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Abstract
Neural network bifurcation is an important nonlinear dynamic behavior of neural network, which plays an important role in

cognitive calculation. The effects of leakage delay or communication delay on the stability and bifurcation of a fractional-

order neural network (FONN) are researched. By viewing leakage delay or communication delay as the bifurcation

parameters to detect the bifurcations conditions of the developed FONN, respectively, we capture the bifurcation points

with regard to leakage delay or communication delay. It alleges that FONN exhibits excellent stability performance with

choosing smaller values of them, and Hopf bifurcations emerge of FONN and induce poor performance if selecting a larger

ones. In the end, numerical examples are employed to evaluate the feasibleness of the analytical discoveries.
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Introduction

Neural networks (NNs) have been an essential and hotspot

issue thanks to the potential applications in associative

memory (Shen et al. 2021), optimization (Kaviani and

Sohn 2021) and deep learning (Mellit et al. 2021), etc. In

recent decades, a lot of related achievements have greatly

promoted the research progress of fractional calculus.

Fractional calculus can availably make up for the defi-

ciencies of integer-order NNs due to the weak heredity,

weak memory and inaccurate modeling of NNs (Samko

et al. 1993; Lundstrom et al. 2008; Wang et al. 2020). On

account of arbitrarily selecting fractional order for frac-

tional-order neural networks (FONNs), FONNs can exhibit

more rich dynamics in comparison with integer-order NNs.

By incorporating fractional calculus into NNs, it can be

predicted that the research and application of FONNs will

have a new leap. Some outstanding attainments and

applications of FONNs have been realized, such as health

assessment (Snchez et al. 2020), image encryption (Chen

et al. 2020), control engineering (Lavin-Delgado et al.

2020). To better develop advantages in the applications of

FONNs, it is significant to investigate the dynamic

behaviors of FONNs.

Leakage delay can be regarded as a type of essential

delay, occasionally it can be called as forgetting delay. It

often occurs in the dynamical systems involving negative

feedback terms (Gopalsamy 2007). Previous studies indi-

cated that leakage delay cannot be neglected in handling

the dynamics of nonlinear systems. Otherwise, the obtained

results will be imprecise by this treatment. Gopalsamy

detected that leakage delay has a significant influence in

destabilizing stability performance of NNs (Gopalsamy

2007). Li et al. pointed out that dynamic NNs occurring to

leakage delay can induce performance deterioration in Li

et al. (2010). This is unfavorable to the design and appli-

cations of NNs if overlooking the effects of leakage delay.

Lately, the effects of leakage delays on the dynamics of

FONNs have been considerably concerned (Zhang et al.

2020; Ali et al. 2021; Yang et al. 2021).

It is a general consensus that researchers are capable of

capturing some valuable information for a given nonlinear

system in terms of active bifurcation methods (Alidousti
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and Ghahfarokhi 2019; Khajanchi and Nieto 2019; Cesare

and Sportelli 2020; Wang et al. 2011; Nan and Wang

2013). On the basis of the bifurcations of integer-order

systems, the bifurcations of fractional-order systems have

been developed (Huang et al. 2019; Shi et al. 2020; Lah-

rouz et al. 2021). Remarkably, most of the existing bifur-

cations results are focused on fractional-order systems with

single delay. Perceptibly, this kind of remedy cannot

characterize accurately the practical dynamical behaviors

of nonlinear fractional-order systems.

The outcome available of bifurcation is mainly aimed at

fractional-order systems with unique delay, the important

reason is that exploring the stability intervals of fractional-

order systems with multiple delays is extremely inconve-

nient. As a matter of fact, the complexity of fractional-

order systems can be induced by multiple delays. From the

viewpoint of nonlinear dynamics, it is entirely reasonable

to introduce multiple delays into fractional-order systems.

In Rihan and Velmurugan (2020), the bifurcations of a

fractional-order tumor-immune model with two delays

were examined, and the bifurcation conditions were cap-

tured by regarding different delays as bifurcation parame-

ters. In recent years, some scholars have explored the

influence of multiple delays on the bifurcations of FONNs,

and some eminent achievements with respect to the bifur-

cations of FONNs with multiple delays have been acquired

(Xu et al. 2020; Huang et al. 2021a, b; Huang and Cao

2021). In Huang et al. (2021a), the issue of bifurcations of

a BAM FONN with leakage and communication delays

was considered, and it was detected that the stability per-

formance of the developed FONN can be boosted if

selecting a lesser leakage delay or communication delay. In

Huang and Cao (2021), the problem of bifurcations for

delayed FONNs with multiple neurons was studied, and the

effects of self-connection delay on the stability and bifur-

cations was investigated. Nevertheless, there exist only a

few results discussing exclusively the effects of leakage

delay and communication delay on the stability perfor-

mance of FONNs (Huang et al. 2021a). Evidently, this

subject is worthy of further study.

