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Abstract
While human speech comprehension is thought to be an active process that involves top-down predictions, it remains

unclear how predictive information is used to prepare for the processing of upcoming speech information. We aimed to

identify the neural signatures of the preparatory processing of upcoming speech. Participants selectively attended to one of

two competing naturalistic, narrative speech streams, and a temporal response function (TRF) method was applied to

derive event-related-like neural responses from electroencephalographic data. The phase responses to the attended speech

at the delta band (1–4 Hz) were correlated with the comprehension performance of individual participants, with a latency of

− 200–0 ms relative to the onset of speech amplitude envelope fluctuations over the fronto-central and left-lateralized

parietal electrodes. The phase responses to the attended speech at the alpha band also correlated with comprehension

performance but with a latency of 650–980 ms post-onset over the fronto-central electrodes. Distinct neural signatures were

found for the attentional modulation, taking the form of TRF-based amplitude responses at a latency of 240–320 ms post-

onset over the left-lateralized fronto-central and occipital electrodes. Our findings reveal how the brain gets prepared to

process an upcoming speech in a continuous, naturalistic speech context.

Keywords Preparatory processing · Attention · Speech comprehension · Electroencephalogram · Temporal response

function

Introduction

Humans can effectively comprehend complex and rapidly

changing speech in challenging conditions, e.g., in a

cocktail party scenario with multiple competing speech

streams and high background noise. To achieve such a

capacity, the human brain is equipped with an efficient

neural architecture that is dedicated to bottom-up pro-

cessing of perceived speech information, from the low-

level acoustics, to the phoneme, syllable, and sentence

levels (Pisoni and Luce 1987; DeWitt and Rauschecker

2012; Friederici 2012; Hickok 2012; Verhulst et al. 2018).

In recent years, increasing evidence has also suggested that

human speech comprehension is an active process that

involves top-down predictions (Rao and Ballard 1999;

Federmeier 2007; Arnal et al. 2011; Hickok et al. 2011;

Kutas and Federmeier 2011; Fries 2015; Tian et al. 2018).

For instance, in the cocktail party scenario, it is believed

that a listener should continuously predict what their

attended speaker is going to say next in order to efficiently

understand the corresponding speech (Cherry 1953; Ding

and Simon 2012a; Zion Golumbic et al. 2013a; O’Sullivan

et al. 2015; Bednar and Lalor 2020).

Although the idea of prediction in human speech com-

prehension is gaining popularity, it remains unclear how

the brain gets prepared for the processing of upcoming

speech information. The preparatory process could be an
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important part of the prediction mechanism, reflecting how

the predictive information could guide the neural system to

fine-tune its state to process the upcoming speech effi-

ciently. The available findings on prediction in speech,

however, are not sufficient to determine the neural mech-

anisms underlying preparation. For instance, the classic

studies of active speech prediction have mainly focused on

neural activity in response to prediction errors. Event-re-

lated potential (ERP) components such as the N400 and

P600 are frequently reported when the perceived word

violates semantic and syntactic congruency of the preced-

ing speech context, respectively (Lau et al. 2008; Kutas and

Federmeier 2011; Van Petten and Luka 2012; Wang et al.

2018). These ERP components normally occur[400 ms

after the presentation of the perceived speech and therefore

provide only indirect support for the preparatory process.

Recent studies have reported evidence of the brain’s pre-

activation before the onset of the upcoming speech. Some

researchers have focused on preparatory attentional orien-

tation to specific acoustic features (e.g., spatial location,

pitch, etc.) in speech or general auditory tasks (Hill and

Miller 2010; Lee et al. 2013; Holmes et al. 2016, 2018;

ElShafei et al. 2018; Nolden et al. 2019). For instance, the

visual cues prior to the onset of an auditory stimulus could

elicit distinct neural responses over the left superior tem-

poral sulcus (STS), depending on its associated task

instructions about the to-be-attended pitch feature of the

upcoming auditory stimulus (Lee et al. 2013). In the

meanwhile, researchers have reported pre-activations that

are more specific for speech processing (DeLong et al.

2005; Dikker and Pylkkänen 2013; Söderström et al.

2016, 2018): event-related neural responses to a preceding

speech unit (e.g., words) were found to be informative

about possible upcoming speech units in the continuous

speech materials (e.g., sentences). While these speech-re-

lated pre-activations could reflect the brain’s preparation

for processing the upcoming speech, they were represented

by event-related responses that were associated with either

the attention-related cues or the preceding speech units. In

other words, these results were constrained by the pro-

cessing of the preceding events and therefore the prepara-

tory process might be only indirectly expressed. Ideally,

the most direct preparatory processing should be linked to

the to-be-processed speech but occur before its onset.

While this direct evidence has not been investigated in

the speech domain, studies on general sensory processing

have provided support for the possible existence of such a

preparatory process. In the visual domain, the amplitude

and phase of pre-stimulus oscillatory activities, especially

in the alpha band, have been reported to have a significant

impact on subsequent perceptual consequences (Van Dijk

et al. 2008; Kok et al. 2017; Harris et al. 2018; Galindo-

Leon et al. 2019; Rassi et al. 2019), such as threshold-level

perception, attention orientation, visual search perfor-

mance, etc. Auditory information processing has also been

shown to be affected by pre-stimulus oscillations, mainly at

lower frequency bands such as theta and delta (Ng et al.

2012; Kayser et al. 2016; Zoefel et al. 2018). However,

these studies have mainly employed simple and abstract

sensory stimuli such as pure tone, visual shapes as

preparatory cues, that do not resemble real-world speech

scenarios, therefore were limited in explaining possible

neural mechanisms underlying the preparatory processing

of human speech. Recently, there is an emergence of nat-

uralistic stimuli in auditory studies (Sonkusare et al. 2019).

Researchers adopted naturalistic, continuous audios (e.g.,

poetry, long sentences) as the stimulus (Etard and

Reichenbach 2019; Teng et al. 2020; Donhauser and Baillet

2020). The naturalistic speech presents listeners with a

variety and multitude of different linguistic contents

(Alexandrou et al. 2018), catering for different levels of

preparation. Thus, our study utilized naturalistic and con-

tinuous materials to study the preparatory processing.

