2. Figure 4 shows the

Table 2 Results of clustering two-dimensional generated data using

DP-N

Frame

number

True number of

clusters

Estimated number of clusters

using DP-N

Error

1 3 3 0

2 3 3 0

3 3 3 0

4 4 4 0

5 4 4 0.75%

6 3 3 1%
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Fig. 3 Two-dimensional generated data for investigating the proposed method properties. a cluster variations through time, b clusters in

individual frames, with arrows showing the direction of cluster drifts
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filtered signals of 4 EC channels, the detected spikes, and

their projection into feature space.

The clustering step in this paper is done by applying our

method to the 16 sequential intervals of data, i.e. applying

(10) for mean priors with Kt ¼ 7, (11) for mixture proba-

bilities, inverse-Wishart distribution for covariance matrix

priors, and 2-dimensional Normal and t-Student distribu-

tions for data. We used openBUGS software (Lunn et al.

2009) for defining the data model.

Like (Bar-Hillel et al. 2006) and (Wolf and Burdick

2009), it is assumed that in short intervals, data is sta-

tionary, and so Dirichlet process mixtures with their special

priors are applied to short intervals instead of applying

them to the whole data. We used frames with a duration of

10 s, just the same as Wolf.

Note that, the output of the clustering step of each frame

could be used to find templates and be utilized for finding

the overlapped spikes which were not detected in the

detection step properly, similar to (Lee et al. 2020; Garcia

and Pouzat 2019; Yger et al. 2018). Then, another clus-

tering phase could be applied by matching the newly

detected spikes with the obtained templates.

For comparison, standard DPM (http://www.robots.ox.

ac.uk/*fwood/code/index.html) is applied to time frames,

which is described in (Wood and Black 2008). The dif-

ference between our method and Woods is that we have

used special prior from the previous frame.

Figure 5 shows the identified neuron spikes and the

results of clustering using our method (rows 2 & 3) as well

as standard DPM results in row 4 for 12 out of 16 frames.

The exact value of False Negative (FN), False Positive

(FP), and total error rates are summarized in Fig. 6a, b, and

c. The results show that in the proposed DP-N method, the

FN rate in 81.25% of frames, the FP rate in 56.25% of

frames, and the total error rate in 62.5% of frames, is better

than or equal to DPM. But when using t-Student distribu-

tion for data (we call it DP-T), in FP and FN rates, this

method has similar results with DPM but in total error

rates, DPM has a better outcome. Therefore, it can be

concluded that Normal distribution for data, when using

Dirichlet process as parameter priors, leads to lower error

rates.

Note that in frames like 8 and 10, the FN rate of DP-N is

much smaller than DPM, but the FP rate is the opposite.

This means that the proposed method classifies the

Fig. 4 Filtered signal of 4 EC channel, detected spikes and their projection into the feature space of PC1-PC2
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Fig. 5 The identified neuron spikes and the results of clustering using our method (rows 2 & 3) as well as standard DPM results in row 4 for 12

out of 16 frames. The horizontal and vertical axes are the first and second principal components, respectively
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Fig. 6 Different error types. a FN, b FP and c Total error rates of applying DP-N, DPM & DP-T to 16 successive intervals
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identified neuron cluster as large as possible, and so the

number of other neuron spikes belonging to this cluster

increases. But DPM uses clusters with fewer data points for

the labeled neuron.

Another point is about the high total error rate in frame

5. In statistics, it is quite justifiable to divide one cluster

into two with different dispersions. This is what happened

with DP-N in this frame. Although leading to a high total

error rate, in statistical view, it is reasonable.

To get a better view of error rates, the mean value and

standard deviation of FN, FP, and total error rates are

reported in Table 3. According to the table, the weaker

performance of DP-T in comparison to other methods is

obvious. In addition, DP-N has better performance than

DPM in terms of FN and total error rate. The minor

difference between these two methods is due to sudden big

errors that occur in some frames for both methods.

Now, in order to compare DP-N and DPM (two methods

having better results than DP-T), the quality of tracking the

cluster means through time is also investigated. Figure 7

shows the first two principal components of cluster means

for DP-N, DPM, and their true values in 16 successive

intervals. The difference between the points of DP-N and

DPM from their true values is calculated and finally, the

mean square errors are computed and reported in Table 4.