Based on the previous discussions, we make a minute

study of the stability and bifurcation of a FONN with

different leakage delay and communication delay in this

paper. The main merits of this paper can be summarized in

the following: (1) The exact bifurcation points are captured

by viewing leakage delay or communication delay as the

bifurcation parameters. (2) The obtained results are dif-

ferent markedly from that of Huang et al. (2021b); Huang

and Cao (2021), the issue of bifurcations for a class of

FONNs with two different leakage delay and communi-

cation delay is fully studied. (3) Our results can be further

viewed as an extension of Huang and Cao (2021). This

largely motivates us to further explore the bifurcations of

higher-order FONNs with different leakage delay and

communication delay.

The remainder of the paper is constructed in the fol-

lowing: ‘‘Basic theoretical tool’’ section addresses some

preliminaries consisting of fractional-order Caputo defini-

tion and the stability criteria of fractional linear systems

without delays. ‘‘Mathematical modeling’’ section presents

the basic mathematical model. ‘‘Theoretical analysis’’

section captures the core bifurcation results. ‘‘Numerical

examples’’ section checks the validly of the developed

results through numerical simulations. To sum up, the

outcome is derived in ‘‘Conclusion’’ section.

Basic theoretical tool

This section includes the Caputo definition and lemma with

respect to fractional calculus.

Definition 1 (Podlubny 1999) The Caputo fractional-order

derivative is defined by

Dqf ðtÞ ¼ 1

Cðk � qÞ

Z t

0

ðt � sÞk�q�1f ðkÞðsÞds;

where k � 1\q� k 2 Zþ, Cð�Þ is the Gamma function.

Based on the Laplace transform, we have

LfDqf ðtÞ; sg ¼ sqFðsÞ �
Xk�1

k¼0

sq�k�1f ðkÞð0Þ;

k � 1\q� k 2 Zþ:

If f ðkÞð0Þ ¼ 0, k ¼ 1; 2; . . .; n, then LfDqf ðtÞ; sg ¼ sqFðsÞ:

Lemma 1 (Deng et al. 2007) Consider the following lin-

ear fractional-order systems with no delays

Dq1Z1ðtÞ ¼ m11Z1ðtÞ þm12Z2ðtÞ þ � � � þm1nZnðtÞ;

Dq2Z2ðtÞ ¼ m21Z1ðtÞ þm22Z2ðtÞ þ � � � þm2nZnðtÞ;

..

.

DqnZnðtÞ ¼ mn1Z1ðtÞ þmn2Z2ðtÞ þ � � � þmnnZnðtÞ;

8>>>>>><
>>>>>>:

ð1Þ

where qi 2 ð0; 1� ði ¼ 1; 2; . . .; nÞ. Suppose that M is the

lowest common multiple of the denominators fi of qi, where
qi ¼ ri

fi
, ðri; fiÞ ¼ 1, ri; fi 2 Zþ, for i ¼ 1; 2; . . .; n, and set

c ¼ 1
M. It is labeled as

MðsÞ ¼

sMq1 �m11 �m12 � � � �m1n

�m21 sMq2 �m22 � � � �m2n

..

. ..
. . .

. ..
.

�mn1 �mn2 � � � sMqn �mnn

2
66664

3
77775:
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Then the zero solution of system (1) is globally asymptot-

ically stable in the Lyapunov sense if all roots s of the

equation detðMðsÞÞ ¼ 0 satisfy j argðsÞj[ cp
2
.

Mathematical modeling

On the basis of the developed model (Hu and Huang 2009),

the bifurcations of the following FONN are investigated in

the present paper.

Dqx1ðtÞ ¼ �vx1ðt � �1Þ þ ug1ðx1ðtÞÞ þ b1g1ðx4ðt � �2ÞÞ þ c1g1ðx2ðt � �2ÞÞ;

Dqx2ðtÞ ¼ �vx2ðt � �1Þ þ ug2ðx2ðtÞÞ þ b2g2ðx1ðt � �2ÞÞ þ c2g2ðx3ðt � �2ÞÞ;

Dqx3ðtÞ ¼ �vx3ðt � �1Þ þ ug3ðx3ðtÞÞ þ b3g3ðx2ðt � �2ÞÞ þ c3g3ðx4ðt � �2ÞÞ;

Dqx4ðtÞ ¼ �vx4ðt � �1Þ þ ug4ðx4ðtÞÞ þ b4g4ðx3ðt � �2ÞÞ þ c4g4ðx1ðt � �2ÞÞ;

8>>>>><
>>>>>:

ð2Þ

where q 2 ð0; 1�, xiðtÞ ði ¼ 1; 2; 3; 4Þ stand for state vari-

ables, v[ 0 is the internal decay rate, u, bi, ci stand for

connection weights, gið�Þ denote activation functions, �1
denote leakage delay, �2 is communication delay.