One crucial issue that needs to be considered is the

possible dependence of the preparatory process on top-

down selective attention. As attention regulates the pro-

cessing of the input sensory information, it can be expected

to affect prediction and consequently preparation (Schröger

et al. 2015a, b). A number of recent studies have indeed

reported attention-dependent neural responses to prediction

errors (Kok et al. 2012; Auksztulewicz and Friston 2015;

Hisagi et al. 2015; Marzecová et al. 2017; Smout et al.

2019), with ongoing debates on the direction of the inter-

play and the involved sensory processing stages. Most of

these studies have been conducted within the visual

domain, with limited exploration in the auditory domain,

let alone speech processing.

The present study aimed to identify neural signatures

that directly reflect the preparatory processing of human

speech. Naturalistic, narrative speech materials were pre-

sent to the participants with a 60-channel electroen-

cephalogram (EEG) recording; this procedure is believed

to be of high ecological validity, thus providing necessary

contextual information for the engagement of top-down

prediction and therefore preparation (Rao and Ballard

1999; Friston 2005; Federmeier 2007; Jehee and Ballard

2009). A cocktail party paradigm was used to introduce a

complex perceptual environment that imposed further

demands on preparation as compared to a noise-free

environment (Cherry 1953; Ding and Simon 2012a; Zion

Golumbic et al. 2013a; O’Sullivan et al. 2015; Broderick

et al. 2018). To characterize the neural responses to the

continuous, naturalistic speech streams, a temporal

response function (TRF) method was used to derive event-

related-like neural responses from the EEG signal, based

on the speech amplitude envelope of both the attended and

338 Cognitive Neurodynamics (2022) 16:337–352

123



the unattended speech streams (Lalor et al. 2006; Crosse

et al. 2016). We employed the amplitude envelope for the

following considerations: (1) speech amplitude envelope

has been successfully used in previous studies on natural-

istic speech processing to investigate attention, clarity, and

comprehension performance (Di Liberto et al. 2015; Etard

and Reichenbach 2019); (2) speech amplitude envelope

could include sufficient information at all levels, from

acoustics to semantics (Di Liberto et al. 2015; Daube et al.

2019). The TRF-based responses were expected to reveal

the temporal dynamics of neural activities underlying

human speech processing, and the responses with latencies

earlier than the onset of speech amplitude envelope fluc-

tuations are regarded to represent the preparatory phase.

Specifically, the TRF-based responses were further

decomposed into amplitude and phase responses, as

amplitude and phase have been proposed to play unique

roles in networks underlying human cognition (Bonnefond

and Jensen 2012; Engel et al. 2013; Fries 2015). Following

the studies on the perceptual influence of pre-stimulus

neural activities (Smith et al. 2006; Iemi et al. 2019; Rassi

et al. 2019; Avramiea et al. 2020), we were interested in

whether the TRF-based responses at the preparatory stage

could be correlated to speech comprehension performance,

as measured by speech-content-related questionnaires, and

how amplitude and phase responses contributed to speech

preparation. With the employment of the cocktail party

paradigm, we also addressed the issue of the attention-

dependency of the to-be-explored performance-related

preparatory activities. Our study is expected to reveal the

neural mechanisms underlying how the brain gets prepared

to process an upcoming speech in a continuous, naturalistic

speech context.

Materials and methods

Ethics statement

The study was conducted in accordance with the Declara-

tion of Helsinki and was approved by the local Ethics

Committee of Tsinghua University. Written informed

consent was obtained from all participants.

Experimental model and participant details

Twenty college students (10 females; mean age: 24.7 years;

range: 20–43 years) from Tsinghua University participated

in the study as paid volunteers. All participants were native

Chinese speakers, and reported having normal hearing and

normal or corrected-to-normal vision.

Note that we did not perform a power analysis for

sample size due to the lack of previous speech-related

studies with a similar analysis framework (i.e., a cluster-

based permutation of correlation values, see below).

Instead, the sample size (N=20) was decided empirically

following previous TRF-based studies on human speech

processing (Di Liberto et al. 2015; Mirkovic et al. 2015;

Broderick et al. 2018).

Stimuli

The speech stimuli were recorded from two male speakers

using the microphone of an iPad2 mini (Apple Inc.,

Cupertino, CA) at a sampling rate of 44,100 Hz. The

speakers were college students from Tsinghua University

who had more than four years of professional training in

broadcasting. Both speakers were required to tell twenty-

eight 1-min narrative stories in Mandarin Chinese. Half of

these stories were about daily-life topics recommended by

the experimenter, and the speakers improvised on their own

(14 stories); and the other half were selected from the

National Mandarin Proficiency Test (14 stories). The rec-

ommended topic or story materials were presented to the

speakers on the computer screen. They were allowed to

prepare for as long as required before telling the story

(usually*3 min). When they were ready, the speakers

pressed the SPACE key on the computer keyboard, and the

recording began with the presentation of three consecutive

pure-tone beep sounds at 1000 Hz (duration: 1000 ms;

inter-beep interval: 1500 ms). The beep sounds served as

the event markers to synchronize the speech streams to be

presented simultaneously in the main experiment. The

speakers were asked to start speaking as soon as the third

beep had ended (within around 3 s). The speakers were

allowed to start the recording again if the audio did not

meet the requirements of either the experimenter or the

speakers themselves (mainly concerned with the coherence

of speech). The actual speaking time of each story ranged

from 51 to 76 s.