Clustering of simulated data

Since the real dataset used in the previous subsection was

partially labeled, here we evaluate our method via fully

labeled simulated data reported in (Buccino and Einevoll

2021). We applied DPM and DP-N methods (ignoring DP-

T due to its weaker performance on the real data), to the

slow drifting data which was used in Fig. 6 of (Buccino

and Einevoll 2021) and is available online at https://

zenodo.org/record/3696926. Again, detected spikes were

projected into PC1-PC2 feature space and DP-N and DPM

methods were applied to the frames with the duration of

10 s. For DP-N, we used (10) for mean priors with Kt ¼ 7,

(11) for mixture probabilities, inverse-Wishart distribution

for covariance matrix priors, and two-dimensional Normal

distribution for data. The recording length was 60 s and

thus, there were 6 individual frames.

As was mentioned in the previous subsection, the output

of the clustering in each frame could be used to find tem-

plates and then the overlapped spikes which were not

detected in the detection step properly and afterward,

another clustering phase could be applied by matching the

newly detected spikes with the obtained templates.

Figure 8 shows the spikes in the feature space through

time frames with colors indicating different clusters. The

total error of all clusters in the whole dataset is 6.74% for

DP-N, while it is 15.05% for DPM. Calculated error in

terms of mean and standard deviation through frames is

reported in Table 5. Results clearly show the superior

performance of the proposed method, by using the previous

frame information for clustering the current interval.

Table 3 Real data error rates

among different methods
Approaches Mean of FN rate Mean of FP rate Mean of total error rate

DP-N 0.0214 ± 0.036 0.0433 ± 0.0818 0.0324 ± 0.0631

DPM 0.0256 ± 0.0344 0.0395 ± 0.0792 0.0326 ± 0.0605

DP-T 0.0322 ± 0.044 0.0487 ± 0.0747 0.0404 ± 0.0609

Fig. 7 First and second principal components of cluster means in 16

successive intervals; true values, results of DP_N and DPM methods

Table 4 Comparing cluster mean tracking quality between DP-N and

DPM for the real data

Approaches Mean square error in first

component of cluster

means

Mean square error in

second component of

cluster means

DP-N 42.0041 51.9718

DPM 64.5399 52.2716
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Conclusion and future work

In this article, we presented a Dirichlet process mixture-

based method, which is designed to track non-stationary

data. This approach uses previous frame information in the

current one i.e., in the process of generating cluster means

of frame (t), cluster means of frame (t-1) have been used.

By defining the base distribution of means (G
l
0) in the

Dirichlet Process as Normal distribution, tracking Normal

drifts of cluster means through time becomes possible.

Moreover, because of applying the Dirichlet process mix-

ture, the appearance and disappearance of clusters are also

trackable.

We used both t-Student and Normal distributions for

data (DP-T and DP-N respectively), and the results show

the better performance for Normal distribution. Comparing

the results of DP-N and a standard Dirichlet process mix-

ture (which uses no information from the previous frame)

shows that in general, the proposed method has better

performance in terms of FN, FP, and total error rate as well

as appropriate track of cluster means through time. More-

over, the proposed method is simple and does not have the

complexities of some other approaches like (Bar-Hillel

et al. 2006) and (Wolf and Burdick 2009). For example,

without assuming some candidate models with different

numbers of components, by using the advantage of the

Dirichlet process, the true number of neurons is estimated.

In addition, tracking cluster mean Normal drifts is obtained

without the assumption that the number of clusters is

known and that they are constant through time (like Cal-

abrese and Paninski 2011).

Because of using just the previous frame information in

the current one, by applying a software faster than Open-

BUGS, real-time implementation is also possible (against

Bar-Hillel et al. 2006). In comparison with (Gasthaus et al.

2009), the proposed method does not have the complexities

of defining the manner in which model parameters are

shared, and in addition, in DP-T and DP-N, Gamma dis-

tribution is assumed as Dirichlet process concentration

parameter prior, and therefore, its value is obtained related

to each frame data.

Despite the so-called advantages, there is the possibility

to improve the proposed method and also there are some

suggestions for future works. For example, new approaches

may be designed with the ability to process data with high

speed and to analyze incoming spikes as they are detected

rather than waiting for completing a frame. In addition, it

would be probable that other feature spaces lead to better

results. Moreover, learning features from previous frame

spikes along with considering their variations over time can

be another suggestion.

Fig. 8 Spikes in the feature space through time frames, each color

indicates an individual cluster which shows the trajectory of clusters

through time frames. a true clusters, b result of DP-N approach, and

c result of clustering with DPM method
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