The following assumptions are addressed for establish

the main results:

ðH1Þ gi 2 CðR;RÞ, gið0Þ ¼ 0, xgiðxÞ[ 0 ði ¼ 1; 2; 3; 4Þ
for x 6¼ 0.

Under the condition ðH1Þ, we detect that the origin is an

equilibrium point of FONN (2).

Theoretical analysis

�1 induces bifurcations in FONN (2)

Leakage delay �1 is selected as a bifurcation parameter to

study the bifurcations in FONN (2) in this subsec-

tion. Firstly, the linear form of FONN (2) around the origin

can be depicted as

Dqx1ðtÞ ¼ �vx1ðt � �1Þ þ dx1ðtÞ þ j1x4ðt � �2Þ þ ‘1x2ðt � �2Þ;

Dqx2ðtÞ ¼ �vx2ðt � �1Þ þ dx2ðtÞ þ j2x1ðt � �2Þ þ ‘2x3ðt � �2Þ;

Dqx3ðtÞ ¼ �vx3ðt � �1Þ þ dx3ðtÞ þ j3x2ðt � �2Þ þ ‘3x4ðt � �2Þ;

Dqx4ðtÞ ¼ �vx4ðt � �1Þ þ dx4ðtÞ þ j4x3ðt � �2Þ þ ‘4x1ðt � �2Þ;

8>>>>><
>>>>>:

ð3Þ

where d ¼ ug0ið0Þ, ji ¼ big
0
ið0Þ, ‘i ¼ cig

0
ið0Þ.

Noticeably, the characteristic equation for FONN (3)

can be obtained as

det

sq þ ve�s�1 � d � ‘1e
�s�2 0 � j1e�s�2

�j2e�s�2 sq þ ve�s�1 � d � ‘2e
�s�2 0

0 � j3e�s�2 sq þ ve�s�1 � d � ‘3e
�s�2

�‘4e
�s�2 0 � j4e�s�2 sq þ ve�s�1 � d

0
BBB@

1
CCCA ¼ 0:

ð4Þ

The equivalent form of Eq. (4) can be derived as

ðsqþve�s�1�dÞ4þl1ðsqþve�s�1�dÞ2e�2s�2 þl2e
�4s�2 ¼0;

ð5Þ

where l1 ¼ �ðj4‘3 þ j3‘2 þ j2‘1 þ j1‘4Þ, l2 ¼ j2‘1‘3
j4� j1j2j3j4 � ‘1‘2‘3‘4 þ j1j3‘2‘4:

By multiplying e4s�2 on both sides of Eq. (5), then we

clearly conclude that

½ðsq þ v� de�s�1Þes�2 �4 þ l1½ðsq þ v� de�s�1Þes�2 �2

þ l2 ¼ 0:
ð6Þ

In Eq. (6), we label as e ¼ ðsq þ v� de�s�1Þes�2 , then

e4 þ l1e
2 þ l2 ¼ 0: ð7Þ

It is clear that all the roots of Eq. (7) can be presented as

en ¼ #n þ ikn: ði ¼ 1; 2; . . .; 4Þ

where #n, kn are the real and imaginary parts of en,
respectively.

Further, we have

ðsq þ v� de�s�1Þes�2 ¼ en: ð8Þ

Let s ¼ wðcos p
2
þ i sin p

2
Þ (w[ 0) be a purely imaginary

root of Eq. (8) if the following equations hold

a1 cosw�1 þ b1 sinw�1 ¼ c1;

a2 cosw�1 þ b2 sinw�1 ¼ c2;

(
ð9Þ

where a1 ¼ v cosw�2, b1 ¼ v sinw�2, c1 ¼ �ðwq cos qp
2
�dÞ

cosw�2þ wq sin qp
2
sinw�2 þ #n, a2 ¼ v sinw�2, b2 ¼

�v cosw�2, c2 ¼ �wq sin qp
2
cosw�2 � ðwq cos qp

2
� dÞ

sinw�2 þ kn:
By solving Eq. (9), it obtains as

cosw�1 ¼
c1b2 � c2b1
a1b2 � a2b1

¼ U1ðwÞ;

sinw�1 ¼
a1c2 � a2c1
a1b2 � a2b1

¼ U2ðwÞ:

8>><
>>:

ð10Þ

It follows from Eq. (10) that

U2
1ðwÞ þ U2

2ðwÞ ¼ 1: ð11Þ

The following assumption is needed for establishing our

main results.

ðH2Þ There exist positive real roots wk ðk ¼ 1; 2:::Þ for
Eq. (11).

Based on Eq. (10), we have

�
ðkÞ
1j ¼ 1

wk

h
arccosU1ðwkÞ þ 2jp

i
; j ¼ 0; 1; 2; . . .: ð12Þ

The bifurcation point of FONN (2) is labeled as
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�10 ¼ �
ð0Þ
1j ¼ minf�ðkÞ1j g; wk ¼ w0; k ¼ 1; 2; . . .:

Equation (5) can be inverted into the following form when

�1 vanishes.