Two four-choice questions per story (two for the atten-

ded story and two for the unattended story) were then

prepared by the experimenter and two college students who

were familiar with comprehension performance assess-

ment. These questions and the corresponding choices

concerned story details that required significant attentional

efforts. For instance, one question following a story about

one’s hometown was, ‘‘What is the most dissatisfying thing

about the speaker’s hometown? (推测讲述人对于家乡最

不满意的地方在于?)’’, and the four choices were

(A) There is no heating in winter; (B) There are no hot

springs in summer; (C) There is no fruit in autumn;

(D) There are no flowers in spring (A. 冬天没暖气; B. 夏

天没温泉; C. 秋天没水果; D. 春天没鲜花).
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Experimental procedure

The main experiment consisted of four blocks, each con-

taining seven trials. In each trial, two narrative stories were

presented simultaneously, one to the left ear and the other

to the right ear. The participants were instructed to attend

to one spatial side. The two speech streams within each

trial were from the two different male speakers to facilitate

selective attention. Considering the possible duration dif-

ference between the two audio streams, the trial ended after

the longer speech audio had ended. Each trial began when

participants pressed the SPACE key on the computer

keyboard. Participants were instructed which side to attend

to by plain text (‘‘Please pay attention to the [LEFT/

RIGHT]’’) displayed on the computer screen. A white

fixation cross was also displayed throughout the trial. The

speech stimuli were played immediately after the keypress

and were preceded by the three beep sounds to allow

participants to prepare.

At the end of each trial, four questions (two for the

attended story and the other two for the unattended story)

were presented sequentially in random order on the com-

puter screen, and the participants made their choices using

the computer keyboard. The listeners were not explicitly

informed about the correspondence between the questions

and the stories. The single-trial comprehension accuracy

could be 0% (two wrong answers), 50% (one correct

answer), or 100% (two correct answers) for both the

attended and the unattended stories. While the goal of such

a design was to measure the listener’s comprehension

performance in feasible experimental time, using only two

questions per story might not provide a sufficient test for all

the story content. Therefore, the averaged accuracies across

all trials (separately for the attended and the unattended

stories) were computed to have a reliable estimation of the

listener’s overall comprehension performance.

After completing these questions, participants scored

their attention level of the attended stream, the experienced

difficulty of performing the attention task, and the famil-

iarity with the attended material using three 10-point Likert

scales. No feedback was given to the participants about

their performance during the experiment. Throughout the

trial, participants were required to maintain visual fixation

on the fixation cross while listening to the speech and to

minimize eye blinks and all other motor activity. The

participants were recommended to take a short break

(around 1 min) after every trial within one block and a long

break (no longer than 10 min) between blocks.

The to-be-attended side was fixed within each block

(two blocks for attending to the left side and two for

attending to the right side). Within each block, the speaker

identity remained unchanged for the left and right sides.

The to-be-attended spatial side and the corresponding

speaker identity were balanced within the participant, with

seven trials per side for both speakers. The assignment of

the stories to the four blocks was randomized across the

participants.

The experiment was carried out in a sound-attenuated,

dimly lit, and electrically shielded room. The participants

were seated in a comfortable chair in front of a 19.7-inch

LCD monitor (Lenovo LT2013s). The viewing distance

was approximately 60 cm. The experimental procedure was

programmed in MATLAB using the Psychophysics Tool-

box 3.0 extensions (Brainard and Brainard 1997). The

speech stimuli were delivered binaurally via an air-tube

earphone (Etymotic ER2, Etymotic Research, Elk Grove

Village, IL, USA) to avoid possible electromagnetic

interferences from auditory devices. The volume of the

audio stimuli was adjusted to be at a comfortable level that

was well above the auditory threshold. Furthermore, the

speech stimuli driving the earphone were used as an analog

input to the EEG amplifier through one of its bipolar inputs

together with the EEG recordings. In this way, the audio

and the EEG recordings were precisely synchronized, with

a maximal delay of 1 ms (at a sampling rate of 1000 Hz).

Data acquisition and pre-processing

EEG was recorded from 60 electrodes (FP1/2, FPZ, AF3/4,

F7/8, F5/6, F3/4, F1/2, FZ, FT7/8, FC5/6, FC3/4, FC1/2,

FCZ, T7/8, C5/6, C3/4, C1/2, CZ, TP7/8, CP5/6, CP3/4,

CP1/2, CPZ, P7/8, P5/6, P3/4, P1/2, PZ, PO7/8, PO5/6,

PO3/4, POZ, Oz, and O1/2), which were referenced to an

electrode between Cz and CPz, with a forehead ground at

Fz. A NeuroScan amplifier (SynAmp II, NeuroScan,

Compumedics, USA) was used to record EEG at a sam-

pling rate of 1000 Hz. Electrode impedances were kept

below 10 kOhm for all electrodes.

The recorded EEG data were first notch filtered to

remove the 50 Hz powerline noise and then subjected to an

artifact rejection procedure using independent component

analysis. Independent components (ICs) with large weights

over the frontal or temporal areas, together with a corre-

sponding temporal course showing eye movement or

muscle movement activities, were removed. The remaining

ICs were then back-projected onto the scalp EEG channels,

reconstructing the artifact-free EEG signals. While the

relatively long duration of the speech trials in the present

study (*1 min per story, see Experimental procedure) has

made it more difficult for the participants to avoid inducing

movement-related artifacts as compared to the classical

ERP-based studies, a temporally continuous, non-inter-

rupted EEG segment per trial was preferred for the

employment of the TRF method. Therefore, any ICs with

artifact-like EEG activities for more than 20% of the trial
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time (i.e.,*12 s) were rejected, leading to around 4–11

ICs rejected per participant. The cleaned EEG data were

used for the TRF analysis without any further artifact

rejection procedures. Then the EEG signals were re-refer-

enced to a common average reference, following previous

speech-related studies using TRFs (e.g., O’Sullivan et al.

2015; Bednar and Lalor 2020).

Next, the EEG data were segmented into 28 trials

according to the markers representing speech onsets. The

analysis window for each trial extended from 10 to 55 s

(duration: 45 s) to avoid the onset and the offset of the

stories (Crosse et al. 2016).

Temporal response function modeling

The analysis workflow for the analysis related to the

attended speech stream is shown in Fig. 1. The neural

responses to the speech stimuli were characterized using a

temporal response function (TRF)-based modeling method.

The TRF response describes the impulse response to fluc-

tuations of an input signal and is based on system

identification theories (Lalor et al. 2006; Crosse et al.

2016). We used the amplitude envelope of the speech

signal as the input signal required by TRF, which has been

demonstrated to be a valid index to extract speech-related

neural responses (Ding and Simon 2012a; Mirkovic et al.

2015; O’Sullivan et al. 2015; Huang et al. 2018; Broderick

et al. 2018; Bednar and Lalor 2018). In the present study,

the TRF-based responses were expected to characterize

how the human brain responded to the fluctuations of the

input speech amplitude envelope signals. The TRF-based

responses provided the opportunity to inspect the dynamics

of the speech-related neural activities: while the TRF-based

responses following the speech amplitude envelope fluc-

tuations are considered to represent post-processing of the

speech stream, the pre-onset responses can the pre-onset

responses can express pre-activation or preparation for

processing incoming speech information (Etard and

Reichenbach 2019). While the temporal dynamics of

speech-related neural activities could also be investigated

using simpler methods without the employment of mod-

elling methods (e.g., performing simple correlation or

Fig. 1 The analysis workflow. a The experimental paradigm.

Participants attended to one of two simultaneously presented natu-

ralistic, narrative speech streams while 60-channel EEG was

recorded. b EEG data analysis. Neural responses were characterized

using a TRF-based modeling method. The TRF-based neural

responses were decomposed into the amplitude and the phase

responses using the Hilbert transform. This procedure was conducted

separately for attended (Att-) and unattended (Unatt-, not shown)

speech streams, and separately for EEG data filtered at delta, theta,

alpha and beta bands. c Comprehension performance. The partici-

pants completed a comprehension task after each speech

comprehension trial. The average response accuracy over all trials

per participant was taken as his/her comprehension performance.

d Correlation analysis for comprehension performance-related neural

responses. We calculated the correlation between either amplitude or

phase responses and comprehension performance for each channel-

latency bin. We defined neural activity before 0 ms as preparatory-

processing and activity after 0 ms as post-processing. The results of

the delta band were illustrated here. The colored channel-latency bins

showed uncorrected significant correlation with comprehension

performance. The dashed box in the ‘Corr-Phase’ plot indicates a

significant channel-latency cluster by a cluster-based permutation test
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cross-correlation analyses) (Ringach and Shapley 2004;

Kong et al. 2014; Müller et al. 2019), calculating the TRF-

based responses could facilitate the extraction of neural

activities that were more related to the input speech signals

(Crosse et al. 2016).

Prior to the modeling, the preprocessed EEG signals

were re-referenced to the average of all scalp channels and

then downsampled to 128 Hz. Then, the EEG data were

filtered in delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz)

and beta (12–30 Hz) bands (filter order: 64, one-pass for-

ward filter). The use of a causal FIR filter ensured that

filtered EEG signals were decided only by the current and

previous data samples (de Cheveigné and Nelken 2019),

which is important for the present research aim of

preparatory speech processing. The filter order of 64 was

chosen to keep a balance of temporal resolution and filter

performance: the filtered EEG signals were therefore cal-

culated based on the preceding 500 ms data (64 at 128 Hz).

The amplitude envelopes of the speech signals were

obtained using a Hilbert transform and then downsampled

to the same sampling rate of 128 Hz. The EEG data were z-

scored before TRF computation as recommended (Crosse

et al. 2016). When denoting Rj
i;kðtÞ as the downsampled

EEG signals from channel i, trial k filtered at one specific

frequency band j (representing the four frequency bands)

and SkðtÞ as the input speech amplitude envelope corre-

sponding to trial k, the corresponding neural response

TRF j
i;kðtÞ can be formulated as follows:

Rj
i;k tð Þ ¼ TRF j

i;kðtÞ � SkðtÞ ð1Þ
where * represents the convolution operator. The latency in

the neural response models TRF j
i;kðtÞ was set to vary from

− 1000 ms to 1000 ms post-stimulus. Note that the model

latency parameters were set to vary to a wider time range

as compared to previous studies (normally − 100 to 400 ms,

e.g., Di Liberto et al. 2015; O’Sullivan et al. 2015; Brod-

erick et al. 2018). The time range was decided to allow a

reliable exploration of the temporal dynamics at latencies

beyond previous studies, especially on the pre-onset end,

while avoiding possible regression artifacts at the extremes

of the model latencies (Crosse et al. 2016).

To control for overfitting, we varied the lambda from

10–1 to 103 (lambda=10–1, 100,…, 103) in the ridge

regression (Di Liberto et al. 2015; Crosse et al. 2016;

Broderick et al. 2018). The lambda value corresponding to

the backward decoder that produced the highest cross-

validated speech amplitude envelope reconstruction accu-

racy (as the correlation between the reconstructed and

original envelopes), averaged across trials, was selected as

the regularization parameter for all trials per participant

(Broderick et al. 2019). The cross-validation procedure was

implemented as a leave-one-trial-out manner: each time the

TRFs were trained on the basis of data from 27 trials and

tested on the left-out trial. All TRF-based responses were

further transformed into z-scores within the − 1000 ms to

1000 ms time window for each channel separately per

participant to account for across participants and across

session differences (Pasley et al. 2012; Kleen et al. 2016).

These z-scores were then used for the following analyses.

The above-mentioned TRF calculation procedure was

performed for the EEG signals from each EEG channel

filtered at the four frequency bands, with either the atten-

ded or the unattended speech amplitude envelopes as the

reference signals. In other words, we obtained the TRF-

based responses to both the attended and the unattended

speech streams, for all the EEG channels and the four

frequency bands.

Amplitude and phase were calculated using the Hilbert

transform of the TRF-based neural responses at the single-

trial level. Hereby, the instantaneous amplitude Aj
i;k tð Þ and

the instantaneous phase / j
i;k tð Þ can be computed as

Aj
i;k tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TRF j

i;kðtÞ
� �2

þ h TRF j
i;kðtÞ

� �2
r

ð2Þ

/ j
i;k tð Þ ¼ tan�1

h TRF j
i;kðtÞ

� �

TRF j
i;kðtÞ

0
@

1
A ð3Þ

where h(TRF j
i;kðtÞ) represents its Hilbert transform.