L1ðsÞ þ L2ðsÞe�2s�2 þ L3ðsÞe�4s�2 ¼ 0; ð13Þ

where L1ðsÞ ¼ ðsq þ v� dÞ4, L2ðsÞ ¼ l1ðsq þ v� dÞ2,
L3ðsÞ ¼ l2:

Multiplying e2s�2 on both sides of Eq. (13), then it can be

obtained as

L1ðsÞe2s�2 þ L2ðsÞ þ L3ðsÞe�2s�2 ¼ 0: ð14Þ

The real and imaginary parts of LiðsÞ ði ¼ 1; 2; 3Þ can be

denoted by Lri , L
i
i, respectively. It is clear that L

i
3 ¼ 0.

Suppose that s ¼ �wðcos p
2
þ i sin p

2
Þ ð �w[ 0Þ is a purely

imaginary root of Eq. (14), then we have

ðLr1 þ Lr3Þ cos 2 �w�2 � Li1 sin 2 �w�2 ¼ �Lr2;

Li1 cos 2 �w�2 þ ðLr1 � Lr3Þ sin 2 �w�2 ¼ �Li2:

(
ð15Þ

It concludes from Eq. (15) that

cos 2 �w�2 ¼
�Lr2ðLr1 � Lr3Þ � Li1L

i
2

ðLr1Þ
2 þ ðLi1Þ

2 � ðLr3Þ
2
¼ � 1ð �wÞ;

sin 2 �w�2 ¼
�Li2ðLr1 þ Lr3Þ þ Li1L

r
2

ðLr1Þ
2 þ ðLi1Þ

2 � ðLr3Þ
2
¼ � 2ð �wÞ:

8>>>><
>>>>:

ð16Þ

By means of Eq. (16), it procures that

� 2
1ð �wÞ þ � 2

2ð �wÞ ¼ 1: ð17Þ

The following assumption is addressed.

ðH3Þ There exists positive roots for Eq. (17).

By means of Eq. (17), the values of �w can be obtained,

then the bifurcation point ��20 of FONN (2) with �1 ¼ 0 can

be derived.

If the value of �2 is zero, it follows from Eq. (13) that

s4q þ C1s
3q þ C2s

2q þ C3s
q þ C4 ¼ 0; ð18Þ

where C1 ¼ 4ðv� dÞ, C2 ¼ 6ðv� dÞ2 þ l1, C3 ¼ 4ðv�
dÞ3 þ 2l1ðv� dÞ, C4 ¼ ðv� dÞ4 þ l1ðv� dÞ2 þ l2:

Assume that all roots s of Eq. (18) obey Lemma 1, then

it concludes that FONN (2) is asymptotically stable with

�1 ¼ �2 ¼ 0.

To throw out the bifurcation conditions, the following

assumption is addressed.

ðH4Þ P1U1þP2U2

U2
1
þU2

2

6¼ 0,

where P1, P2, U1, U2 are described by Eq. (21).

Lemma 2 Let sð�1Þ ¼ nð�1Þ þ iwð�1Þ be the root of Eq. (5)
near �1 ¼ �10 complying with nð�10Þ ¼ 0, wð�10Þ ¼ w0, then

the following transversality condition holds

Re
h ds

d�1

i���
ðw¼w0;�1¼�10Þ

6¼ 0:

Proof Let us adopt implicit function theorem to differen-

tiate Eq. (5) with regard to �1, then

4ðsq þ ve�s�1 � dÞ3
h
qsq�1 ds

d�1

þ ve�s�1
�
� s� �1

ds

d�1

�i
þ l1

n
½2ðsq þ ve�s�1 � dÞ

�
h
qsq�1 ds

d�1
þ ve�s�1

�
� s� �1

ds

d�1

�i

þ ðsq þ ve�s�1 � dÞ2
�
� 2�2

ds

d�1

�o
e�2s�2

þ l2e
�4s�2

�
� 4�2

ds

d�1

�
¼ 0:

ð19Þ

Simple mathematical operations from Eq. (19) deduces

ds

d�1
¼ PðsÞ

UðsÞ ; ð20Þ

where

PðsÞ ¼ vse�s�1 ½4ðsq þ ve�s�1 � dÞ3

þ 2l1ðsq þ ve�s�1 � dÞe�2s�2 �;
UðsÞ ¼ 4ðsq þ v� de�s�1Þ3ðqsq�1 þ ds1e

�s�1Þ
þ 2l1½ðsq þ ve�s�1 � dÞ � ðqsq�1 � v�1e

�s�1Þ
� �2ðsq þ ve�s�1 � dÞ2�e�2s�2 � 4l2�2e

�4s�2 :

For the sake of convenience, we label the real and imagi-

nary parts of sq þ ve�s�1 � d as a, b. The real and imagi-

nary parts of P(s) can be labeled as P1, P2. The real and

imaginary parts of U(s) can be presented as U1, U2.