These single-trial instantaneous amplitude and phase

were then averaged across all trials per participant to reflect

one’s overall EEG responses to the naturalistic speech

streams. Specifically, the single-trial amplitudes were

averaged by taking their arithmetic mean value, whereas

the single-trial phase responses were averaged by com-

puting their circular mean (i.e., the mean phase angle). The

circular-linear correlation between the mean phase £i;j tð Þ
and the linear variable of comprehension performance x

was defined as follow:

ri;k tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cx þ r2sx � 2rcxrsxrcs

1� r2cs

s
ð4Þ

where rsx means the Pearson correlation between

sinð£i;j tð ÞÞ and x, rcx means the Pearson correlation

between cosð£i;j tð ÞÞ and x, rcs means the Pearson corre-

lation between sinð£i;j tð ÞÞ andcosð£i;j tð ÞÞ. ri;k tð Þ varies

from − 1 to 1, where?1 means the two variables have a

perfect positive relationship, − 1 indicates a perfect nega-

tive relationship, and a 0 indicates no relationship exists.

In addition, the inter-trial phase locking (ITPL) was also

calculated to evaluate the phase consistency across trials

within each participant. Given the number of trials denoted

by N, the TRF-based ITPL were calculated as follows:
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ITPLðtÞ ¼
XN

k¼1
expð£ j

i;k tð Þ
���

���=N ð5Þ

The phase-related ITPL value varies between 0 and 1; 0

refers to a situation in which the phase responses of dif-

ferent trials are uniformly distributed between 0 and 2π,
and 1 means the phase responses from all trials are entirely

locked to a fixed phase angle.

The TRF analysis was conducted in MATLAB using the

Multivariate Temporal Response Function (mTRF) toolbox

(Crosse et al. 2016). All the other EEG processing proce-

dures, as well as the statistical analyses, were conducted

using the FieldTrip toolbox (Oostenveld et al. 2011).

Quantification and statistical analysis

The extracted TRF-based amplitude and phase responses

were used to correlate with the speech comprehension

performance of the attended speech at the participant level.

The Spearman’s correlation was calculated between the

amplitude response and the comprehension performance at

each EEG channel and each individual latency across the

participants. The correlations between the phase response

and the comprehension performance were evaluated by

computing the circular linear correlation using the CircStat

toolbox (Berens 2009). Both the TRFs to the attended and

unattended speech at the four frequency bands were

included for this analysis.

Statistical analysis was performed to examine the sig-

nificance of correlations over all channel-latency bins by

computing the correlation r-values. To account for multiple

comparisons, a nonparametric cluster-based permutation

analysis was applied (Maris and Oostenveld 2007). In this

procedure, neighboring channel-latency bins with an

uncorrected correlational p-value below 0.01 were com-

bined into clusters, for which the sum of the correlational t-

statistics corresponding to the correlation r-values were

obtained. A null-distribution was created through permu-

tations of data across participants (n=1,000 permutations),

which defined the maximum cluster-level test statistics and

corrected p-values for each cluster.

In addition, we investigated the attention modulation of

the TRF-based responses. The purpose of this analysis was

to test whether the well-established attention effect (Ding

and Simon 2012b; O’Sullivan et al. 2015) could be repli-

cated on the present dataset. To this end, paired t-tests were

performed, contrasting the TRFs to the attended speech

versus the unattended speech. Both amplitude and phase

were included in the analysis. The phase difference was

calculated as the phase angle difference by the CircStat

toolbox as well. A similar cluster-based permutation was

used to control for the multiple comparison problem (p\
0.01 as the threshold, n=1, 000 permutations).

The above statistical analysis followed the standard

cluster-based permutation procedure as employed in clas-

sical ERP and related studies (Arnal et al. 2011; Henry and

Obleser 2012; Zhang et al. 2012). Note that the reported p-

values were only corrected for the tests performed within

each frequency band by using the cluster-based permuta-

tion tests. No multiple comparison correction was

employed across different frequency bands.

Results

Behavioral results

The average comprehension performance was significantly

better for the 28 attended stories than for the 28 unattended

stories (67.0±2.5% (standard error) vs. 36.0±1.6%, t(19)

=10.948, p\0.001; the four-choice chance level: 25%).

The participants reported a moderate level of attention

(8.146±0.343 on a 10-point Likert scale) and attention

difficulties (2.039±0.530 on a 10-point Likert scale). The

accuracy for the attended story was significantly correlated

with both the self-reported attention level (r=0.476, p=

0.043) and attention difficulty (r=− 0.677, p=0.001). The

self-reported story familiarity level was low for all the

participants (0.860±0.220 on a 10-point Likert scale) and

was not correlated with comprehension performance (r=

− 0.224, p=0.342). These results suggest that participants’

selective attention was effectively manipulated and the

measurement of comprehension performance was reliable.

Most importantly, there was large inter-individual vari-

ability in the participant-wise average comprehension

performance for the attended stories; the response accuracy

varied from 48.2% to 91.1%, which supports the feasibility

of using these accuracy values as a behavioral indicator of

comprehension-relevant neural signatures. In the mean-

while, the response accuracy varied from 25.0% to 51.8%

for the unattended stories.

Speech comprehension performance related TRF-
based responses

Figure 2 depicts the distribution of the average recon-

struction accuracy for each listener in each frequency band.

The average reconstruction accuracies (as the correlation

between the reconstructed and original envelopes) for the

attended speech streams were 0.144±0.014 (standard

error), 0.170±0.016, 0.147±0.014, and 0.082±0.009 for

the delta, theta, alpha, and beta bands, respectively. The

average reconstruction accuracies were significantly lower

for the unattended speech streams (ps\0.05 with Bonfer-

roni correction), with 0.082±0.010, 0.114±0.012, 0.096±

0.010, and 0.054±0.004 for the delta, theta, alpha, and
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beta bands, respectively. These results were comparable

with previous studies (O’Sullivan et al. 2015), constituting

the basis for our follow-up analysis.

The nonparametric cluster-based permutation analysis

revealed a significant correlation between the multi-chan-

nel amplitude and phase representation of the TRFs and

individual speech comprehension performance of the

attended speech. This corresponded to two clusters in the

observed data (cluster-based permutation p\0.05). Both

the two significant clusters are reflected by TRF-based

phase responses to the attended speech, with one at the

delta band and the other at the alpha band (Fig. 3a, b). No

significant correlations were found for the TRFs to the

unattended speech.

As shown in Fig. 3c.I and II, the delta cluster was rep-

resented by TRF-based phase responses to the attended

speech at − 200–0 ms before the onset of speech amplitude

envelope fluctuations over the fronto-central and left-lat-

eralized parietal electrodes (cluster-based permutation p=

0.012, mean circular linear correlation r=0.787). The par-

ticipants with their comprehension performance ranking

intop, middle, and bottom tertiles were associated with

different delta phase angles during this pre-speech-onset

time window. As shown in Fig. 3c.I, the top-performing

participants showed a negative peak within the time win-

dow of the cluster, whereas the bottom-performing par-

ticipants showed a positive peak during this time period.

Figure 3c.III provides more quantitative information

regarding this phase effect, and average phase angles for

the participants in the three tertiles were Φtop=73.411°,
Φmiddle=80.175°, and Φbottom=− 134.767°, respectively.

However, the participants’ ITPL did not significantly cor-

relate with their comprehension performance (r=0.127, p

=. 593, Fig. 3c.IV).

The alpha cluster was represented by TRF-based phase

responses to the attended speech at 650–980 ms post

speech onset, with a fronto-central distribution (cluster-

based permutation p=0.031, mean r=0.784, see Fig. 3d.I

and II). The individual difference in the phase angle of

their responses was large, with average Φtop=41.904° for

the top-performing participants and Φmiddle=− 135.461°,
Φbottom=− 115.916° for the other two groups (Fig. 3d.III).

Again, there was no significant correlation between the

ITPL and the comprehension performance (r=0.267, p=

0.255, Fig. 3d.IV).

Attention related TRF-based responses

The nonparametric cluster-based permutation analysis

revealed a significant difference between the TRFs to the

attended and unattended speech, as shown in Fig. 4. The

difference was manifested as a cluster involving a set of

channels covering the left-lateralized fronto-central and

occipital electrodes (cluster-based permutation p\0.001) at

a latency of 240–320 ms post the onset of speech amplitude

envelope fluctuations (Fig. 4c). This attentional difference

is reflected on TRF-based amplitude response at the theta

band. No significant differences were observed in ampli-

tude responses at other frequency bands and phase

responses at all frequency bands (Fig. 4a, b).

Discussion

The present study aimed to identify neural signatures that

directly reflect the preparatory processing of upcoming

speech. We used naturalistic narrative speech materials in a

selective attention paradigm and a TRF-based approach for

modeling the neural activity and observed preparatory

neural activities before the onset of speech amplitude

envelope fluctuations. We found a significant correlation

between the comprehension performance of individual

participants and the phase responses to the attended speech

at the delta band (1–4 Hz), with a latency of − 200–0 ms

relative to the fluctuation onset over the fronto-central and

left-lateralized parietal electrodes. The comprehension

performance was also correlated with the phase responses

to the attended speech at the alpha band, but with a latency

Fig. 2 The violin plots depict

the distribution of the average

reconstruction accuracy (as the

correlation between the

reconstructed and original

envelopes) for each listener in

each frequency band for the

attended (the dark blue plots)

and the unattended speech

amplitude envelopes (the light

blue plots). Black horizontal

bars indicate the means
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of 650–980 ms post onset over fronto-central electrodes.

As Distinct neural signatures were found for the attentional

modulation, taking the form of TRF-based amplitude

responses at a latency of 240–320 ms post onset over the

left-lateralized fronto-central and occipital electrodes. Our

results provide direct neural evidence for how the brain

prepares for the processing of upcoming speech.

Before detailed discussions, it is necessary to state that

our assumption for a preparatory process is based on the

observation that the TRF-based neural activities before the

onset of speech amplitude envelope fluctuations during the

continuous speech stream were significantly correlated

with comprehension performance. Recent TRF-based

studies using naturalistic stimuli have reported reasonable

latencies that resembled their ERP counterparts for

describing selective auditory attention (*200 ms)

(Mirkovic et al. 2015; O’Sullivan et al. 2015), semantic

violation processing (*400 ms) (Broderick et al. 2018),

and visual working memory (200–400 ms) (Huang et al.

2018). Although our findings have mainly focused on the

window of\0 ms, these studies support the rationale of

using the TRF-based responses to reflect the time course of

information processing in general. In addition, the present

study also replicated the timing of previously reported

attentional modulation of TRF-based responses to speech

stimuli (Mirkovic et al. 2015; O’Sullivan et al. 2015).

Therefore, the pre-onset latencies observed in the present

study can be considered to represent a preparatory state that

precedes speech processing. Moreover, the TRF method

has enabled us to investigate the neural dynamics in an

event-related-like manner but with naturalistic speech

materials that are expected to better resemble real-world

speech comprehension tasks.

Our results highlight in particular that the delta band

phase at − 200–0 ms before the speech onset determines the

zcomprehension accuracy of the listeners, which serves for

the preparation of up-comping speech information. As the

analysis was performed on the neural responses to the to-

be-processed speech at the pre-onset stage rather than those

related to the preceding speech-related information (i.e.,

attentional cue, preceding words), our study has focused on

a distinct processing phase other than previous studies that

have mainly explored either the preparatory attention ori-

entation and the speech-specific pre-activations by the

preceding speech unit (DeLong et al. 2005; Söderström

et al. 2016, 2018). Notably, the employment of the natu-

ralistic speech materials has ensured sufficient variations of

the interval between the preceding and the to-be-processed

speech unit. Therefore, the present results are not likely to

reflect the neural responses to the preceding speech unit.