It follows from Eq. (20) that
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Re
h ds

d�1

i���
ðw¼w0;�1¼�10Þ

¼ P1U1 þ P2U2

U2
1 þ U2

2

; ð21Þ

where

P1 ¼ vw0f½4ða3 � 3ab2Þ þ 2l1ða cos 2w0�2

þ b sin 2w0�2� sinw0�10 � ½4ð3a2b� b3Þ
þ 2l1ðb cos 2w0�2 � a sin 2w0�2� cosw0�10g;

P2 ¼ vw0f½4ða3 � 3ab2Þ
þ 2/1ða cos 2w0�2

þ b sin 2w0�2� cosw0�10 þ ½4ð3a2b� b3Þ
þ 2/1ðb cos 2w0�2 � a sin 2w0�2� sinw0�10g;

U1 ¼ 4ða3 � 3ab2Þh
qwq�1

0 cos
ðq� 1Þp

2
� v�10 cosw0�10

i

� 4ð3a2b� b3Þ
h
qwq�1

0 sin
ðq� 1Þp

2

þ v�10 sinw0�10

i
þ 2l1

nh
a
�
qwq�1

0 cos
ðq� 1Þp

2
� v�10 cosw0�10

�

� b
�
qwq�1

0 sin
ðq� 1Þp

2
þ v�10 sinw0�10

�
� �2ða2 � b2Þ

i

� cos 2w0�2 þ
h
a
�
qwq�1

0 sin
ðq� 1Þp

2
þ v�10 sinw0�10

�

þ b
�
qwq�1

0 cos
ðq� 1Þp

2
� vs10 sinw0�10

�
� 2�2ab

i

� sin 2w0�2

o
� 4l2�2 cos 4w0�2;

U2 ¼ 4ða3 � 3ab2Þ
h
qwq�1

0 sin
ðq� 1Þp

2
� v�10 sinw0�10

i

þ 4ð3a2b� b3Þ
h
qwq�1

0 cos
ðq� 1Þp

2
� v�10 cosw0�10

i

þ 2l1
n
�
h
a
�
qwq�1

0 cos
ðq� 1Þp

2
� v�10 cosw0�10

�

� b
�
qwq�1

0 sin
ðq� 1Þp

2
þ v�10 sinw0�10

�

� �2ða2 � b2Þ
i
sin 2w0�2 þ

h
a
�
qwq�1

0

sin
ðq� 1Þp

2
þ v�10 sinw0�10

�

þ b
�
qwq�1

0 cos
ðq� 1Þp

2
� v�10 sinw0�10

�

� 2�2ab
i
cos 2w0�2

o
þ 4l2�2 sin 4w0�2:

ðH4Þ means that transversality condition holds. The proof

of Lemma 2 is finished. h

Based on the previous investigations, we can establish

the following theorem.

Theorem 1 Under ðH1Þ–ðH4Þ, the following results can

be concluded.

(1) If �2 2 ½0; ��20Þ, then the origin of FONN (2) is

asymptotically stable when �1 2 ½0; �10Þ.
(2) If �2 2 ½0; ��20Þ, then FONN (2) experiences a Hopf

bifurcation at the origin when �1 ¼ �10.

�2 induces bifurcations in FONN (2)

Communication delay �2 acts as a bifurcation parameter to

explore the bifurcations in FONN (2) in this subsection.

Equation (5) can be equally recast as

R1ðsÞ þ R2ðsÞe�2s�2 þ R3ðsÞe�4s�2 ¼ 0; ð22Þ

where R1ðsÞ ¼ ðsq þ ve�s�1 � dÞ4, R2ðsÞ ¼ l1ðsq þ ve�s�1

�dÞ2, R3ðsÞ ¼ l2.
Denoting the real and imaginary parts of RhðsÞ ðh ¼

1; 2; 3Þ as Rr
h, Ri

h, respectively. It is clear that Ri
3 ¼ 0.

Assume that s ¼ -ðcos p
2
þ i sin p

2
Þ is a purely imaginary

root of Eq. (22), -[ 0. Then it results in

ðRr
1 þ Rr

3Þ cos 2-�2 � Ri
1 sin 2-�2 ¼ �Rr

2;

Ri
1 cos 2-�2 þ ðRr

1 � Rr
3Þ sin 2-�2 ¼ �Ri

2:

(
ð23Þ

It concludes form Eq. (23) that

cos 2-�2 ¼
�Rr

2ðRr
1 � Rr

3Þ � Ri
1R

i
2

ðRr
1Þ

2 þ ðRi
1Þ

2 � ðRr
3Þ

2
¼ W1ð-Þ;

sin 2-�2 ¼
�Ri

2ðRr
1 þ Rr

3Þ þ Ri
1R

r
2

ðRr
1Þ

2 þ ðRi
1Þ

2 � ðRr
3Þ

2
¼ W2ð-Þ:

8>>>><
>>>>:

ð24Þ

In terms of Eq. (24), the following equation holds

W2
1ð-Þ þW2

2ð-Þ ¼ 1: ð25Þ

The following assumptions is valuable for setting up our

main results.