Although there was one study that has reported a sustained

difference in the neural activities at around 400 ms prior to

the onset of the upcoming speech (Lee et al. 2013), their

‘pre-onset’ activities mainly reflected the preparatory

attention orientation by a visually-presented abstract

attentional cue. In contrast, the results of the present study

are expected to reflect how the human brain makes use of

the rich contextual information in the naturalistic speech

materials to infer and prepare for the upcoming speech

information.

The timing and the spatial distribution of the reported

pre-onset preparatory activity extended previous studies on

pre-stimulus oscillatory activities to the speech domain.

Visual pre-stimulus studies have generally reported per-

ceptual-relevant neural activities with timings of 100–

400 ms prior to stimulus onset (Harris et al. 2018; Wöst-

mann et al. 2019). In our research, we have found a similar

time window for those studies. Our results, therefore,

suggest that approximately 0–200 ms prior to stimulus

bFig. 3 Speech comprehension performance related TRF-based

responses to naturalistic speech. a Histograms showing the distribu-

tions of the cluster-level correlational t-statistics (log-transformation)

from the 1000 permutated calculations of the correlation between the

comprehension performance and the TRF-based amplitude response

at the four frequency bands. The y-axis shows the histogram counts of

clusters from the permutated calculation at the corresponding log

(Cluster-t) value and the asterisk shows the statistically significant

cluster from the real data. The upper and lower panel for the attended

and unattended responses, respectively. The vertical orange or green

lines indicate the t-statistics of the clusters from the real data. N.C.

means no cluster was formed and N.D. means the permutated

distribution could not be generated (i.e., no cluster formed during the

permutation calculation). b Distributions of the cluster-level correla-

tional t-statistics from the 1000 permutated calculations of the

correlation between the comprehension performance and the TRF-

based phase response at the four frequency bands. The upper and

lower panel for the attended and unattended responses, respectively.

The two vertical lines with asterisks indicate statistically significant

clusters from the real data. c Illustration of the significant phase-

response cluster at the delta band. I. The time course of the TRFs at

one representative channel (FC1). The three waveforms represent the

average responses over the participants with comprehension perfor-

mance of the attended speech ranking in the top (red), middle

(orange), and bottom (yellow) tertiles (7, 6, and 7 participants,

respectively). The three waveforms represent the average TRF

responses over the participants with comprehension performance of

the attended speech ranking in the top (red), middle (orange), and

bottom (yellow) tertiles. The shaded area depicts the time window in

which the phase has a significant circular correlation with the

comprehension performance, which is further demonstrated in III. II.

The topography of the average correlation r-values in the time

window of interest. Black dots indicate the channels of interest in the

cluster. III. The polar plot is showing the average phase angles at

channel FC1 per participant. The vector lengths indicate the response

amplitude and the vector directions indicate the phase angle. The

three different colors indicate the participants’ comprehension

performance rankings as in I. IV. The scatter plot showing the

participants’ comprehension performance (accuracy in percentage)

versus their inter-trial phase-locking (ITPL) values. The color of the

dots indicates the comprehension performance rankings as in I and III.

‘n.s.’ means no significant correlation. d Illustration of the significant

phase-response cluster at the alpha band. The plots in I and III are

from channel FC1. The explanations of the sub-plots follow (C)
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onset might have a general implication for the preparation

of sensory information processing. As the present study

employed naturalistic (speech) materials that are expected

to provide much richer contextual information as compared

to the simple and abstract stimuli in most of the previous

studies, our results might provide more reliable support for

the observed timing on preparatory sensory processing.

The result is also in line with a recent study, which indi-

cated that the delta band entrainment at 100 ms before the

stimulus is related to the noise-induced comprehension

difference (Etard and Reichenbach 2019). Meanwhile, the

electrodes in central-parietal regions found in our study

involved in the preparatory processing are also consistent

with the previous auditory pre-stimulus studies (Stefanics

et al. 2010; Kayser et al. 2016). The central-parietal

responses could be related to the predictive processing of

speech meaning and could recruit a mechanism that is

similar to that underlying the classical central-parietal

N400 response (Federmeier 2007; Lau et al. 2008;

Szewczyk and Schriefers 2018) or possibly preparatory

attentional orientation as well (Holmes et al. 2016). The

left-lateralized parietal electrodes could also be linked to

the speech-specific processing, e.g., the Wernicke’s area

(Hickok and Poeppel 2007).

Our study expanded on findings from the studies about

the delta band’s functional role in speech preparatory

processing. The delta band could help the segmentation or

identification of intonation phrases, which is essential for

the preparation and prediction of upcoming speech (Giraud

and Poeppel 2012; Ding et al. 2015; Kösem et al. 2018;

Meyer 2018; Morillon et al. 2019). In particular, the phase

of the delta band before the stimulus is related to the hit

rate afterward (Ng et al. 2012), or the behavioral conse-

quence (i.e., the reaction time) in the auditory studies using

simple, isolated stimulus (Lakatos et al. 2008; Stefanics

et al. 2010; Henry and Obleser 2012). It is in contrast to

visual studies in which the alpha band is most pronounced

in the pre-stimulus stage (Busch et al. 2009; Mathewson

et al. 2011; Milton and Pleydell-Pearce 2016), suggesting

active auditory perception is dominated by lower-

Fig. 4 Attention related TRF-based responses to naturalistic speech.

a Distributions of the cluster-level t-statistics (log-transformation)

from the 1000 permutated calculations of the paired comparisons

between the TRF-based attended and unattended amplitude responses

at the four frequency bands. The y-axis shows the histogram counts of

clusters from the permutated calculation at the corresponding log

(Cluster-t) value. Vertical orange or green lines indicate the max

cluster-level t-statistics in real data and the asterisk shows the

statistically significant cluster from the real data. N.C. means no

cluster was formed. b Distributions of the cluster-level t-statistics
from the 1, 000 permutated calculations of the paired comparisons

between the TRF-based attended and unattended phase responses at

the four frequency bands. c Illustration of the significant amplitude-

response cluster at the theta band. I. The time course of the TRFs at

one representative channel (FC1). The two waveforms represent the

average responses to the attended (dark blue) and unattended (light

blue) speech. The shaded region depicts the time window of interest

with significant differences between the two waveforms. II. The

topography of the average amplitude response differences in the time

window of interest. Black dots indicate the channels of interest in the

cluster. III. The amplitude response difference per participant
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frequency (Ng et al. 2012; VanRullen 2016). In addition,

the brain activity has been shown to be capable of

dynamically tracks speech streams using the delta phase

(Zion Golumbic et al. 2013a), and temporal predictions

have been reported to be encoded by delta neural oscilla-

tions (Morillon and Baillet 2017; Auksztulewicz et al.

2018). It should be further noted that although we did not

find any significant correlation between the ITPL and the

comprehension performance, the observed ITPL values

within the found clusters (mostly within the range of 0.1–

0.4, as depicted in Fig. 3c.IV, d.IV) implied relatively

consistent phases across the trials as referenced to previous

studies (Sorati and Behne 2019; Teng and Poeppel 2020),

in support of a reliable estimation of the phase angles.

Taken together, our findings are in line with the previous

studies about the delta band phase’s role in preparatory

processing and unambiguously show that the comprehen-

sion performance could be elevated when the delta is better

prepared at a particular phase angle.

The neural mechanisms of the preparatory process were

investigated using correlation analysis of the TRF-based

neural activity. In line with recent TRF-based studies, we

observed attention-related neural responses (Mirkovic et al.

2015, 2016; O’Sullivan et al. 2015), with the peak attention

effect represented by theta amplitude activities at 250–

320 ms post-stimulus onset over the central and occipital

electrodes. In contrast, the comprehension-related post-

onset neural signatures were in the alpha band at 650–

980 ms. The result could be interpreted for a functional role

of alpha-band for a top-down control mechanism to

achieve the preparatory process, as the phase of alpha

oscillations has an active role in attentional temporal pre-

dictions (Händel et al. 2011; Bonnefond and Jensen 2012;

Samaha et al. 2015). Meanwhile, in auditory studies, the

alpha frequency band has also been suggested to be asso-

ciated with working memory (Bonnefond and Jensen 2012;

Meyer 2018), capable of storing semantics in sentences

(Haarmann and Cameron 2005) and syntax information

(Bonhage et al. 2017) and lexical decision (Strauß et al.

2015), which are also closely related to speech compre-

hension. It should be admitted that the observed alpha

signature took a phase-based form at a relatively late

latency that was different from most of the previous stud-

ies. While the above-mentioned studies could provide some

hints for its possible functional role, further studies are

necessary to refine the interpretation. Nevertheless, the

temporal dissociation of the neural signatures at delta and

alpha frequency bands further supports the functional

specificity of the delta band for preparatory speech

processing.

The neural mechanisms of the preparatory process were

further explored by inspecting their relationship with

attention. While our results are in line with previous

research that has reported low-frequency phase track the

envelope of attended speech (Ding and Simon 2012a; Zion

Golumbic et al. 2013b), we provide further evidence on

how such interactions could affect behavior (i.e., compre-

hension). Indeed, we only found the correlation between

the attended TRF-based neural activities and the compre-

hension performance in the pre-onset stage, suggesting

possible attentional facilitation of preparation of speech

processing.

This study has some limitations that should be noted.

While the use of naturalistic speech materials is expected

to better resemble the real-world speech comprehension

scenarios, the paradigm could be further improved by

presenting both speech streams to both ears (Bidet-Caulet

et al. 2007; Oberfeld and Klöckner-Nowotny 2016; Bednar

and Lalor 2020). Still, the use of naturalistic speech

materials has made it difficult to infer which specific types

of information (e.g., timing, phoneme, etc.) were the main

contributor for the observed preparatory activities. The

distributed brain regions involved in the preparatory pro-

cess may provide a guidance for designing further experi-

ments to have an in-depth exploration. The present study

used the speech amplitude envelope as the reference signal

from which the TRF models were derived, which could

reflect the speech information at all linguistic levels due to

the highly redundant information shared across levels (Di

Liberto et al. 2015; Daube et al. 2019). While such an

operation has the advantage of providing a general over-

view about preparatory processing, further investigations

are necessary to differentiate possible contributions at

different linguistic levels (Di Liberto et al. 2015; Broderick

et al. 2018). Meanwhile, caution must be taken when

interpreting the timing of the preparatory activities. While

the preparatory activity as early as*200 ms before speech

onset could be the result of an optimized utilization of the

rich contextual information provided by the naturalistic

speech materials, such timings may be dependent upon the

materials per se. Alternatively, the regularity of the speech

materials could potentially lead to preparatory-like

responses. Further studies are necessary to extensively

investigate the possible material dependence of these tim-

ings, for instance, by employed an extended amount of

speech materials. Also, denser MEG recordings together

with source localization methods are expected to more

precisely identify the brain regions for preparatory speech

processing (Mazaheri et al. 2009; Nolte and Müller 2010).

Besides, due to design limitations, we analyzed the corre-

spondence between trial-averaged comprehension and trial-

averaged phase/amplitude TRFs at an inter-individual

level. While the average comprehension questionnaire

accuracies across all stories within each participant were

employed to provide a more reliable estimation of the

speech comprehension performance than the single-trial
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accuracies, our results do not necessarily imply that the

observed neural signatures reflect the participants’ trait-

like, stable speech processing style. Alternatively, it could

be more plausible to consider these neural signatures to

reflect a more or less efficient speech processing state.

Further studies are needed to clarify the underlying

mechanisms, for instance, by using speech audio trials of

longer duration together with a more comprehensive test

per trial to allow for single-trial analyses.

Abbreviations EEG: Electroencephalogram; ERP: Event-related

potential; IC: Independent component; TRF: Temporal response

function
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Söderström P, Horne M, Frid J, Roll M (2016) Pre-activation

negativity (PrAN) in brain potentials to unfolding words. Front

Hum Neurosci 10:1–11. https://doi.org/10.3389/fnhum.2016.

00512
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