ðH5Þ There exist positive real roots -k ðk ¼ 1; 2:::Þ for
Eq. (25).

It follows from Eq. (24) that
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�
ðkÞ
2j ¼ 1

2-k

h
arccosW1ð-kÞ þ 2jp

i
; j ¼ 0; 1; 2; . . .: ð26Þ

Label the bifurcation point of FONN (2) as

�20 ¼ �
ð0Þ
2j ¼ minf�ðkÞ2j g;-k ¼ -0; k ¼ 1; 2; . . .:

If the value of �2 is equal to 0, then Eq. (5) can be inverted

into the following form

ðsq þ ve�s�1 � dÞ4 þ l1ðsq þ ve�s�1 � dÞ2 þ l2 ¼ 0: ð27Þ

Assuming that H ¼ sq þ ve�s�1 � d. According to Eq. (27),

we have

H4 þ l1H
2 þ l2 ¼ 0: ð28Þ

Label the four roots of Eq. (28) as

Hn ¼ gn þ ihn: ði ¼ 1; 2; . . .; 4Þ

where gn, hn are the real and imaginary parts of Hn,

respectively.

Therefore,

sq þ ve�s�1 � d ¼ Hn: ð29Þ

Let s ¼ �-ðcos p
2
þ i sin p

2
Þ( �-[ 0) be a purely imaginary

root of Eq. (29), then we have

�-q cos
qp
2

þ v cos �-�1 � d ¼ gn;

�-q sin
qp
2

� v sin �-�1 ¼ hn:

8><
>: ð30Þ

It detects from Eq. (30) that

cos �-�1 ¼ �
�-q cos qp

2
� d � gn
v

¼ /1ð �-Þ;

sin �-�1 ¼
�-q sin qp

2
� hn

v
¼ /2ð �-Þ:

8>><
>>:

ð31Þ

Evidently, based on Eq. (31), we derive that

/2
1ð �-Þ þ /2

2ð �-Þ ¼ 1: ð32Þ

The following assumption is addressed.

ðH6Þ Equation (32) has at least positive roots.

Based on Eq. (32), the values of �- can be obtained, then

the bifurcation point ��10 ¼ 0 of FONN (2) with �2 ¼ 0 can

be derived.

To derive the bifurcation results, we need the following

assumption

ðH7Þ J1K1þJ2K2

K2
1
þK2

2

6¼ 0,

where J1, J2, K1, K2 are described in Eq. (35).

Lemma 3 Let sð�2Þ ¼ nð�2Þ þ i-ð�2Þ be the root of Eq.

(22) near �2 ¼ �20 complying with nð�20Þ ¼ 0,

-ð�20Þ ¼ -0, then the following transversality condition

holds

Re
h ds

d�2

i���
ð-¼-0;�2¼�20Þ

6¼ 0:

Proof By applying implicit function theorem, we differ-

entiate Eq. (22) with respect to �2, then we have

4ðsq þ ve�s�1 � dÞ3
h
qsq�1 ds

d�2
þ ve�s�1

�
� �1

ds

d�2

�i

þ l1
n
2ðsq þ ve�s�1 � dÞ

�
h
qsq�1 ds

d�2
þ ve�s�1

�
� �1

ds

d�2

�i

þ ðsq þ ve�s�1 � dÞ2
�
� 2s� 2�2

ds

d�2

�o
e�2s�2

þ l2e
�4s�2

�
� 4s� 4�2

ds

d�2

�
¼ 0:

ð33Þ

Direct calculation from Eq. (33) induces

ds

d�2
¼ JðsÞ

KðsÞ ; ð34Þ

where

JðsÞ ¼ s½2l1ðsq þ ve�s�1 � dÞ2e�2s�2 þ 4l2e
�4s�2 �;

KðsÞ ¼ 4ðsq þ ve�s�1 � dÞ3ðqsq�1 � v�1e
�s�1Þ

þ 2l1½ðsq þ ve�s�1 � dÞ � ðqsq�1 � v�1e
�s�1Þ

� �2ðsq þ ve�s�1 � dÞ2�e�2s�2 � 4l2�2e
�4s�2 :

It gains from Eq. (34) that

Re
h ds

d�2

i���
ð-¼-0;�2¼�20Þ

¼ J1K1 þ J2K2

K2
1 þ K2

2

; ð35Þ

where
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J1 ¼ 2-0fl1½ða2� b2Þ sin2-0�20

� 2abcos2-0�20� þ 2l2 sin4-0�20g;
J2 ¼ 2-0fl1½ða2� b2Þcos2-0�20

þ 2absin2-0�20� þ 2l2 cos4-0�20g;

K1 ¼ 4
h
ða3� 3ab2Þ

�
q-q�1

0

cos
ðq� 1Þp

2
� v�1 cos-0�1

�
�ð3a2� b3Þ

�
q-q�1

0 sin
ðq� 1Þp

2
þ v�1 sin-0�1

�i

þ 2l1
nh

a
�
q-q�1

0 cos
ðq� 1Þp

2

� v�1 cos-0�1

�
� b

�
q-q�1

0 sin
ðq� 1Þp

2

þ v�1 sin-0�1

�
� �20ða2� b2Þ

i

� cos2-0�20þ
h
a
�
q-q�1

0 sin
ðq� 1Þp

2
� v�1 sin-0�1

�

þ b
�
q-q�1

0 cos
ðq� 1Þp

2
þ v�1 cos-0�1

�
� 2ab�20

i

� sin2-0�20

o
� 4l2 cos4-0�20;

K2 ¼ 4
h
ða3� 3ab2Þ

�
q-q�1

0 sin
ðq� 1Þp

2
þ v�1 sin-0�1

�

þð3a2� b3Þ
�
q-q�1

0 cos
ðq� 1Þp

2
� v�1 cos-0�1

�i

þ 2l1
n
�
h
a
�
q-q�1

0 cos
ðq� 1Þp

2
� v�1 cos-0�1

�

� b
�
q-q�1

0 sin
ðq� 1Þp

2
þ v�1 sin-0�1

�
� �20ða2� b2Þ

i

� sin2-0�20þ
h
a
�
q-q�1

0 sin
ðq� 1Þp

2
� v�1 sin-0�1

�

þ b
�
q-q�1

0 cos
ðq� 1Þp

2
þ v�1 cos-0�1

�
� 2ab�20

i

� cos2-0�20

o
þ 4l2 sin4-0�20:

ðH7Þ indicates that transversality condition hold. We

accomplish the proof of Lemma 3.

In view of the prevenient analysis, the following

theorem can be concluded. h

Theorem 2 Under ðH1Þ, ðH5Þ–ðH7Þ, the following state-

ments can be gained.

(1) If �1 2 ½0; ��10Þ, then the origin of FONN (2) is

asymptotically stable when �2 2 ½0; �20Þ.
(2) If �1 2 ½0; ��10Þ, then FONN (2) undergoes a Hopf

bifurcation at the origin when �2 ¼ �20.

Remark 1 It should be noticed that the bifurcations of a

conventional integer-order NN with two different com-

munication delays was thoroughly discussed by taking

communication delay as a bifurcation parameter in Hu and

Huang (2009). In this paper, we fully consider the advan-

tages of fractional calculus in modeling NNs and further

incorporate the impact of leakage delay on the network

stability performance for NNs. Therefore, the derived

results overcome the defects of previous network model-

ing, and these results can precisely reflect the practical

characteristics of dynamic networks.

Remark 2 In Xu et al. (2020); Huang et al. (2021a), the

problem of bifurcations for a FONN with four communi-

cation delays was considered by taking communication

delay as a bifurcation parameter. In Huang and Cao (2021),

the authors explored the bifurcation mechanisation of high-

order FONN with unequal delays by using self-connection

delay as a bifurcation parameter. It is clear that the derived

results of Xu et al. (2020); Huang et al. (2021a); Huang

and Cao (2021) did not take into consideration the effects

of leakage delays. In this paper, we nicely deal with this

issue in FONNs.

Remark 3 There exist few references discussing the

combination influence of leakage delays on the bifurcations

in FONNs by viewing that leakage delay is identical with

communication delay (Huang and Cao 2018). As a matter

of fact, leakage delay is commonly not consistent with

communication delay in FONNs. In Huang et al. (2021a),

the authors pointed out that it is essential and meaningful to

separately analyze the impact of leakage and communica-

tion delays on the dynamics of FONN (2) in this paper. It

detects that an appropriate leakage delay or communication

delay is beneficial to enhance the stability performance of

FONN (2).

Numerical examples

In this section, numerical results illustrate the efficiency of

the developed theory.

Example 1

Communication delay �2 is fixed and leakage delay �1 is

selected as a bifurcation parameter to study the bifurcations

of FONN (2). More precisely, we consider the following

FONN

D0:95x1ðtÞ ¼ �0:9x1ðt � �1Þ þ 0:8 tanhðx1ðtÞÞ þ 0:2 tanhðx4ðt � �2ÞÞ þ 0:9 tanhðx2ðt � �2ÞÞ;

D0:95x2ðtÞ ¼ �0:9x2ðt � �1Þ þ 0:8 tanhðx2ðtÞÞ � 0:5 tanhðx1ðt � �2ÞÞ � 0:2 tanhðx3ðt � �2ÞÞ;

D0:95x3ðtÞ ¼ �0:9x3ðt � �1Þ þ 0:8 tanhðx3ðtÞÞ � 0:4 tanhðx2ðt � �2ÞÞ � 0:6 tanhðx4ðt � �2ÞÞ;

D0:95x4ðtÞ ¼ �0:9x4ðt � �1Þ þ 0:8 tanhðx4ðtÞÞ þ 1:2 tanhðx3ðt � �2ÞÞ þ 1:5 tanhðx1ðt � �2ÞÞ;

8>>>>>><
>>>>>>:

ð36Þ
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In this example, the initial values are selected as

ðx1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0ÞÞ ¼ ð�0:03; 0:03; 0:03;�0:03Þ:

If choosing �2 ¼ 0:1, we further obtain w0 ¼ 1:1695,

�10 ¼ 0:4164. It simply verifies that the conditions in

Theorem 1 are met. It can be clearly seen from Figs. 1 and

2 that the zero equilibrium point of FONN (36) is locally

asymptotical stable when choosing �1 ¼ 0:3\�10. Fur-

thermore, Figs. 3 and 4 reflect that the instability of the

zero equilibrium point FONN (36), and Hopf bifurcation

takes place when �1 ¼ 0:5[ �10.

Remark 4 Previous studies have revealed that leakage

delay cannot be neglected in FONNs, and the presence of

leakage delay has a negative effect on the stability and

bifurcation of FONNs in Huang and Cao (2018), which can

extremely demolish the stability performance and lead to

the onset of bifurcation of FONNs in advance. Different

from the results available in Huang and Cao (2018), we

discover in this paper that leakage delay has a positive

impact on network stability performance of FONNs pro-

vided that a proper size of leakage delay is selected. It can

be seen from Fig. 1 that when the communication delay is

fixed, the smaller the leakage delay is, the higher the sys-

tem stability is.

Example 2

Leakage delay �1 is established and communication delay

�2 is chosen as a bifurcation parameter to explore the

bifurcations of FONN (2). We further investigate the fol-

lowing FONN

D0:97x1ðtÞ ¼ �1:5x1ðt � �1Þ � 0:6 tanhðx1ðtÞÞ � 1:5 tanhðx4ðt � �2ÞÞ þ 1:5 tanhðx2ðt � �2ÞÞ;

D0:97x2ðtÞ ¼ �1:5x2ðt � �1Þ � 0:6 tanhðx2ðtÞÞ � 2:5 tanhðx1ðt � �2ÞÞ � 2:4 tanhðx3ðt � �2ÞÞ;

D0:97x3ðtÞ ¼ �1:5x3ðt � �1Þ � 0:6 tanhðx3ðtÞÞ þ 1:2 tanhðx2ðt � �2ÞÞ þ 1:5 tanhðx4ðt � �2ÞÞ;

D0:97x4ðtÞ ¼ �1:5x4ðt � �1Þ � 0:6 tanhðx4ðtÞÞ � 0:2 tanhðx3ðt � �2ÞÞ � 0:8 tanhðx1ðt � �2ÞÞ;

8>>>>>><
>>>>>>:

ð37Þ

For this example, the initial values are selected as

ðx1ð0Þ; x2ð0Þ; x3ð0Þ; x4ð0ÞÞ ¼ ð�0:2; 0:5;�0:2; 0:05Þ

. If choosing �1 ¼ 0:1, then we further procure that

-0 ¼ 3:2074, s20 ¼ 0:4529. It easily justifies that the

conditions of in Theorem 2 hold. Figures 5 and 6 depict

that the zero equilibrium point of FONN (37) is locally

asymptotically stable when �2 ¼ 0:4\�20, while Figs. 7

and 8 describe that the zero equilibrium point of FONN

(37) is unstable, Hopf bifurcation occurs when

�2 ¼ 0:6[ �20.
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Fig. 1 Trajectories of FONN

(36) with q ¼ 0:95, �2 ¼ 0:1,
�1 ¼ 0:3\�10 ¼ 0:4164
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Conclusion

The issue of the bifurcations of a FONN including different

leakage and communication delays has been explored. The

stability domains and bifurcation results have been

obtained. It has been detected that both leakage delay and

communication delay have vital effects on the stability and

bifurcations of the designed FONN. Once selecting a

smaller leakage delay or communication delay, FONN

illustrates good stability performance, if they outnumber

their critical values, FONN leads to Hopf bifurcations. The

excellent stability performance of FONN can be derived by

modifying the size of leakage delay or communication

delay. To verify the effectiveness of the derived results,

two simulation examples have been provided.
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